Solution:
KE = 5 mc^2 E = KE + mc^2 = 6 mc^2 gamma = E/mc^2 = 6 beta = Sqrt[1 - 1/gamma^2] = .972 v = .972 c
4 H ---> He + 2 Nu_ewhere H and He are hydrogen and helium atoms respectively and Nu_e is a massless particle. This is the primary energy producing reaction in the sun. Note: the masses given in the back of the book are the masses for the atoms. Thus the mass for H is the mass of a hydrogen atom and not just a proton.
Solution - Part A:
4x10^26 joules/sec m = E/c^2 = ------------------ = 4.44 x 10^9 kg/sec 9x10^16 m^2/sec^2Solution - question above:
4 m_H c^2 - m_He c^2 -------------------- = .008 4 m_H c^2or .8% of the mass is available for the production of thermal energy.
Solution - Part B:
.008 x 2x10^30 kg ----------------- = 3.6x10^18 sec = 113 billion years 4.44x10^9 kg/secActually the sun will explode as a supernova in a fraction of that time.
Problem Solution:
KE = m_Ra c^2 - m_Rn c^2 - m_He c^2 = (226.0254 - 222.0175 - 4.0026) u 1.66x10^-27 kg/u 9x10^16 m^2/sec^2 = 7.9x10^-13 joules = 4.9 MeVDistribution of kinetic energy:
m_0 = m_Ra m_1 = m_Rn m_2 = m_He m_0 c^2 = E_1 + E_2 = Sqrt[(p_1 c)^2 +(m_1 c^2)^2] + Sqrt[(p_2 c)^2 +(m_2 c^2)^2] 0 = p_1 + p_2 --> p_1 = - p_2 = p --> (m_0 c^2 - Sqrt[(p c)^2 +(m_1 c^2)^2])^2 = (p c)^2 + (m_2 c^2)^2 (m_0 c^2)^2 -2 m_0 c^2 Sqrt[(p c)^2 +(m_1 c^2)^2] = (m_2 c^2)^2 (m_0 c^2)^2 + (m_1 c^2)^2 - (m_2 c^2)^2 ---> E_1 = Sqrt[(p c)^2 +(m_1 c^2)^2] = --------------------------------------- 2 m_0 c^2 (m_0 c^2 - m_1 c^2)^2 - (m_2 c^2)^2 KE_1 = E_1 - m_1 c^2 = ----------------------------------- = .086 MeV 2 m_0 c^2 2 m_0 c^2 (m_0 c^2 - m_2 c^2)^2 - (m_1 c^2)^2 KE_2 = E_2 - m_2 c^2 = ----------------------------------- = 4.814 MeV 2 m_0 c^2 KE_tot = KE_1 + KE_2 = m_0 c^2 - m_1 c^2 - m_2 c^2The He carries away 98% of the kinetic energy.
Energy/momentum relationships
E_e = Sqrt[(p_e c)^2 + (m_e c^2)^2] E_g1 = p_g1 c E_g2 = p_g2 cEnergy conservation:
E_i = E_f E_e + m_p c^2 = E_g1+E_g2 m_e = m_p = .511 MeV/c^2 E_e = 1 MeV + .511 MeV = 1.511 MeV E_i = 2.022 MeVY momentum conservation:
0 = p_g1 Sin[theta] + p_g2 Sin[-theta] --> p_g1 = p_g2 = pX momentum conservation:
px_i c = px_f c px_i c = Sqrt[E_e^2 - (m_e c^2)^2] = 1.422 MeV px_f = p_g1 Cos[theta] + p_g2 Cos[-theta] = 2 p Cos[theta]Solution:
E_i = 2 p c --> pc = E_g = 1.011 MeV Cos[theta] =px_i/2 p = 1.422/2.022 = .703 --> theta = 45.3 degrees
p = r q B pc = r q B c = .344 m x 1.6x10^-19 coul x 2 T x 3x10^8 m/sec = 3.3x10^-11 joules = 206 MeV E = Sqrt[(pc)^2 + (m c^2)^2] = Sqrt[206^2 + 140^2] = 249 MeV pc beta = -- = .827 ---> v = .827 c ESolution, Part B:
E_i = E_f m_K c^2 = 2 E = 2 x 249 MeV = 498 MeV m_K = 498 MeV/c^2