
1.  Introduction

When discussing the structure of a discrete chemical 
species, the necessary data may be divided into four 
distinct levels: 

1)  Stoichiometric Composition 

2)  Molecular Composition 

3)  Bonding Topology 

4)  Molecular Configuration (Geometry) 

The first of these gives the empirical formula for a 
species; the second, requiring a knowledge of the 
molecular weight, gives the molecular formula for a 
species; the third, involving the concept of valence, 
gives a two-dimensional mapping of the bonding 
within a species; and the fourth gives the species’ three-
dimensional shape. 
 The above levels roughly reflect the historical 
order in which different aspects of chemical structure 
became accessible to the chemist. Well into the 19th 
century stoichiometric composition was the only un-
ambiguous molecular parameter available. Then around 
1860 molecular composition was put on a firm basis as 
a result of Cannizzaro’s reaffirmation of Avogadro’s 
hypothesis and the validity of physical methods (i.e., 
gas densities) for determining molecular weight. This 
was followed in rapid succession by the rise of the 
concept of valence (Couper, Kekulé, Butlerov, and. 
Frankland)  and postulation of the tetrahedral carbon 
atom by van’t Hoff and Le Bel. By the end of the 19th 
century Werner had added the pyramidal nitrogen atom 
and the octahedral, tetrahedral, and square planar struc-
tures of metal complexes to the list of stereochemical 
postulates, all of these being brilliantly confirmed by 
the discovery of X-ray diffraction techniques in this 
century. 
 Simple qualitative rules for predicting molecular 
geometry have received a great deal of attention at the 
textbook level. Outstanding examples are the Gold-
schmidt radius-ratio rules for ionic solids (l), the 
Gillespie Valence-Shell Electron-Pair Repulsion Rules 
(VSEPR) (2), and Wade’s electron-counting rules for 
electron-deficient cluster species (3).  In general, the 
prediction of information at any of the above four 

levels requires a knowledge of all the levels preceding 
it in the list.  Thus we cannot predict the bonding 
topology, in the form of a Lewis dot structure, for 
example, without first knowing the molecular formula. 
Similarly, rules for predicting molecular geometry 
always require a knowledge of the bonding topology.  
The VSEPR rules require a Lewis dot structure as input 
data and Wade’s rules require a knowledge of which 
atoms form the cluster and which act as external 
ligands. 
 However, despite the fact that geometry rules are 
generally dependent on a knowledge of the bonding 
topology, the qualitative rules which are used to predict 
such topologies seldom receive systematic treatment in 
the textbook. Instead, we have a collection of special 
rules, valid only for certain classes of compounds, 
which are scattered throughout the chemistry curricu-
lum. These range from the octet rule and Lewis dot 
structures of elementary chemistry to the styx rules and 
the generalized 8-N rule (which we call the 8-G rule) 
of inorganic chemistry and solid-state chemistry. 
 The purpose of this review is to collect all of these 
qualitative topology rules together and to demonstrate 
that they are all special cases of a general electron-
orbital counting procedure. It is not necessarily rec-
ommended that the resulting equations should be used 
as a set of memorized “rules”  when teaching this sub-
ject to students. All that is intended is that we as teach-
ers better understand the interrelations and limitations 
of the material we teach. Our approach will be similar 
to that originally given by Bent (4). 

2.  Hybrid Molecular Orbital Topologies 

We begin by generalizing the Lewis dot description of 
molecules and ions so as to include not only the lone 
pairs (i.e., one-center, two-electron or lc-2e compo-
nents) and two-center, two-electron (2c-2e) bonds of 
traditional Lewis structures, but the possibility of other 
multicentered, multielectron components as well, 
such as the 3c-2e bonds found in the boron hydrides.  
Following the suggestion of Carpenter (5), conjugated 
π-electron systems will also be represented as single 
multicentered bonding components, the π-system in 
benzene, for instance, being thought of as a 6c-6e 
component. 
 We call this the hybrid molecular orbital (MO) 
description because it represents a mixture of localized 
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and delocalized MO’s – the lc-2e, 2c-2e, and closed 
yc-2e components corresponding to localized MO’s 
and the open yc-xe components to delocalized MO’s.  
This description is actually used in most textbooks as 
the σ-bonds generally shown for such molecules as 
benzene are in fact localized MO’s and not the true 
delocalized canonical MO’s for the sigma bonding 
system, whereas the π-system is usually represented in 
terms of delocalized MO’s rather than in terms of an 
equally valid localized MO description (6). 
 Using this approximation, we assume the existence 
of the following numbers and kinds of bonding com-
ponents: 

U0  =  number of lc-0e components
 
Ul  =  number of lc-le components
 
U2  =  number of lc-2e components
 
B0  =  number of 2c-0e components 

Bl  =  number of 2c-le components 

B2  =  number of 2c-2e components 

Mx  =  number of yc-xe components (where y > 2 and x 
= 0, 1, 2, 3, ... up to x < 2y). 

The first component corresponds to an empty valence 
orbital localized on a single center or atom, the second 
to the same orbital singly occupied, the third to a lone 
pair, etc. Likewise, B2 refers to the number of two-
center, two-electron bonds, Bl to the number of two-
center, one-electron bonds, etc.  Mx is the number of 
some generalized y-center, x-electron bond.  
 The restriction that x < 2y is a result of assuming 
that each center contributes only one atomic orbital 
(AO) to the delocalized multicentered bonding compo-
nent. Hence, the total number of MO’s formed equals 
the total number of centers involved and, when x = 2y, 
all of the MO’s, both bonding and antibonding, will be 
occupied, leading to a net nonbonding component. 
 We now make the following electron and orbital 
counts: 

Electron Count 

E  =  Ul + 2U2 + B1 + 2B2 + xMx 

Orbital Count 

O  =  U0 + Ul + U2 + 2B0 + 2Bl + 2B2 + yMx 

where E is the total number of valence electrons in the 
species, O is the total number of valence atomic orbi-
tals in the species, and we have assumed only one kind 
of multicentered component per species. 
 These equations may be simplified if we restrict 
ourselves to stable, long-lived species. Experience 
shows that these usually have closed-shell structures 
(Lewis, 1916) (7) and no empty valence orbitals 
(Pitzer, 1953) (8).  Therefore, we can eliminate U0, B0, 
M0, Bl, Ul and Mx for x an odd number: 

E  =  2U2 + 2B2 + xMx

O  =  U2 + 2B2 + yMx

Simultaneously solving these equations for U2 and B2 

gives: 

U2  =  (E - O) + (y - x)Mx                                           (1) 

B2 = (O - E/2) + (x/2 - y)Mx                                                           (2)  

If we further restrict ourselves to main-block elements 
and assume only s- and p-orbital participation, then: 

O  =  4N + n                                                               (3) 

where N is the number of heavy atoms in the species 
and n is the number of hydrogen atoms. Substitution 
into equations 1 and 2 gives: 

U2  =  E - (4N + n) + (y - x)Mx                                  (4)

B2  =  (4N + n) - E/2 + (x/2 - y)Mx                            (5)

as the final set of topological equations for the hybrid 
MO description. 
 Unhappily, given only E and O, these equations 
cannot be uniquely solved for B2 and U2 since we have 
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Figure 1.  Example topologies illustrating the use of equa-
tions 4 and 5.



only two relations but five unknowns (U2, B2, Mx, y and 
x). However, in order to demonstrate the validity of the 
equations some example topologies are given in figure 
1 using generally accepted values of Mx, y and x. This 
is, of course, one of the qualitative drawbacks of the 
hybrid MO description. By allowing for the existence 
of multicentered bonding components so much flexibil-
ity is introduced that it is no longer possible to deduce 
a unique set of bonding components merely by the 
expediency of counting electrons and orbitals. 

3.  Valence Bond Topologies 

The difficulties associated with obtaining unique solu-
tions to equations 4 and 5 did not arise in Lewis’ origi-
nal formulation of his electron-pair bond because the 
use of multicentered bonding components was not 
recognized at the time. As a result there were many 
species for which Lewis structures could not be writ-
ten. Luckily, however, this restriction was valid for 
most organic compounds and the success of Lewis 
structures in this area insured their acceptance as a 
useful chemical concept. 
 These limitations were also carried over in the 
valence bond (VB) approach, where situations which 
require multicentered components in the hybrid MO 
approach are instead described using a weighted super-
position or resonance of limiting structures composed 
of only lc-2e and 2c-2e components.  Removal of the 
yc-xe components reduces equations 4 and 5 to: 

U2  =  E - O  =  E - (4N + n)                                      (6)  

B2  =  O - E/2  =  (4N + n) - E/2                                (7) 

 These equations are capable of unique solution for 
a given set of E and O values and give topologies cor-
responding to our conventional Lewis dot structures. 
Indeed, equation 7 was originally derived by Langmuir 
in 1919 as an expression of the octet rule (9). Some 

example topologies are given in figure 2.  They may be 
unique for certain species (e.g., CCl4)  or correspond to 
one of several possible resonance structures for others 
(e.g., C6H6). 
 Figure 3 summarizes the minimum number of 2c-2e 
components needed to establish complete VB connec-
tivity for several classes of structures. The results of 
this table may be combined with equation 7 to give 

information about the number of 2c-2e components 
involved in multiple bonds.  Using the notation B2σ and 
B2π as convenient labels for the number of 2c-2e sigma 
and pi bonds respectively, equation 7 may be rewritten 
as: 

B2σ + B2π  =  (4N + n) - E/2                                       (8) 

Figure 3 shows that for linear and branched structures: 

B2σ  =  N + n - 1 

Substituting this into equation 8 and solving for B2π 
gives: 

B2π  =  3N + 1 - E/2                                                    (9) 

as the number of 2c-2e components involved in multi-
ple bonds beyond those in the primary sigma frame-
work. This result was originally obtained by Lever (10, 
11)  and similar substitutions may be made for ring and 
cage structures. 
 Actually the result in equation 9 may be derived in 
a more general form by means of graph theory (12).  
For any graph composed of nv points (i.e., vertices) and 
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Figure 2.  Example VB topologies illustrating the use of 
equations 6 and 7.

Figure 3. VB connectivity requirement for simple topologies.



ne connecting lines (i.e., edges), graph theory defines a 
number, μ, known as the cyclomatic number of the 
graph: 

μ  =  ne - nv + 1                                                        (10) 

which represents the number of independent closed 
loops or cycles in the graph. Graph theory can be made 
isomorphous with VB topology by equating vertices 
with atoms, edges with bonds, and cycles with either 
rings or multiple bonds (considered to be two-sided 
rings). Substitution of these identities and the result in 
equation 7 into equation 10 gives: 

μ  =  B2 - (N + n) + 1 

μ  =  (4N + n) - E/2 - (N + n) + 1 

μ  =  3N + 1 - E/2                                                     (11)

This is. of course, the same as the result as in equation 
9 but now has the general interpretation that μ repre-
sents the number of multiple bonds or rings for any 
class of structures composed of 2c-2e bonds. 
 The use of equation 11 can be illustrated by apply-
ing it to the class of alkanes using its generalized 
composition formula CxH2x+2. Rewriting equation 11 in 
terms of x, gives: 

μ  =  3x + 1 - (4x + 2x + 2)/2  =  0 

thus confirming that the alkanes as a class do not con-
tain multiple bonds or rings in their VB topologies.  
Similar substitutions for the simple alkenes, CxH2x, and 
alkynes, CxH2x-2, give μ = 1, and μ = 2, respectively, in 
keeping with the presence of double (one cycle) and 
triple (two cycles) bonds in these species. 
 Much of the research of the last 50 years has been 
directed toward understanding the bonding in those 
species which violate the conditions set by equations 6 
and 7, and in fact, as will be demonstrated in the fol-
lowing sections, these equations can be used to derive 
explicit conditions for the existence of such electron-
rich, electron-deficient, and orbital-rich species. 

4.  Electron-Rich Species 

When the cyclomatic number of a graph is less than 0, 
the graph is disconnected, that is, one or more of the 
vertices will be isolated or not connected to the rest of 
the graph. In terms of VB topology this would corre-
spond to a no-bond situation.  Hence, by equation 10, 
the necessary condition for a discrete species having a 
completely connected VB topology is that μ ≥ 0 or: 

B2 + 1  ≥  N + n 

Substituting this into equation 7 then gives: 

E  ≤  6N + 2 

as the necessary condition for complete connectivity 
using only 2c-2e and lc-2e components. 
 When E = 2O, equations 6 and 7 give a value of 
zero for B2 and a value of 4N + n for U2. This corre-
sponds to all of the isolated atoms having completely 
filled valence shells, that is, to a nonbonding situation.  
Thus, species having a total number of valence elec-
trons lying between the limits: 

8N + 2n  >  E  >  6N + 2                                         (12) 

are “electron-rich” in the sense that they have too 
many electrons to have complete VB connectivity but 
too few to prevent some kind of chemical interaction. 
 Classic examples of this kind of species are I3- 
and HF2- and use of equations 6 and 7 leads to “no-
bond” resonance structures like those in figure 4. In 
the hybrid MO representation, on the other hand, a 
multicentered 3c-4e component is used, as shown in 
figure 1 for I3-. 
 Another way out of this dilemma is to “expand the 
octets” of the constituent atoms and so increase the 
value of O. If we let the number of AO’s per heavy 
atom, i, be a variable Zi instead of 4, then equation 12 
becomes: 

2(ΣZi+ n)  >  E  >  2(ΣZi - N + 1) 

and by altering Zi accordingly E can always be made to 
fall within the limits of electron-precise compounds. 
We will consider the validity of octet expansion in the 
final section. 
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Figure 4. Example topologies illustrating the “no-bond” 
resonance structures obtained by applying equations 6 and 7 
to electron-rich species



5.  Electron-Deficient Species 

When E < O equation 6 gives a negative value for U2, 
which is physically absurd. Such species are electron 
deficient. The problem can only be removed by return-
ing to equations 4 and 5 and invoking some type of 
multicentered bonding component or by returning to 
the original orbital and electron counts and relaxing the 
condition that we are dealing with closed shell species 
with no empty valence orbitals. This latter step would 
allow one to prevent negative values of U2 by invoking 
lc-0e, 2c-0e, or 2c-le components and the correspond-
ing versions of equations 6 and 7 would become: 

U2  =  (E - O) + U0 + 2B0 + Bl                                (13) 

B2  =  (O - E/2) - U0 - 2B0 - 3Bl/2                             (14) 

Structures generated in this manner correspond to “no-
bond” resonance structures containing either empty 
valence orbitals or unpaired electrons. Thus diborane, 
with U0 as the only additional term in equations 13 and 
14, gives:

 Chemical experience, however, has shown that the 
first alternative is preferable. By “extending” the VB 
description so as to include 3c-2e components, Lip-
scomb and coworkers have shown that one can suc-
cessfully treat the VB topologies of both the boron 
hydrides and carboranes (13). Returning to equations 4 
and 5 and setting Mx = T2, (where y = 3, x = 2), gives: 

U2  =  E - O + T2                                                      (15) 

B2  =  O - E/2 - 2T2                                                   (16)  

As we are invoking the minimum number of 3c-2e 
components required to prevent U2 from becoming 
negative, that is, only enough to maintain U2 at zero, 
we are now able to explicitly solve equation 15 for T2: 

T2  =  O - E                                                               (17) 

which, on substitution into equation 16 gives: 

B2  =  3E/2 - O                                                          (18) 

 Thus we still have a set of equations capable of 
unique solution for a given set of E and O values. The 
validity of equations 17 and 18 is shown for some ex-
ample boron hydrides in figure 5. Additional examples 
may be obtained by comparing the results of the equa-
tions with the VB and localized MO boron hydride 
topologies given by Lipscomb in references 13 and 14. 

 Because the boron hydrides form a class of com-
pounds, all of which may be represented by the general 
formula [BpHp+q+c]c, it is possible to make the informa-
tional content of equations 17 and 18 more explicit.  
Assume that only the following components are found 
in this class of compounds: 

p  =  number of 2c-2e B-H bonds = B atoms = normal            
terminal H atoms (i. e., one per B atom). 

q  =  number of additional H atoms beyond those in p. 

c  =  net charge = number of protons added or sub-
tracted. 

s  =  number of 3c-2e B-H-B bonds. 

t  =  number of 3c-2e B-B-B bonds. 

y  =  number of 2c-2e B-B bonds. 

x  =  number of additional 2c-2e B-H bonds beyond 
those in p. 
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Figure 5.  Example boron hydride topologies illustrating the 
application of equations 17 and 18.



Substituting the proper components into equation 17 
(remember protons contribute orbitals but no electrons, 
whereas H atoms contribute both) gives: 

T2  =  O - E 

s + t  =  (4p + p + q + c) - (3p + p + q) 

s + t  =  p + c                                                           (19) 

Substituting the proper components in equation 18 gives: 

B2  =  3E/2 - O 

y + p + x  =  3(3p + p + q)/2 - (4p + p + q + c) 

y + p + x  =  p + q/2 - c                                           (20) 

In addition, we may do a purely stoichiometric balance 
of the hydrogen content: 

s + x  =  q + c                                                           (21) 

Solving equation 21 for x gives: 

x  =  q + c - s 

Solving equation 19 for p gives: 

p  =  s + t - c 

Substituting these results in equation 20 gives: 

y + t + q  =  p + q/2 - c  or     

y + t  =  p - q/2 - c                                                    (22)   
  
Equations 19, 21, and 22 are, of course, the famous 
styx rules for predicting boron hydride topologies (13). 
 A similar breakdown may be obtained for any 
class of compounds which can be represented by a 
general formula and which contain only certain kinds 
of bonding components. The neutral hydrocarbons, for 
example, have the general formula CmHn and contain 
only 2c-2e components. If we let a = number of 2c-2e 
C-H components and b = number of 2c-2e C-C com-
ponents, then substitution into equations 6 and 7 gives: 

U2  =  (4m + n) - (4m + n) = 0 

B2  =  a + b = (4m + n) - (4m + n)/2

a + b  =  2m + n/2 

Unlike the result with the boron hydrides, the results in 
these equations are sufficiently trivial so that chemists 
have always derived topological formulas for the 
hydrocarbons without having to refer to explicit equa-
tions of balance. 
 The cyclomatic number may also be applied to 
boron hydride topologies. From the standpoint of graph 
theory a 3c-2e bond, because it joins three atoms, acts 
like two edges. Thus substitution in equation 10 gives: 

μ  =  B2 + 2T2 - (N + n) + 1 

Using the definitions of B2 and T2 given in equations 
17 and 18 gives: 

μ  =  (3E/2 - O) + 2(O - E) - (N + n) + 1   
   
µ  =  O - E/2 - (N + n) + 1   
  
μ  =  (4N + n) - E/2 - (N + n) + 1   
    
μ  =  3N + 1 - E/2     

which is the same result as we obtained in equation 11 
for electron-precise compounds Using the general for-
mula, [BpHp+q+c]c and substituting gives: 

μ  =  3p + 1 - (3p + p + q)/2 or

 µ  =  p - q/2 + 1

for the number of independent cycles in an acceptable 
boron hydride VB topology (12). This result may be 
checked with the examples in figure 5 or those in refer-
ence 13. 
 The successful treatment of boron hydride topolo-
gies largely rests on the validity of equation 17, which 
sets a limit on the number of multicentered compo-
nents used and thus gives a set of equations of balance 
capable of unique solution for a given set of E and O 
values. The idea that a stable species will always prefer 
additional 2c-2e components when possible rather than 
a combination of lc-2e and 3c-2e components (a condi-
tion which lowers the number of bonding electrons) is 
one which appeals to chemical instinct (4). Unhappily, 
it is not a generally valid rule and this is why the styx 
rules do not in general work for other classes of 
electron-deficient species.  
 There are many species which, though neither 
electron rich nor electron deficient, employ both multi-
centered components and lc-2e components in prefer-
ence to an increased number of 2c-2e components.  
B4Cl4, for example, gives the result U2 = 8 and B2 = 12 
with equations 6 and 7 – a perfectly valid VB topology. 
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The result is shown in figure 6a. The actual topology, 
however, corresponds to figure 6b. It employs four 
3c-2e components and equations 15 and 16 give the 
values B2 = 4, U2 = 12. The molecule appears to con-
tain an electron-rich portion (i.e., lone pairs) and an 
electron-deficient portion side by side. The reason the 
topology in figure 6b is preferred, despite the loss in 
bonding electrons, is to be found in the auxiliary rules 
discussed in the final section. 

6.  Orbital-Rich Species 

Unlike the infinite complexes characteristic of nonmo-
lecular solids, stable discrete species cannot have any 
“dangling” bonds at their periphery; that is, the condi-
tion that we are dealing with closed-shell species 
without empty valence orbitals is equivalent to the 
requirement that all of the loose ends, so to speak, must 
be capped either with lone pairs or hydrogen atoms.  
On the other hand, the orthogonality of the s- and p- 
orbitals restricts the number of 2c-2e components 
which may be held in common by any two atoms to no 
more than three, that is, we do not encounter quadruple 
bonds in these species. Given these restrictions, the 
number of lone pairs and terminal hydrogens in a sta-
ble discrete species must be such that:
   
U2 + n  ≥  2 (when N is even)                                   (23)
   
U2 + n  ≥  4 (when N is odd)                                    (24)
   
Substitution of equation 6 into equations 23 and 24 
gives:  

E  ≥  4N + 2 (when N is even)                                  (25)   

E  ≥  4N + 4 (when N is odd)                                   (26) 

Examples of species which fail to meet the conditions 
set by these equations are the diatomics NaCl(g), 

BeO(g), and C2(g). For all three E = O = 8 and equa-
tions 6 and 7 yield the results U2 = 0, B2 = 4 or the 
general formula: 

This, of course, violates the orthogonality condition 
and B2 must be reduced by invoking lc-0e, lc-le, 2c-0e, 
or 2c-le components, as in equation 14. These species 
must, therefore, violate either the closed-shell condi-
tion or the condition that there be no empty valence 
orbitals. Consequently they are usually short-lived under 
ambient conditions and tend to polymerize into infinite 
three-dimensional complexes. 
 The problem is not that there aren’t enough valence 
electrons to provide complete VB connectivity using 
2c-2e bonds, but rather that there are not enough to do 
both this and to populate all of the empty valence 
orbitals as well. Thus these species are also electron-
deficient, but in a sense slightly different from those 
discussed in the last section. For this reason we have 
used the term orbital-rich to distinguish them from 
species which meet the requirements set by equations 
25 and 26 but for which E < O. 

7.  Nonmolecular Solids 

When one attempts to extend the VB topology rules 
given by equations 6 and 7 to the solid state problems 
result because not all solids are composed of discrete 
molecules. Indeed, the vast majority of inorganic solids 
are instead composed of infinite one-dimensional (i.e., 
chain), two-dimensional (i.e., layer), or three-dimen-
sional (i.e., framework) complexes. If, in the case of 
such infinite complexes, we define E and O as the total 
numbers of valence electrons and orbitals respec-
tively per unit formula, equation 6 still gives us the 
number of lone-pairs per unit formula, but the value of 
B2 given by equation 7 will require reinterpretation as 
the bonding electrons are now not necessarily used to 
form B2 2c-2e bonds within the unit formula itself but 
may be employed in forming 2c-2e bonds between the 
unit and its neighbors. For solids containing discrete 
molecules or ions both equations may, of course, be 
used unaltered. 
 In approaching this problem we will deal with the 
structures of the elements first as this simplifies the 
problem by giving only one kind of atom per unit for-
mula. It is easiest to discuss the bonding topology in 
these solids in terms of the quantity b/N, where b is the 
total number of valence electrons available per unit 
formula for the formation of 2c-2e bonds (i.e., b = 2B2) 
and N is again the number of heavy s- and p-block 
atoms per unit formula (i.e., it is assumed no H atoms 
are present). In other words, b/N is the number of 
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Figure 6a (left):  B4Cl4, with B2 = 12, U2 = 8,  T2 = 0, μ = 5
Figure 6b (right): B4Cl4 with B2 = 4, U2 = 12, T2 = 4, μ = 5 



available bonding electrons per atom. If it is assumed 
that every 2c-2e bond is formed by each of the two 
interacting atoms providing an electron, then b/N gives 
both the total number of 2c-2e bonds per atom and the 
total maximum possible coordination number (CN) per 
atom. The actual CN may be less if multiple bonds are 
formed but b/N will still give the total number of 2c-2e 
bonds per atom. 
 Substitution of these definitions into equation 7 
and rearrangement gives: 

b/2  =  4N - E/2 or

b/N  =  8 - E/N                                                          (27)

The quantity E/N  corresponds to the total number of 
valence electrons per atom, which, in the case of the 
elements, is the same as their group number G in the 
periodic table.  Thus equation 27 becomes: 

b/N  =  8 - G                                                             (28)  

This relation was first derived by Hume-Rothery (15) 
in 1930 and states that the number of bonds formed by 
an element when in the form of the corresponding simple
substance is equal to 8 minus its group number. This  

Table 1.  Example simple substances illustrating the 
application of the 8-G rule in equation 28.

U2 8-G Element CN Structure

0 4 C, Si, Ge, αSn 4/4 framework

0 4 graphite 3/3 planar layers 
(conjugaed bonds)

1 3 white P 3/3 discrete tetrahedra

1 3 black P, As, Sb 3/3 puckered layers

2 3 N2 1/1 discrete pairs 
(triple bond)

2 2 S, Se, Te 2/2 puckered rings & 
chains

4 2 O2 1/1 discrete pairs 
(double bond)

6 1 F2, Cl2, Br2, I2 1/1 discrete pairs 
(single bond)

4 0 Ne, Ar, Xe, Rn 0/0 isolated atoms

relation is generally valid only for elements lying to 
the right of the Zintl line in the periodic table (i.e., 
groups 4-8). Thus the elements in group 8 are isolated 
atoms since b/N = 0 and U2 = 4 by equation 6.   
Elements in group 7 give b/N = 1 and U2 = 6; elements 
in group 6, give b/N = 2 and U2 = 2, etc. Further 
examples are displayed in Table 1.
 Pearson (16) has shown that equations similar to 6 
and 27 may also be used to rationalize the VB topology 
of the anion-anion bonding in most semiconductors, 
insulators, and ionic compounds whose anionic (i.e., 
electronegative) components likewise lie to the right of 
the Zintl line. A binary solid of the general formula 
CcAa, for instance, is treated as though its C-A bond is 
completely ionic, that is, as if it contains only homonu-
clear cation-cation bonds, homonuclear 2c-2e anion-
anion bonds, but no polar covalent cation-anion bonds, 
these components being held together instead by their 
net ionic charges. Equations 6 and 27 are then applied 
to the anionic components only: 

U2a  =  E - bc - 4Na                                                                             (29) 

ba/Na  =  8 - (E - bc)/Na  or 

8  =  (E + ba - bc)/Na                                                (30) 

where Na is the total number of anionic atoms per unit 
formula and bc is the total number of electrons per unit 
formula involved in cation-cation bonding or in cation 
lone pairs. E - bc is, therefore, the total number of ani-
onic electrons per unit formula, U2a is the total number 
of anionic lone pairs per unit formula, ba is the total 
number of electrons involved in 2c-2e anion-anion 
bonds per unit formula, and ba/Na is the number of 
electrons per anion available for 2c-2e anion-anion 
bonding. Equation 30 is known as the generalized 8-N  
or 8-G rule and is the subject of an extensive literature 
(16-20). 
 Applying equations 29 and 30 to [NaCl]3D (21) (bc 
= 0, Na = 1, E = 8) gives U2a = 4 and ba/Na = 0, corre-
sponding to isolated Cl- ions. Likewise, applying the 
equations to [CaSi2]2D (bc = 0, Na = 2, E = 10) gives 
U2a = 2, and ba/Na = 3. The actual topology for the Si- 
anion is that of an infinite two-dimensional hexagonal 
net, each Si atom having CN = 3. Since there is one 
lone-pair per Si atom, the actual net is puckered. In 
short, the anionic bonding topology and geometry are 
generally isomorphous with that of the corresponding 
isoelectronic neutral element (in the above examples 
Ar and As). Further examples are given in Table 2 or 
may be obtained by consulting the reviews by Pearson 
(16) and by Schafer et al (22). 
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 The reason that equations 28, 29 and 30 are re-
stricted to species lying to the right of the Zintl line is 
that they are all essentially versions of equations 6 and 
7 and must therefore meet the conditions under which 
6 and 7 are valid. The requirement that the constituent 
atoms come from groups 4-8 insures that E ≥ O and 
that we are not dealing with electron-deficient bonding.  
Such species are called valence compounds and Pear-
son has used equation 30 to classify them as normal 
valence compounds (for which ba/Na = 8 or one has 
isolated cations and anions), polyanionic valence com-
pounds (for which ba/Na < 8 and one must have anion-
anion bonding), and polycationic valence compounds 
(for which ba/Na > 8 and one must have cation-cation 
bonding). 

Table 2. Example binary compounds illustrating the 
application of the generalized 8-G rule equation 30.

U2a ba/Na Compounds CNa Anionic 
Structure

0 4 LiAl, NaIn, 
SrIn2, BaTl2

4/4 framework

1 3 NaSi, KeGe 
RbP, CsSn

3/3 discrete tetrahedra

2 3 CaSi2 3/3 puckered layers

2 3 CaC2 1/1 discrete pairs 
(triple bond)

2 2 LiP, NaSb, 
LiAs, KSb

2/2 puckered chains

3 1 CaP 1/1 discrete pairs 
(single bond)

4 0 KF, NaCl, 
CsBr

0/0 isolated mono-
atomic anions




 Precisely why the ionic formalism works as well as 
it does for these compounds is not completely under-
stood (20). However, the number of lone pairs as-
signed to the anionic components by equation 29, 
while usually giving proper geometry predictions using 
the VSEPR rules, is probably only formal. These elec-
trons may actually be involved in cation-anion bonds 
of varying degrees of ionicity. Because there is no Zintl 
line requirement for the cationic components this 
cation-anion bonding may or may not be electron defi-
cient. 

8.  Auxiliary Rules: Connectivity Constraints

All of the above electron and orbital counting rules 
have set constraints on the numbers and kinds of bond-
ing components which are consistent with a given total 
number of valence electrons and valence orbitals. In 
this section we deal with rules which restrict the man-
ner in which these components may be assembled to 
give plausible bonding topologies. All of these rules 
were implicitly assumed in constructing the example 
topologies in the various figures and at least one – the 
orthogonality restraint controlling the number of 2c-2e 
components shared in common by any two atoms – was 
explicitly discussed above. 
 The most familiar rule in this class is the octet 
rule. It states that the total number of electrons per 
atom, summed over all the components belonging to it, 
must be eight (or two for hydrogen). It therefore sets a 
limit on the total connectivity of each atom. The rule is 
apparently always valid for long-lived species com-
posed of period 2 elements. However, a debate has 
been in progress for some time now as to whether or 
not s- and p-block elements from period 3 on can vio-
late the rule by using outer d orbitals (23). In the case 
of the electron-rich species discussed above this would 
alter the value of O, and hence the conditions set by 
equation 12, and allow a satisfactory representation of 
these species with a single VB topology using only 
2c-2e and lc-2e components. Theoretical studies, how-
ever, have for the most part ruled against this possibil-
ity and have favored instead the use of multicentered 
bonding components and the general maintenance of 
the octet rule for all of the s- and p-block elements (24, 
25). 
 The effective atomic number rule or EAN rule is 
often used to set connectivity limits for the transition 
metals. However, it is not of the same fundamental 
nature as the octet rule. In the case of octahedral com-
plexes at least, Mitchell and Parish have shown that its 
validity is highly dependent on the nature of the 
ligands involved (26). Ligands which cannot partici-
pate in back-donation and which give weak ligand 
fields leave both the t2g and eg* MO's nonbonding or 
weakly antibonding.  Their occupation, therefore, tends 
to be energetically undecisive and such complexes may 
contain from 12 to 22 valence electrons about the cen-
tral atom. Those ligands which cannot participate in 
back-donation but which give strong ligand fields 
make the eg* orbitals decidely antibonding, but still 
leave the t2g orbitals nonbonding. Their occupation is 
again energetically undecisive and such complexes 
may contain from 12 to 18 electrons about the central 
atom.  Finally, those ligands which both participate in 
back-donation and give strong ligand fields not only 
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make the eg* orbitals strongly antibonding but the t2g 
orbitals decidedly bonding in nature.  These complexes 
always contain 18 electrons and obey the so-called 
EAN rule. 
 The second important topological restraint is the 
electroneutrality principle. This was first stated by 
Langmuir in 1921 in terms of formal charge distribu-
tions (27). The rule was later refined by Pauling, who 
allowed for differences in electronegativity or bond 
ionicity (28-30). In terms of formal charge distributions 
it requires that the net formal charge on each atom in 
an acceptable topology be approximately between the 
limits of 1+ and 1- and that the signs of the charges be 
consistent with the relative electronegativities of the 
atoms. If the factor of bond ionicity is taken into ac-
count, these limits are smaller, lying between 0.5+ and 
0.5- in Pauling's treatment, for example. 
 Thus, while both of the B4C14 topologies in figures 
6a and 6b obey the octet rule, that in figure 6b gives a 
formal charge of zero for all of the atoms, whereas that 
in figure 6a places a 1+ charge on each Cl and a 1- 
charge on each B. These are within acceptable limits 
but distribute the charges in a manner at variance with 
the relative electronegativities of boron and chlorine. 
Hence the topology in figure 6b is preferred despite the 
apparent loss in effective bonding electrons. The use of 
multicentered bonding components generally gives 
better formal charge distributions. Although usually 
neglected in the freshman text, the electroneutrality 
principle is at least as important as the octet rule in 
determining bonding topology. 

9.  Summary and Conclusions 

A set of general equations (4 and 5) for determining the 
numbers and kinds of bonding components consistent 
with a given set of total valence electron and orbital 
values was derived within the context of the hybrid 
MO description. By placing special constraints on these 
equations (no multicentered bonds, use of “no-bond” 
resonance structures, expanded octets, the ionic for-
malism, use of 3c-2e components coupled to the condi-
tion that U2 = 0, etc.)  special topological equations of 
balance were derived for conventional VB - Lewis dot 
structures, for electron-rich species, electron-deficient 
species, and orbital-rich species. The styx rules and the 
conventional and generalized 8-G rules were also de-
rived as special cases of equations 4 and 5. In short, all 
of the qualitative topology rules found in our textbooks 
are special cases of a general orbital-electron counting 
procedure and are obtained by invoking special auxil-
iary conditions which are reasonably valid for certain 
classes of compounds. 
 The orbital picture of molecules and atoms is, of 

course, an approximation in itself and it is apparent 
that our qualitative rules for predicting topologies are 
less general and less reliable than our rules for predict-
ing molecular geometry. We have, for instance, care-
fully avoided mention of species containing the transi-
tion elements because of the ambiguities involved in 
counting up their effective valence electrons and orbi-
tals. Nevertheless, such topology rules still form an 
important part of the general chemistry curriculum. 
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