Psi = Sqrt[2/.3] Sin[n Pi x /.3] Probability = Int[Psi* Psi, {x,0,.1}] a) = 2/.3 Int[ Sin[Pi x/.3]^2,{x,0,.1}] = .1955 b) = 2/.3 Int[ Sin[99 x/.3]^2,{x,0,.1}] = .3333 c) At very high energies, you would expect the particle to be in each third of the box 1/3 of the time on the average. Yes, this answer is consistent with that (in fact, too consistent... n=98 --> .3347 and n = 100 --> .3320)
Psi = C x Exp[-a x^2] a) E Psi = -hbar^2/(2 m) d^2 Psi/dx^2 + m w^2 x^2/2 Psi d^2 Psi/dx^2 = (4 a^2 x^2 -6 a) Psi --> E = -hbar^2/(2 m) (4 a^2 x^2 -6 a) + m w^2 x^2/2 = 3 a hbar^2/m + x^2 ( -2 hbar^2 a^2/m + m w^2/2) This can only be true if: E = 6 a hbar^2/(2 m) and 0 = -2 hbar^2 a^2 /m + m w^2/2 --> a^2 = m^2 w^2 / (4 hbar^2) a = m w/(2 hbar) --> E = 6 m w/(2 hbar) hbar^2/(2 m) = 3 hbar w/2 b) 1 = Int[Psi* Psi,{x, -Infinity,Infinity}] = C^2 Int[x^2 Exp[-2 a x^2],{x,-Infinity,Infinity}] = 2 C^2 Int[x^2 Exp[-2 a x^2],{x,0,Infinity}] = 2 C^2 1/(8 a) Sqrt[Pi/(2 a)] --> C^2 = 4 a Sqrt[2 a/Pi] --> C = 2 a^(3/4) (2/Pi)^(1/4) with a from above.
Psi = C Exp[- m w x^2 /(2 hbar)] Normalization: C^2 = 1/Int[Exp[- a x^2]^2] = 1/Sqrt[Pi/(2a)] --> C = (2 a/Pi)^(1/4) where a = m w/(2 hbar) <x> = Int[C Exp[ - a x^2] x C Exp[-a x^2],{x,-Infinity,Infinity}] = 0 because integrand is an odd function of x. <x^2> = Int[C Exp[-a x^2] x^2 C Exp[-a x^2], {x,-Infinity,Infinity}] = C^2 Int[x^2 Exp[-2 a x^2],{x,-Infinity,Infinity}] = 2 C^2 Int[x^2 Exp[-2 a x^2},{x,0,Infinity}] because funciton is even = 2 C^2 1/(8a) Sqrt[Pi/(2 a)] = 1/(4 a) = hbar/(2 m w) delta x = Sqrt[<x^2> - <x>^2] = Sqrt[1/(4 a)]
b) <E> = <p^2>/(2m) + m w^2/2 <x^2> hbar w/2 = <p^2>/(2m) + m w^2 /2 1/(4 m w/(2 hbar)) hbar w/2 = <p^2>/(2m) + hbar w/4 --> <p^2> = hbar w m/2 c) delta p = Sqrt[hbar w m/2]
delta_x delta_p = Sqrt[hbar/(2 m w)] Sqrt[hbar m w/2] = Sqrt[hbar^2/4] = hbar/2