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A Proper Metaphysics for Cognitive Performance

Guy C. Van Orden,'* Miguel A. Moreno,' and John G. Holden?

The general failure to individuate component causes in cognitive performance
suggests the need for an alternative metaphysics. The metaphysics of control
hierarchy theory accommodates the fact of self-organization in nature and the
possibility that intentional actions are self-organized. One key assumption is
that interactions among processes dominate their intrinsic dynamics. Scaling
relations in response time variability motivate this assumption in cognitive
performance.
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Conventional research efforts in cognitive psychology trust Aristotle’s
maxim that nothing can cause or move itself (Gibbs & Van Orden, 2001).
The entailed metaphysics excludes intentional behavior, as when laboratory
participants voluntarily perform cognitive tasks (Juarrero, 1999). Response
time is the most common measure of cognitive performance, and new re-
sponse time studies corroborate phenomena consistent with self-organized
criticality—a capacity for self-control. We illustrate these phenomena with
pronunciation times from speeded word naming. To see these data as confir-
matory, however, requires a metaphysics that acknowledges self-organized
behavior in cognitive performance. This is the metaphysics of control hi-
erarchy theory which we contrast with conventional structural hierarchy
theory.
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STRUCTURAL HIERARCHY THEORY

Most research efforts in cognitive psychology concern state dynam-
ics of the mind—the series of mental representations that result in behav-
ior (Markman & Dietrich, 2000). Structural hierarchy theory distinguishes
states of the mind from the rest of nature, insofar as nature is a nearly
decomposable system (Simon, 1973). Nearly decomposable systems com-
prise a hierarchy of structures nested one inside the other like Chinese
boxes that are vertically separated in time. Vertical separation means that
larger boxes change states on longer time-scales. For example, some sci-
entists believe linguistic competence changes on the very long time-scale
of evolution, whereas reading and writing refer to the long time-scale of
cultural change. Thus language and culture, on their longer time-scales,
present a static background for states of mind in a laboratory trial of word
naming.

Vertical separation in time relegates each system to its own causal scale.
Causal segregation treats each as a separate flowchart of component causes.
This metaphor extends the metaphysics of efficient causes to cognitive sys-
tems. A flowchart of causal states for word naming begins with stimulus-
input, a printed word, and ends with response-output, a pronunciation, and,
in between, comprises a chain of mediating representations.

Mediating components interact additively, an assumption Simon (1973)
dubbed loose horizontal coupling—an example of the superposition princi-
ple. For instance, the additive factors method is a test for loose horizontal
coupling (Sternberg, 1969). Experiments with several experimental manip-
ulations in factorial designs provide the opportunity for interaction. If the
interaction of two or more factors is strictly additive, then the manipula-
tions satisfy the superposition principle. They selectively influence distinct
components. But nonadditive interaction effects are the rule in cognitive ex-
periments, and a vast nexus of interactions across published experiments pre-
cludes assigning any factors to distinct components (Van Orden, Pennington,
& Stone,2001). Moreover, cognitive effects are conditioned by task demands,
culture, and language. Consider the implications within the guidelines of ad-
ditive factors logic. Cognitive factors are neither individuated as causes, nor
causally segregated from the context of their manipulation—task, culture,
or language.

CONTROL HIERARCHY THEORY

Control hierarchy theory plays a fundamental role in nonlinear anal-
ysis, like that of structural hierarchy theory in linear analysis. A control
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hierarchy is a hierarchy of dynamic structures vertically coupled in time.
Positive feedback between different scales is the basis of vertical coupling
and self-organization (Pattee, 1973). Vertical coupling implies that embod-
ied cognitive constraints directly modulate motor coordinations. Interac-
tions between vertically coupled processes dominate their intrinsic dynam-
ics. Such interactions among embodied processes couple cognitive and motor
constraints in the service of task performance. Thus it is no surprise that cog-
nitive factors modulate the kinematics of motor coordination in laboratory
performances (Abrams & Balota, 1991; Balota & Abrams, 1995; Gentilucci,
Benuzzi, Bertolani, Daprati, & Gangitano, 2000; Zelinsky & Murphy, 2000).

Self-organization refers here to patterns of variability that appear in
word pronunciation times (and other performance measures). These pat-
terns reflect a system’s intrinsic dynamics; they do not originate in external
sources (Nicolis, 1989). The capacity for self-organization is corroborated
in characteristic patterns associated with states of self-organized criticality.
At or near a critical point, interactions between nearest neighbor processes
are, effectively, extended across the entire system. “The system becomes
critical in the sense that all members of the system influence each other”
(Jensen, 1998, p. 3). Criticality, in this context, is indicated by scaling relations
that imply coordination at all scales, a global dependence in the observed
system.

Pink Noise

Word pronunciations are complicated events. Articulation involves co-
ordinated contractions of flexor and extensor muscle groups, nested within
the molar coordination that we call the pronunciation. Similarly muscle con-
tractions nest, and are nested within, body events having to do with neuromo-
tor and vascular processes (Schmidt, Beek, Treffner, & Turvey, 1991). Such
processes become coupled or entrained in the motor activities in which a per-
son engages (Amazeen, Amazeen, & Beek, 2001; Amazeen, Amazeen, &
Turvey, 1998).

Word pronunciations also intertwine processes on long time-scales,
longer than the trial pace of a word naming experiment. For instance, con-
ventional intuitions allow long-range fluctuations in motivation, vigilance,
attention, and so on. But conventional intuitions don’t take us far enough.
Vertical coupling blurs structural and causal distinctions. It compounds pro-
cesses as a complex irregular wave that fluctuates across the trials of anaming
experiment. Waning fluxes contribute to slower naming times; waxing fluxes
contribute to faster naming times. The empirical signature is pink noise that
is observed in spectral analyses.
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Fig. 1. Panel A portrays the average power spectrum for pronunciation times from twenty
participants, for trial-series of 1100 individually presented monosyllabic English words (from
Holden, Van Orden, & Turvey, 2001). Pronunciation time is the interval of time, in msec,
between when a word appears and when a pronunciation triggers a voice key. Pronunciation
times were kept in the strict trial-series order for spectral analyses, conducted in several ways
with nearly identical results (cf. Chen et al., 1997; Gilden et al., 1995). Participants’ slopes
ranged from —0.11 to —0.50, and the slope of the regression line portrayed in Panel A is reliably
different from surrogate data, #(19) = 12.14, M = —.30, SD = .11. (Ideal pink noise has a
slope of negative one and ideal white noise has zero slope, representing equal power at all
frequencies.) Panel B portrays the average power spectrum for simple reaction times from
ten (additional) participants, who each completed 1100 reaction time trials. Each trial began
with a signal (#######) after which a participant quickly said /ta/, which triggered a voice key.
Spectral analyses were conducted as for the previous trial-series. The slope of the regression
line portrayed in panel B is reliably different from surrogate data, 1(9) = 10.73, M = —.68, SD
= .20. (Participants slopes ranged from —0.32 to —0.99.) Likewise, the slopes for naming and
simple reaction time are reliably different from each other, #(28) = 6.73. Pink noise is more
prominent in tasks like simple reaction time that repeat identical trials (Gilden, 2001). It is less
prominent in word naming because unsystematic fluctuations in trial-by-trial word properties
decorrelate the pink noise signal.

If we graph each pronunciation time, in the trial order of the experiment,
the data points fluctuate between fast and slow times. Connected data-points
become a complex waveform that is approximated as a composite of waves
spanning a range of frequencies. Pink noise is an inverse relation between
the frequency of the composite waves and their amplitude (power) on log
scales. Figure 1, panel A, illustrates this relation as it appears in trial series
of pronunciation times. The term pink noise comes from a weak analogy
to pink light that concentrates power at longer wavelengths. The analogy
is weak because it fails to capture the scaling relation between power and
frequency that implies coordination among scales. The relation between
scales is “causally and interpretively bidirectional” (Lumsden, 1997, p. 35).
“There is no characteristic time or frequency—whatever happens in one time
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or frequency range happens on all time or frequency scales” (Schroeder,
1991, p. 112).

Scaling relations are observed in spectral analyses of motor perfor-
mances like swinging pendula (Schmidt et al., 1991), tapping (Chen, Ding, &
Kelso, 1997, 2001), and simple reaction time (Fig. 1, panel B). Pink noise is
also found in controlled-processing cognitive tasks like mental rotation, lexi-
cal decision, visual search, repeated production of a spatial interval, repeated
judgments of an elapsed time (Gilden, 1997; Gilden, Thornton, & Mallon,
1995), and simple classifications (Clayton & Frey, 1997; Kelly, Heathcote,
Heath, & Longstaff, 2001). Here we illustrate the pink noise pattern in word
naming, an automatic cognitive performance based on learned associations.
The inclusive variety of these paradigms implicates vertical coupling gener-
ally in laboratory performances.

Word Properties as Embodied Constraints

Distributions of pronunciation times present a different picture of self-
organization. Self-organization is implicated by response time distributions
whose slow tails fall off as inverse power laws—another scaling relation. We
illustrate an inverse power law in a single participant’s distribution of word
naming times, after we describe word properties as embodied cognitive con-
straints for word naming. We chose word naming as our illustration because
neural network simulations of word naming implement simple control hi-
erarchies (cf., Farrar & Van Orden, 2001; Kawamoto & Zemblidge, 1992;
Masson, 1995).

Word properties are dynamic properties. For instance, the frequency
of a particular word, on a particular day, in a particular laboratory, for a
particular individual, refers to an idiosyncratic rate of recurrence. Word
frequencies are calculated from samples of text, snapshots of discourse. A
very common English word, like the word the, recurs so often that it appears
in almost every snapshot. Any moderately sized sample of English is almost
sure to include many instances of the word the. Less common words come
and go across samples of all sizes.

Uncommon words greatly outnumber common words. So, whether or
how often most words recur depends on which texts are read, that depends,
in turn, on historical circumstances like a person’s regional culture and id-
iosyncratic choices. But rates of recurrence also change throughout a per-
son’s lifespan as the terms corsage and cataract illustrate. Rates of recurrence
even change among the designs of laboratory reading tasks (e.g., repetition
effects). “The process to be measured changes even as we attempt to measure
it.” (West & Deering, 1995, p. 29).
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Subword Relations as Embodied Constraints

Subword relations add crucial detail to the pattern of recurrence. Sub-
word relations piggyback on word recurrence but they, themselves, recur
more often than the words they compose. Consequently, constraints that
reflect subword relations are strengthened more often than whole-word re-
lations (mint < /munt/). Take the body-rime relation _int < /_mnt/, in mint, for
instance. This same body-rime appears in other words (e.g., hint, lint, tint); the
body-rime _int < /_mnt/ would be found in all the snapshots of all the words it
composes—more snapshots than any of the words taken individually. Con-
straints that attend on grapheme-phoneme relations are strengthened still
more often (e.g.,i < /i/,n < /n/,t < /t/). They appear in many more snapshots
than either body-rimes or words. Learning is distributed over many scales
of information. Constraints live at every scale, which yields a hierarchy of
constraints for word naming.

Control emerges on-line as the values of control parameters change
from earlier to later dynamic regimes. Coherent body-rime and whole-word
constraints grow out of competitive and cooperative dynamics at the scale
of grapheme-phoneme constraints. On-line dynamics “grow” pronunciation
constraints that attend on larger relations in interactions among smaller
scale constraints. As larger scale constraints cohere, they also prune the
active set of potential pronunciations at the smaller scale (cf. Shaw & Turvey,
1999).

Control emerges on-line, which extends the metaphysics of control hi-
erarchy theory to embodied scales of information (Juarrero, 1999). But the
constraints themselves derive from a vast hierarchy of statistical relations on
different scales of culture and discourse. Thus, in effect, control of word nam-
ing extends outward into the structured environment of discourse and the
idiosyncratic details of a participant’s history (Goldinger, 1996, 1998). This
is the general point of our examples: “Stimulus” properties are constraints
that interact as a control hierarchy (cf. Farmer, 1990).

Response Time Distributions

Control parameters determine the stability of pronunciation options at
the respective scales of learned information that are self-organized in the
service of word naming. Stability determines the distribution of pronuncia-
tion times. In samples of words, embodied constraints, for a particular word
on a particular trial for a particular person, are sampled unsystematically,
as random variables (Van Orden, Holden, Podgornik, & Aitchison, 1999).
Interactions combine constraints approximately as products. The product of
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Fig. 2. Panel A presents a standard histogram of a single participant’s pronunciation
times, from the experiment described in the previous figure caption. Panel B, presents a
histogram constructed after a logarithmic transformation of the pronunciation times in
panel A. The solid line in panel C represents the histogram in panel B as a probability
density function (smoothed using a nonparametric Gaussian kernel density estimator,
see Van Zandt, 2000). The dashed line in panel C is an ideal Gaussian curve, on the
log scale, constructed using the empirical distributions’ mean and standard deviation.
Panel D presents a scatter of points that run from the mode of the pronunciation time
distribution down along its slow tail, and the power law regression line through the
scatter of points (the scales of panel D are those of panel C, except panel C’s Y-axis has
undergone a log transform).

two (or more) random variables is a lognormal distribution—a distribution
that would appear normal on a logarithmic scale (Montroll & Shlesinger,
1982). Response time distributions from cognitive tasks resemble lognor-
mal distributions (Luce, 1986; Ulrich & Miller, 1993), but they are not simply
lognormal, as we explain.

Figure 2 presents a single participant’s distribution of pronunciation
times from the word naming experiment. Panel C shows the smoothed prob-
ability density function after naming times undergo a logarithmic transfor-
mation, and the resemblance to a normal distribution (on log-linear scales).
The dashed line in panel C represents an ideal normal curve constructed us-
ing the empirical distribution’s mean and standard deviation as parameters
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(and normalized to occupy unit area within the interval). The previous linked
assumptions explain why the distribution of pronunciation times resembles
a lognormal distribution. However, despite the resemblance, the fit is rather
poor, given that the parameters were estimated from over 1000 data points.
The empirical distribution’s slow tail broadens the ideal distribution, and
introduces the discrepancy in the peaks of the two curves. Apparently, log-
normal distributions do not fully accommodate the potential for nonlinear
stretching of response time distributions.

Natural processes that yield lognormal distributions tend toward inverse
power laws as they become more complex. Nonlinear dynamics and positive
feedback create the potential for iterative interactions that may amplify
relaxation times for local instabilities, and amplify the amplification, and so
on, which produces extreme slow response times. The implied continuum of
distributions is defined by increasingly stretched, amplified, long tails. This
pattern is corroborated if the long slow tail is well described by a power
law (on log/log scales). Figure 2, panel D, presents a scatter of points taken
along the slow tail of the pronunciation time distribution, and the power law
regression line through the scatter of points—the scaling relation consistent
with self-organization.

The participant whose pronunciation times appear in Fig. 2 produces
a power law slope close to the median of the distribution of twenty partici-
pants’ power law slopes (that ranged from —17.81 to —5.85). Steeper slopes
come from distributions that are closely approximated by lognormal distri-
butions, and shallower slopes come from distributions better approximated
by inverse power laws along their long, stretched, slow tails. For example,
a D statistic from a Kolmogorov-Smirnov test, that gauges the difference
between the lognormal approximation and the empirical distribution, was
positively correlated with the power law slope (r;(18) = .70, p < .05). This
pattern held for parametric fits as well. We speculate that the narrower (more
stable) distributions come from more skilled readers, because they can rely
on well tuned internalized constraints.

Intentionality

Different tasks entail different intentions to perform, and different in-
tentions imply different hierarchies of constraints, within which per-
formances self-organize (Van Orden & Holden, 2002). Control hierarchy
theory accommodates intentions as extraordinary boundary conditions—
constraints that change on longer times scales than laboratory performances
(Kugler & Turvey, 1987). Participant intentions to perform as instructed grow
out of embodied dynamics on time scales of social discourse and language
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Fig. 3. Boxplots of power law slopes, computed as in Fig. 2, from individual participants’
distributions of correct response times from word naming, positive “word” lexical de-
cisions, and positive “exemplar” semantic categorizations. Fifteen different participants
were assigned to each of the three tasks. Each task presented the same 168 target words
(from typicality norms, Uyeda & Mandler, 1980). The center-line of each box plot cor-
responds to the median slope, the left and right sides correspond to the first and third
quartiles of participants’ slopes, and the dashed “whiskers” show the range of slopes with
outliers plotted as circles. Precise slopes depend on parameters that are chosen in fitting
the distributions. We treated all distributions identically and used nonparametric statis-
tics to distinguish them. What is important is that slopes become shallower as a function
of task. A nonparametric Mann-Whitney U test reliably distinguishes the distribution of
slopes for word naming from the distribution of slopes for lexical decisions, Zy = 4.42,
p < .05. Likewise, the distribution of slopes for lexical decisions is reliably different from
the distribution of slopes in semantic categorization, Zy = 2.47, p < .05.

comprehension and limit behavioral options on the time scales of laboratory
trials (Juarrero, 1999). As intentional constraints cohere, they also prune the
set of behavioral options.

The box plots in Fig. 3 illustrate distributions of power law slopes calcu-
lated for each participant to another set of target words that each appeared
identically in three widely used laboratory reading tasks: word naming,
lexical decision (respond “yes” if the target is an English word), and semantic
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categorization (respond “yes” if the target is a category exemplar). Notably,
the distributions of power laws that characterize the task performances
change reliably across the three tasks—the range of participants’ power
law slopes, within tasks, differs across tasks, which implies that the tasks
themselves differ in complexity.

Different tasks emphasize different constraints, which explains why
interactions among tasks and cognitive factors confounded additive fac-
tors logic. Word naming emphasizes “bottom up” relations between words’
spellings and their pronunciations. Constraints that attend on these relations
function generally in reading, and their relative stability is the key to suc-
cessful reading (Pennington, 1991). Participants’ capacities for word naming
appear to range from skilled readers, who produce more constrained log-
normal behavior, out to less skilled readers for whom word naming is a
complex task (Holden, 2002). Lexical decisions emphasize “top down” re-
lations between words’ pronunciations and their spellings (the inverse of
word naming), less stable relations that pertain more to writing and spelling
than to reading (see Bosman & Van Orden, 1997, for a review). Categoriza-
tion emphasizes more or less familiar relations between semantic categories
and word meanings (e.g., Larochelle, Richard, & Souli¢res, 2000). Partici-
pants produce more complex behavior—shallower inverse power laws—in
the lexical decision and categorization tasks. Different tasks require differ-
ent intentions to perform, and task specific intentions imply task specific
control hierarchies.

A PROPER METAPHYSICS

Core assumptions require empirical support, a basis in reality. Scal-
ing relations motivate assumptions of control hierarchy theory, and scaling
relations are generally observed in laboratory performances. Core
assumptions that correctly characterize a system’s intrinsic dynamics tell
us what kind of system we deal with. They define the kind of research
program that may be appropriate for the system under study. For exam-
ple, scaling relations encourage a programmatic focus on parameter
dynamics—factors that determine the stability of behavioral options (Kelso,
1995).

Core assumptions must also embrace the salient aspects of a system.
The more inclusive metaphysics of control hierarchy theory makes a place
for intentionality. Outside the laboratory, attribution of intentions is the
basis for meaningful interpretation of behavior (Gibbs, 1999; Juarrero, 1999;
Searle, 1992). A proper metaphysics for cognitive performance must likewise
accommodate the intentional basis of laboratory participation.
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