Modern Physics for Engineers

Problem Set 2

Problem Set 2 - Due in class, Wednesday, Oct. 6, 1999.

    Problems:
  1. SM&M 1-34.

    Solution:

    	KE = 5 mc^2
    	E = KE + mc^2 = 6 mc^2
    	gamma = E/mc^2 = 6   beta = Sqrt[1 - 1/gamma^2] = .972
    	v = .972 c
    
  2. SM&M 1-39. Before answering part (b), calculate the amount of energy release in the reaction:
    4 H ---> He + 2 Nu_e
    where H and He are hydrogen and helium atoms respectively and Nu_e is a massless particle. This is the primary energy producing reaction in the sun. Note: the masses given in the back of the book are the masses for the atoms. Thus the mass for H is the mass of a hydrogen atom and not just a proton.

    Solution - Part A:

    	            4x10^26 joules/sec 
    	m = E/c^2 = ------------------ = 4.44 x 10^9 kg/sec
    	            9x10^16 m^2/sec^2
    
    Solution - question above:
    	4 m_H c^2 - m_He c^2
    	-------------------- = .008
    	     4 m_H c^2
    
    or .8% of the mass is available for the production of thermal energy.

    Solution - Part B:

    	.008 x 2x10^30 kg
    	----------------- = 3.6x10^18 sec = 113 billion years
    	4.44x10^9 kg/sec
    
    Actually the sun will explode as a supernova in a fraction of that time.

  3. SM&M 1-42. Also calculate how much kinetic energy each particle receives.

    Problem Solution:

    	KE = m_Ra c^2 - m_Rn c^2 - m_He c^2
    	   = (226.0254 - 222.0175 - 4.0026) u 1.66x10^-27 kg/u 9x10^16 m^2/sec^2
    	   = 7.9x10^-13 joules = 4.9 MeV
    
    Distribution of kinetic energy:
    	m_0 = m_Ra
    	m_1 = m_Rn
    	m_2 = m_He
    
    	m_0 c^2 = E_1 + E_2 
    	        = Sqrt[(p_1 c)^2 +(m_1 c^2)^2] + Sqrt[(p_2 c)^2 +(m_2 c^2)^2]
    
    	0 = p_1 + p_2 --> p_1 = - p_2 = p
    
    -->	(m_0 c^2 - Sqrt[(p c)^2 +(m_1 c^2)^2])^2 = (p c)^2 + (m_2 c^2)^2
    	(m_0 c^2)^2 -2 m_0 c^2 Sqrt[(p c)^2 +(m_1 c^2)^2] = (m_2 c^2)^2
    	                                   (m_0 c^2)^2 + (m_1 c^2)^2 - (m_2 c^2)^2
    --->	E_1 = Sqrt[(p c)^2 +(m_1 c^2)^2] = ---------------------------------------
    	                                               2 m_0 c^2
    	                       (m_0 c^2 - m_1 c^2)^2 - (m_2 c^2)^2
    	KE_1 = E_1 - m_1 c^2 = ----------------------------------- = .086 MeV
    	                                  2 m_0 c^2
    	                                               2 m_0 c^2
    	                       (m_0 c^2 - m_2 c^2)^2 - (m_1 c^2)^2
    	KE_2 = E_2 - m_2 c^2 = ----------------------------------- = 4.814 MeV
    	                                  2 m_0 c^2
    	KE_tot = KE_1 + KE_2 = m_0 c^2 - m_1 c^2 - m_2 c^2
    
    The He carries away 98% of the kinetic energy.

  4. SM&M 1-46.

    Energy/momentum relationships

    	E_e = Sqrt[(p_e c)^2 + (m_e c^2)^2]
    	E_g1 = p_g1 c
    	E_g2 = p_g2 c
    
    Energy conservation:
    	E_i = E_f
    	E_e + m_p c^2 = E_g1+E_g2
    	m_e = m_p = .511 MeV/c^2
    	E_e = 1 MeV + .511 MeV = 1.511 MeV
    	E_i = 2.022 MeV
    
    Y momentum conservation:
    	0 = p_g1 Sin[theta] + p_g2 Sin[-theta]
    -->	p_g1 = p_g2 = p
    
    X momentum conservation:
    	px_i c = px_f c
    	px_i c = Sqrt[E_e^2 - (m_e c^2)^2] = 1.422 MeV
    	px_f = p_g1 Cos[theta] + p_g2 Cos[-theta]
    	     = 2 p Cos[theta]
    
    Solution:
    	E_i = 2 p c --> pc = E_g = 1.011 MeV
    	Cos[theta] =px_i/2 p = 1.422/2.022 = .703
    -->	theta = 45.3 degrees
    
  5. SM&M 1-47. Solution, Part A:
    	p = r q B
    	pc = r q B c
    	   = .344 m  x 1.6x10^-19 coul x 2 T x 3x10^8 m/sec
    	   = 3.3x10^-11 joules = 206 MeV
    	E = Sqrt[(pc)^2 + (m c^2)^2]
    	  = Sqrt[206^2 + 140^2] = 249 MeV
    	       pc
    	beta = -- = .827 ---> v = .827 c
    	        E
    
    Solution, Part B:
    	E_i = E_f
    	m_K c^2 = 2 E = 2 x 249 MeV = 498 MeV
    	m_K = 498 MeV/c^2