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The application of dynamical systems methods and concepts to cognitive
phenomena has broadened the range of testable hypotheses and theoretical
narratives available to cognitive scientists. Most research in cognitive dynamics
tests the degree to which observed cognitive performance is consistent with
one or another core phenomena associated with complex dynamical systems,
such as tests for phase transitions, coupling among processes, or scaling laws.
Early applications of dynamical systems theory to perceptual-motor performance
and developmental psychology paved the way for more recent applications of
dynamical systems analyses, models, and theoretical concepts in areas such as
learning, memory, speech perception, decision making, problem solving, and
reading, among others. Reviews of the empirical results of both foundational and
contemporary cognitive dynamics are provided. © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

Adynamical system is simply one that changes
over time (see Box 1). It is apparent that many of

the processes cognitive scientists study—development,
learning, the spread of activation in a semantic
network, changing patterns of cortical activity, motor
behavior, and so on—are intrinsically dynamical.
Dynamical systems theory supplies new tools and
concepts for understanding these and other cognitive
phenomena. The theory offers a full complement
of analytical methods (e.g., nonlinear time series
analyses) and modeling strategies (e.g., differential
equations). Most importantly, it motivates novel
theoretical and empirical questions: One may explore
the relative stability of a cognitive activity, test for
meta- or multi-stability, or test for empirical patterns
consistent with scaling behavior, emergence, and
self-organization.

These kinds of questions complement those
posed by mainstream cognitive science—which tradi-
tionally has emphasized static properties of mind such
as symbolic representations or structural mechanisms
of information processing—by focusing explicitly
on change1–9 (see, e.g., Elman10 for a dynamical
interpretation of connectionist models). Much work
in cognitive dynamics was inspired by parallel
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efforts to understand the dynamics of perception-
action.11–15 Early and significant progress emerged in
the domain of motor coordination, where the behav-
ioral phenomena were more obviously dynamical and
high-resolution measurement technologies were more
readily available.16 The dynamical account of inter-
limb rhythmic coordination12,14 is an example of an
early success.

Research in cognitive dynamics is often allied
with some version of embodiment.17–21 Dynami-
cal systems were sometimes framed as replacements
for computational-representational accounts,8,19 as
distinct but complementary,22 or even as consis-
tent with information processing given the implicit
computations performed by dynamical systems.23–25

Whether and how dynamical systems accounts
might be reconciled with traditional accounts,
they provide a fresh perspective on many foun-
dational problems in cognitive science,1 includ-
ing perception-action,12,14,26 memory,27,28 word
recognition,29–32 decision making,33–35 learning,36–38

problem solving,39 and language.10,40

Progress in applying models, analyses, and the
theoretical concepts of dynamical systems to cogni-
tion is accelerating and these approaches are now
broadly represented in cognitive science. Naturally,
the discipline entertains debates about the merits of the
perspective.8,41–46 Rather than rehash those debates,
this article seeks to synthesize and summarize recent
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BOX 1

DYNAMICAL SYSTEMS

Dynamical systems are systems whose state
evolves over time according to a rule. These
rules are often written as differential or differ-
ence equations. The evolution of the state is a
trajectory in state space, whose coordinates are
the variables that fully characterize the system.
Trajectories are drawn toward attractors, sub-
sets of phase space that are stable solutions to
the system equation(s). Repellers are unstable
solutions, and trajectories are driven away from
them. A bifurcation is a change in the number
or type of solutions, for example the appear-
ance (or disappearance) of an attractor, as some
parameter is varied.

Oscillators are one class of dynamical sys-
tem. Dynamical models of oscillators vary in com-
plexity, from simple, idealized, linear, harmonic
motion to more realistic, nonlinear, limit-cycles—
stable oscillations that result from a balance of
energy lost (e.g, to friction) and energy injected
into the system. Two variables comprise the state
space for a limit cycle—the position and velocity
of the oscillating body. A limit-cycle attractor is
an elliptical orbit in this two-dimensional space
(see Figure 1); if the initial position and velocity
are not on the attractor, the system will evolve
toward it, or if a perturbation temporarily bumps
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FIGURE 1 | Depiction of a limit-cycle attractor which forms a closed
orbit in the velocity-position plane. Two trajectories are shown to
converge on the attractor. Each trajectory begins at different initial
conditions (A and B) which respectively begin within or outside of the
attractor but quickly converge on it. A particular type of nonlinear,
limit-cycle oscillator termed van der Pol oscillator is shown. The figure
was created with the Matlab tool Limit Cycle Plotter created by Joel
Feenstra and available on the Mathworks File Exchange
(http://www.mathworks.com/matlabcentral/fileexchange/10191-limit-
cycle-plotter).

the system from the attractor, it will quickly
‘relax’ back onto it. These properties reflect the
stability of limit cycles, and contrast with the
behavior of chaotic dynamical systems, which
exhibit different long-term behaviors when ini-
tial conditions change and diverge exponentially
over time from the previous trajectory when
perturbed.

progress and current themes in dynamical cognitive
science.

EARLY INNOVATIONS IN COGNITIVE
DYNAMICS

Dynamical concepts are implicit in William
James’ ‘stream of consciousness’47 and the Gestalt
psychologists co-opted field theory from physics.48

Cybernetics, general systems theory, and catastrophe
theory all share conceptual similarities with con-
temporary dynamical systems theory and they influ-
enced the development of cognitive science. None
of those frameworks, however, fully exemplifies
the tools and concepts of contemporary dynamical
systems and complexity theories (see Box 2). The
more contemporary formalization of the concept of
self-organization, in particular, represents a major
conceptual foundation for contemporary dynami-
cal accounts of cognitive performance.49 Three key
research domains—perception-action, cognitive devel-
opment, and speech perception—exemplify but do not
exhaust early and innovative applications of dynamics
and self-organization in cognitive science.

Dynamics of Perception-Action
Perception-action research provided an initial entry
point for the application of modern dynamical sys-
tems concepts to cognitive science. Stability, emer-
gence, and self-organization featured prominently in
dynamic pattern-formation12 and ecological57 theo-
ries of perception-action. A broad range of modeling
and analysis tools motivated by dynamical systems
was applied to an equally broad array of behav-
iors. Coupled nonlinear oscillators were successfully
used to model the dynamics of both unimanual
and bimanual rhythmic coordination.59 Haken et al.’s
model of bimanual rhythmic coordination60 not only
accounts for initial observations of two sponta-
neously stable coordination patterns and transitions
from one pattern to another as movement frequency
increased61 but also predicts many subtle and unex-
pected steady-state coordination phenomena that were
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BOX 2

COMPLEXITY AND SELF-ORGANIZATION

Complexity and self-organization are closely
allied with dynamical systems. Complexity is
not just ‘complicated’. Usually, the term refers
to systems comprised of many nonlinearly
interacting components that, as a consequence
of those internal interactions along with
interactions with the environment in which they
are embedded, exhibit distinctly recognizable
organization at different scales of observation.
Self-organization refers to the fact that complex
systems subject to appropriate constraints can
exhibit spontaneous patterning or order. Classic
examples include Rayleigh–Bénard convection50

and slime molds.51 The contrast with self-
organization is ‘other-organization’, in which
some special component of the system or some
agent external to the system is endowed with
the ability to organize or command the other
components.52,53

Self-organizing, complex systems have
emergent properties—at macroscopic scales they
possesses properties that cannot be reduced
to linear interactions among the micro-scale
components. Dale et al.22 pointed out that while
emergentism is often dismissed in cognitive
science as wishful thinking, emergence is well
founded in many other disciplines and its
implications for cognitive science ought to
be taken seriously in their own right. Self-
organization and emergent properties present
possible solutions to the problem of how
behavior can be regular without there being
a regulator54,55—these concepts present a
principled way to explain cognitive performance
without loans of intelligence56 that amount to
some form of the homunculus problem.57,58

later confirmed in experiments.62 1/f scaling and frac-
tality were observed in a range of human activity.
Standard tools used to asses the structure of vari-
ability were applied to perceptual-motor behaviors
such as finger tapping,63–66 eye movements,67 and
locomotion.68–71 Warren72 developed a general mod-
eling framework for behavioral dynamics, articulated
in terms of the emergence of behavioral trajectories
from informational and forceful (mechanical) animal-
environment and perception-action couplings in the
context of behavioral goals (modeled as attractors)
and obstacles (modeled as repellers). The literature
on dynamical systems in perception-action is vast,

and reviews of this body of research can be found
elsewhere.12,14,73,74

Developmental Dynamics: The A-Not-B
Error
The utility of the dynamical framework in motor
behavior and other fields inspired the application of
dynamics to human development.7,75 That work was
primarily focused on testing predictions motivated
by stability, nonlinearity, emergence, and self-
organization.5 Development, from this embodied,
dynamical perspective, is a progression of growth-
driven, emergent (not reducible to linear combinations
of the components) phenomena in which processes
intrinsic to the organism continuously adapt and
reconfigure as the organism interacts with its
environment. Stage-like, qualitative developmental
changes are depicted in this view as resulting from
context-sensitive nonlinearities that arise from those
interactions.

A workhorse experimental phenomenon for this
perspective is the historic ‘A-not-B error’ described
by Piaget.76 An A-not-B error occurs when an 8- to
10-month-old infant exhibits perseverative reaching
toward one location where a toy has previously
been hidden (location A) when the toy is newly
hidden—while the infant watches—in a new location
(location B). Crucially, a time lag is imposed between
when the toy is hidden and when the infant is
allowed to reach (without the lag, the error does not
occur). A dynamic field theory77,78 model provided a
comprehensive account of this phenomenon and also
predicted several novel findings.21,79–82

The model entails competition between response
options in terms of competing activation levels cor-
responding to a tendency to reach toward one or the
other spatial location (A or B) as function of experi-
ence and context. When an experimenter draws the
infant’s attention, and hides the toy in one location
(A), the activation level for that location increases tem-
porarily but then begins to decay over time. However,
if an activation threshold level is surpassed, the model
produces a reach, which also reinforces and increases
the activation level associated with the reached loca-
tion. The repeated accumulation of activation across
identical A trials yields a higher overall activation
level for the A location than for the B location—even
when the toy is subsequently hidden in the B location.
The modest increase in activation for the B location
when the toy is hidden there in the crucial test-trial
decays during the lag period between when the toy
is hidden and a reach response is permitted, and thus
B’s activation is overwhelmed by A activation. An A-
not-B error results. The model accurately accounts for
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both the error phenomenon and the disappearance of
the A-not-B error when the child is allowed to reach
immediately after the experimenter hides the toy (i.e.,
no time lag is imposed).

The significance of this model is that it accounts
for the A-not-B error by taking into account only
the dynamic, embodied behavior of the infant in a
particular context. It does not require recourse to
explicit representations or static concepts such as
object permanency. In fact, the latter issue is important
because perseverative reaching can be elicited without
presentation of an object of any sort.79 Dynamic
field theory models have additionally been applied
to a range of other cognitive and perceptual-motor
phenomena, as described in Spencer et al.81

Dynamics of Speech Perception
The perceptual-dynamics approach to speech per-
ception illustrates another successful application of
dynamical principles to problems in cognitive science
beyond motor control.83,84 Tuller85 provided an excel-
lent and detailed description of this and related work.
This approach borrowed from Kelso’s12 dynamic the-
ory of pattern formation, and focuses on identifying
attractors that permit stable patterns of behavior and
transitions between stable behavioral modes (behav-
ioral phase transitions that map to bifurcations in the
underlying dynamics) that occur as a control param-
eter is systematically manipulated. In this case, the
behavioral patterns relate to the categorical percep-
tion of speech sounds (i.e., a subject heard either
one word or another) and a control parameter cor-
responds to the duration of a gap between the sound
of the letter ‘s’ and the sound ‘ay’. People under-
stand the sound as ‘say’ for short gap durations and
‘stay’ for longer gaps. However, the gap duration that
distinguishes the phase transition between the two per-
ceptual categories depends on whether the gap is being
progressively increased or decreased across successive
presentations. Such history dependence is known as
hysteresis, and it indicates that for certain values of
the control parameter the perception is bistable—both
‘say’ and ‘stay’ percepts are possible. Such a situation
must be modeled as a system with two mutually
exclusive perceptual attractors. For some values of the
control parameter, both attractors are present. But
at some value of the control parameter, participants
report only hearing either one or the other word, so the
perceptual attractor corresponding to the word that is
no longer perceived must undergo a bifurcation, trans-
forming into a repeller, while the attractor for the per-
ceived word remains. The aforementioned phenomena
were captured by a differential equation model of cat-
egorical speech perception. The model also predicted

novel phenomena that were subsequently confirmed
experimentally. The Tuller et al. model84 additionally
included ways to account for a number of contextual
effects in speech perception and was later elaborated
to account for learning effects. The demonstration
that speech perception exhibits many of the hall-
mark properties of nonlinear complex systems, such
as phase transitions, bistability, and hysteresis, pro-
vided an important benchmark in the development of
dynamical systems narratives for cognitive science.

A Summary of the Early Dynamical Systems
Framework
These and many other early studies in cognitive
dynamics had an important impact on the continued
development of theory and empirical research. One
emerging viewpoint from this perspective, captured in
part by the approach outlined by van Gelder8, cast the
task of dynamical cognitive science as the development
of abstract dynamical systems models of cognitive
processes. These models would capture the time-
evolution of relatively macroscopic state variables
that mapped on to some relevant feature of cognitive
performance. The scope of dynamical cognitive
science has expanded since van Gelder’s version of the
dynamical hypothesis was formulated, however, and
the emphases of the approach have shifted somewhat.
Early narratives regarding the soft-assembly of
perceptual motor-coordination57 were later extended
with the hypothesis of soft-assembly of cognitive
performance.42,86,87 Many new findings appeared in
the literature, and new methods were adopted. The
following section overviews some of the more recent
developments in dynamical cognitive science.

CONTEMPORARY COGNITIVE
DYNAMICS

Our review of recent dynamically motivated research
in cognitive science is not exhaustive. It necessar-
ily must omit progress in a number of significant
areas. These include investigations of (a) movements
that embody the cognitive coordination required
for successful interpersonal communication,88,89

(b) decision-making in team sports,33,90 and (c) insight
during problem-solving tasks.39,91–93 Despite the sig-
nificance of (a)–(c), a more relevant focus for present
purposes is research that addresses the generic issue
of whether certain empirical signatures of cognitive
dynamics are reliably identifiable in cognitive per-
formance. Those signatures reveal that cognitive and
neural processes embody the dynamics of complex,
nonlinear systems.
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FIGURE 2 | The upper-right plot depicts a trial series consisting of 8192 simple reaction times, produced by a single subject, across a single 3-h
experimental session. The x-axis tracks the successive trials in the experiment, from the first to the last. The y-axis tracks the reaction time in
standardized z-score units. Directly below the reaction time series is a plot of its power spectral density, or the power spectrum, on
double-logarithmic axes. The y-axis of the spectral plot corresponds to how big the changes are and the x-axis is their frequency of occurrence, on
log–log scales. Since f−α = 1/fα , the size of change, S(f), is proportional to the frequency, f, of change, as S(f) ∝ 1/f. The scaling exponent, α, relates
the amplitude and frequency of variation and is depicted as α = 0.94. It derives from the spectral slope in the lower-right plot. The scaling exponent
is an invariant ratio of size and frequency. The plots on the left make explicit what each point in the spectral plot captures. The upper plot is a very
low-frequency sine wave and corresponds to the one of the three lowest frequencies that was used to approximate the signal. The specific point it
represents is surrounded by a circle, and indicated by the arrow. The remaining plots depict the same information, for progressively higher
frequencies of oscillation. The successive axes of the sine plots were dramatically enlarged to make the oscillations visible. (Reprinted with permission
from Ref 94. Copyright 2010 Taylor & Francis Ltd)

Scaling Laws in Cognition
The nervous system is a continuously fluctuating
excitable medium. Nervous system dynamics unfold
within the time interval between the presentation of a
stimulus and the collection of a response in a standard
laboratory-based cognitive task. How does one under-
stand these cognitive dynamics via behavioral mea-
surements? Cognitive scientists have identified a vari-
ety of paradigms to make dynamics available for mea-
surement. One entry point into the dynamics of cogni-
tion is a trial series of response times (RTs)—sequences
of RTs aligned in the temporal order in which the
measurements were taken. There are many statistical
analyses that can be applied to a trial series to deter-
mine if successive measurements bear any relation to
each other, and if so, to assess the nature of that
relationship. Figure 2 outlines the basic logic of one
such procedure. It is called a power-spectral density
analysis (or just spectral analysis for short).

Fractal 1/f Scaling
A fractal is a nested, statistically self-similar pattern.
The pattern can be defined over space or time; the
concern in cognitive science is typically with patterns
of variation in cognitive performance over time. The
patterns can be quantified with spectral analysis.
Fractals are revealed when the frequency of the
oscillations and their respective amplitudes are related
by an inverse power-law scaling relation—a linear
relation on double-logarithmic scales. The fractal
pattern in Figure 2 is called ‘pink’ or 1/f noise.
The pattern of variability in the observations that
is expressed across short runs of several observations
is echoed, statistically, across scores of observations,
which are in turn echoed across hundreds, and even
thousands of observations. Thus, pink noise represents
a nested, statistically self-similar (correlated) pattern
of fluctuation across widely ranging runs of successive
measurements. A scaling exponent describes the
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relative coherence of the fractal pattern of correlation
entailed in the series of measurements. Assuming
appropriate statistical procedures were followed
during the analysis, exponents near 1 signal a robust
pattern of fractal scaling termed pink noise, exponents
that are statistically equal to zero indicate the absence
of fractal structure (i.e., randomness—no pattern) in
the trial series.

Scaling relations were revealed in a wide
range of cognitive performances and physiological
measurements as described in previous reviews.66,94–96

Pink noise was reported in many standard cognitive
tasks that measure RTs, such as simple reaction time,
word naming, lexical decision, and other decision-
based cognitive tasks.95–98 Similarly, judgment tasks
such as temporal and spatial estimation tasks yield 1/f
scaling.66,98,99 Explicit daily judgments of self-esteem
and implicit measures of racial bias also yield 1/f
scaling.65,100 Repetitive speech activity also yields pink
noise in a large variety of the possible measures of
speech that can be taken.101 Spectral analysis revealed
that these data exhibited an unlikely but orderly
dynamic relationship across the various timescales
of fluctuation entailed in the signals.

As the early reports of 1/f scaling in cogni-
tive performance began to accumulate, a concern
was expressed that scientists could be mistak-
ing short-range patterns of autocorrelation for 1/f
scaling.98,102,103 The bulk of that initial skepticism
was answered, however.44,104 The empirical patterns
held up to rigorous statistical scrutiny, and fractal
scaling, in one form or another, has emerged as the
most representative and most likely description of the
empirical reports.105,106

The patterns of 1/f scaling expressed in physical
systems are typically relatively stable over time. By
contrast, the strength and nature of the scaling
relations that emerge across human activities tend to
vary widely. Tasks that entail significant uncertainly
from trial to trial—due either to variations in cognitive
load97 or variability in the sequencing of the within-
trial events, such as random inter-trial or inter-
stimulus intervals—yield less robust but nevertheless
reliable patterns of 1/f scaling. In contrast, repeatedly
estimating the same temporal duration and RT tasks
that use constant inter-trial intervals tend to yield
robust and stable patterns of 1/f scaling. Differences
in laboratory methodology explained some apparent
discrepancies in the relative strength of the 1/f
scaling that was observed in ostensibly identical tasks
conducted in different laboratories.93,107–109

Given a relatively stable task context, changes
from less robust to more robust 1/f scaling
are associated with motor learning.110 Similarly,

eye-movements while reading become more fluid and
display more robust 1/f scaling the second time
the same passage is read, as contrasted with the
same measures taken during a first pass through the
text.111 Dyslexic children display weaker patterns of
1/f scaling in their trial-series of word pronunciation
times than age-matched, non-dyslexic controls. The
dyslexic children’s performance is more random and
less fluid than their non-dyslexic counterparts.32 Dual-
task (motor + cognitive) performance can also affect
1/f scaling. Kiefer et al.71 had participants walk on a
treadmill or perform repeated temporal estimations,
or perform both tasks concurrently. When performed
separately, each task yielded clear 1/f scaling, but in
the dual-task condition the variations in cognitive
performance became essentially random (although
the mean and amount of variability of the temporal
estimates did not change compared to the single-
task condition). Gait variability was unaffected by the
concurrent cognitive task.

There are several competing explanations for
1/f scaling in cognition, but the only one that has
gained any traction in predicting new phenomena is
the straightforward hypothesis equating 1/f noise with
evidence of coordinative activity across many tempo-
ral scales.30,106,108,112,113 Fractal patterns of variabil-
ity in repeated measurements, such as 1/f scaling,
constitute the empirical pattern that is symptomatic
of the coupling that gives rise to coordination. Self-
organizing physical, chemical, and biological systems
exhibit 1/f scaling in their patterns of temporal evo-
lution. This is consistent with the proposition that
cognitive performance unfolds as a quasi-coordinated
whole, a perspective that challenges the time-honored
search for isolable components of mind. Moreover,
when one considers that multiple measures of the
same behavior can yield statistically independent
‘streams’ of 1/f scaling,101 the alternative hypothesis
that each measurement of 1/f scaling derives from a
corresponding component structure entails an absurd,
never-ending proliferation of ad-hoc modules.42

Once scaling is identified in a system a
natural working hypothesis is that the system may
express additional forms of scaling. In fact, many
additional scaling relations were identified in human
performance. Several predate the identification of 1/f
scaling by a century or more, while others were only
recently described. Perhaps the first scaling relation
identified in human performance is now called Stevens’
law, and refers to the fact that to achieve algebraic
changes in perceived stimulus magnitude human
sensory systems (vision, audition, tactile sense, etc.)
require objective changes in stimulation that follow a
power law. The observed pattern highlights one key
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implication of scaling behavior. It is well known that
a variety of anatomical and nervous system processes
support any given sensory system, but functionally,
the system appears to behave as a coordinated whole.
The pieces of the system reveal little about the system’s
holistic behavior.

Another historic scaling relation, often called
Zipf’s law, refers to the fact that for most large samples
of written text the relationship between the frequency
of use of any given word is a power-law function of
the relative usage rank-order of the word. The pattern
is apparently expressed universally across many
individual texts, corpora of aggregate text, and across
both modern and ancient languages. Zipf’s original
hypothesis was that the scaling relation is a result of
two general competing constraints on communication:
Speakers emphasize easy-to-recall, frequent words,
whereas listeners prefer distinctive, unambiguous,
low-frequency items. Zipf saw the power law as a
natural product of this competition.114,115

Scaling in RT Distributions
Distributions of RTs provide another entry point
into scaling laws in cognition. Inverse power-law
distributions entail a prominent skew, such that the
probability of observing a particular event (a RT, for
instance) is the inverse of the RT value raised to a
scaling exponent α, i.e., p(RT) ≈ RT−α. An inverse
power-law distribution entails a more dramatic
positive skew than an exponential distribution, for
example. An inverse power-law tail implies circular
(feedback) coupling among processes that govern
the system. Thus, power-law distributions are also
associated with complex systems that coordinate their
behavior across multiple temporal or spatial scales.

Dynamic systems accounts of cognitive activity
rooted in the principle of circular causality predict the
presence of power-law distributions of measures of
cognitive performance.30 Recently, inverse power-law
distributions were identified with the positive skew
that is ubiquitous in the slow tails of RT distributions
arising from laboratory-based cognitive tasks such
as word recognition and decision-making. Statistical
analyses of several extant large-scale RT databases
demonstrated robust evidence for power-law behavior
in the slow, stretched tails of RT distributions.116,117

The fact that inverse power-law scaling is intrinsic to
both the time course of cognitive acts and the temporal
patterns of correlation in RTs implicates a key role
for dynamics in contemporary theoretical narratives
of cognitive activity.

Scaling in Memory ‘Foraging’
Another power law hypothesis, put forward by
Rhodes and Turvey,28 was inspired by animal

foraging behavior. Remarkably, foraging behavior
is generally well described in the terms of the
far-from-equilibrium dynamics of contemporary
thermodynamics.118,119 This source of hypotheses in
thermodynamics is certainly credible given the fact
that all living things are thermodynamic engines.
Neuroimaging studies reflect that fact in their reliance
on the BOLD signal of metabolism and glucose
uptake, for example—the metabolic processes of the
‘thermodynamic’ brain.120,121

The foraging model predicted a Lévy distri-
bution of temporal and spatial intervals of activity,
which yields another power law. Animal memory is
associated with foraging, and Rhodes and Turvey28

proposed that human symbolic memory could, in a
sense, behave as an internalization and elaboration of
foraging. They tested this idea by looking at the dis-
tribution of inter-recall-intervals in a free recall task.
Participants recalled as many animals as possible in
a 20-min time interval and the duration of the inter-
vals between successive, recalled animal names was
recorded. The resulting distribution of recall intervals
followed a power-law with an exponent of α = 2, the
predicted Lévy distribution.

Scaling relations are surprisingly common in
human activities. They are associated not only
with motor performance, where they were first
identified, but also with perceptual, linguistic, and
other cognitive performances—activities that in some
sense are thought to set humans apart from other
organisms. But the fact that scaling relations are
observed in these activities seems to contradict the
distinction and enhance the status of human activity as
akin to the behavior of other natural systems. Rhodes
and Turvey,28 for example, interpreted their findings
as suggesting that memory is strongly influenced
by external (environmental) structure, in much the
same way as actual animal foraging is influenced
by the distribution of food sources and geographical
features in the environment. This interpretation is
consistent with the claims of stronger versions of
embodiment that cognition is not limited to the mind
alone. Distributed cognitive systems are the result
of informational couplings within and across agents,
and between agents and their environments.52 In this
approach, rather than processing and computation the
new emphasis is on coordination and organization.86

Continuous Dynamics of Mental Processes
Another implication of a dynamical systems approach
to cognition is that cognitive processes flow over
time, evolving from one state to another continuously
and smoothly. This contrasts with the assumption
that cognition involves discrete computational steps
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tantamount to discontinuous jumps in mental
states. Spivey and colleagues122,123 outlined one
broad approach to conceptualizing cognition as a
continuous, dynamical process. In this perspective,
cognitive processes are understood as trajectories that
evolve continuously in a very high-dimensional, neural
state space. Attractors located in different regions
of this space correspond to different mental states.
Changes in mental state amount to the trajectory
departing one basin of attraction (a region in which
trajectories will be drawn to a certain attractor) and
being drawn to a different attractor location.

This perspective was bolstered by studies that
employed dense-sampling methodologies to iden-
tify continuous, graded effects of cognition on the
dynamics of response trajectories;16,124 a detailed
description of one implementation of this method-
ology is described elsewhere.125 One dense-sampling
methodology requires participants to move a mouse
pointer from a start location to click on a response
item.126,127 A similar method takes advantage of

motion-capture or similar technologies (e.g., a Nin-
tendo Wii or Microsoft Kinect) and allows partic-
ipants to use arm movements to point toward a
response item.36,128 Studies using these and related
methodologies have provided evidence that cognitive
processing unfolds over time during the production
of the response. For example, Spivey et al.127 had
participants move the mouse toward one of two pic-
tures that corresponded to the object of a spoken
phrase such as ‘click the candle’. If the two response
options were a picture of a candle and a picture of a
piece of candy, the ambiguity arising from the shared
initial phonemes between ‘candle’ and ‘candy’ was
reflected in a reliable curvature of the mouse trajec-
tory that was absent when the distractor item was
unambiguous (see Figure 3). Syntactical ambiguity
similarly generates curvature in mouse trajectories
when participants had to click on a picture that
was described by a phrase.129 Mouse trajectories also
exhibit graded curvature toward alternate response
items when participants must choose a response to

FIGURE 3 | Example of a curved response trajectory that
reveals a continuous change in cognitive dynamics. The task is to
move the mouse pointer from a start box to click, in the case of
the top panel, on the candle. When a picture of a candle and a
piece of candy are presented (Cohort condition), the mouse
trajectory shows a systematic bias in the direction of the
competing response item (the candy), but this bias is not seen in a
control condition when the response alternative is not
phonologically similar to ‘candle’. (Reprinted with permission from
Ref 127. Copyright 2005 National Academy of Sciences, U.S.A.)
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items that vary along a continuum of truth values
(e.g., ‘Should you brush your teeth everyday?’ vs. ‘Is
murder sometimes justifiable?’ vs. ‘Is a thousand more
than a billion?’).35 Continuous response trajectories’
amount and structure of variability also embody the
uncertainty and increased certainty that respectively
characterize early and later stages of learning in a
paired-associate memory task,36 deception,130 and a
variety of factors related to social cognition.131–134

The results of these and other dense-sampling
studies initiated fruitful exchanges about the impli-
cations of this work for cognitive science and, in
particular, for dynamical interpretations of cognitive
processes.16,124 Apparently, cognitive processing does
not necessarily arise in singular, discrete, punctate (or
nearly so) steps, but rather it unfolds continuously
over time. The time scales in question here are very
rapid compared to the time scale of a motor behavior
or of a social interaction, for example, but, never-
theless, cognition is apparently no less dynamical
than other behaviors with long-recognized dynamics.
Moreover, the transparency of the cognitive process-
ing in the response trajectory calls into question the
assumption of independent, serially arranged, cog-
nitive and motor modules,16 an implication that is
broadly consistent with many takes on embodiment.
Cognition ‘leaks’ into action; motor responses reveal
the underlying perception, decision making, catego-
rization, and other types of cognitive processes as they
are occurring simultaneously with the early stages of
producing the response. A related, novel hypothesis,
inspired by the work by Spivey and colleagues on the
continuity of mental processes,122,123 is that cognition
may not just ‘leak’ into response trajectories, but
the motor dynamics of response trajectories might
likewise influence cognition. For example, decisions
could be biased toward a certain response option if
the motor system is perturbed toward it during the
execution of the response.

These new ways of thinking about the rela-
tions between cognition and action may have
implications for understanding dual-task perfor-
mance involving concurrent cognitive and motor
activities. Often, such forms of dual-tasking are
associated with a performance decrement, and typ-
ically the decrement is attributed to some sort of
information processing limitation such as structural
interference or limited attentional capacity.135–138

Dynamical systems inspires alternative conceptions
of dual-task performance as a higher-order,
synergistic coordination that spans the two tasks
and in the process induces reparameterization139 of

motor performance.71,140–143 For certain tasks, this
perspective yields precise, quantitative predictions
about the effects of cognitive performance on the
noisiness and stability of motor performance. These
alternative conceptions are motivated further by a
number of apparent violations of the dictum that dual-
tasking results in degraded performance—for example
findings that postural stability is improved when a
standing person engages in a concurrent mental
task.144–149

CONCLUSION

This article reviewed cognitive dynamics. In broad
strokes, cognition expresses the properties one expects
from complex, perhaps nonlinear dynamical systems.
It would be naı̈ve, however, to make a conclusive
and restrictive claim that cognitive performance is
effectively, exclusively, and simply dynamical. On-
going research enterprises continually point in new
directions and alternative descriptions of cognitive
activities inspire specific new hypotheses and new
ways of modeling and understanding cognition.

Despite the promise reviewed here, challenges
do remain for the cognitive dynamics framework.
Some tasks are easily adapted to continuous, dynamic
measurement, while other widely trusted paradigms
are not. Training in nonlinear methods and statistics
is increasingly available through summer workshops
and online resources,150 but it is still rare in cognitive
science or psychology graduate programs. Additional
development and validation is needed for methods
that enable large-scale efforts to mine multi-modal
data sets and to capture cognition in real-world
behavioral contexts.

A contrast of the cognitive dynamics frame-
work and conventional cognitive theory underscores
the degree to which available research and statistical
methods constrain theory in cognitive science.94,108

Methods and statistics, be they linear or nonlinear,
implicitly codify their assumptions in the studied phe-
nomenon—but novel tools continually reveal novel
patterns in performance. For instance, Ihlen and
Vereijken106 report evidence that the 1/f scaling in
trial-series of RTs may be more accurately described
as a form of multifractal scaling—a more complex
pattern, wherein the scaling relation, itself, fluctuates
across time. Clearly, an increased openness to alter-
native characterizations of both familiar and novel
cognitive phenomena will benefit cognitive science in
the long run.

© 2012 John Wiley & Sons, Ltd.
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behavior of single and bi-manual rhythmical move-
ments: data and limit cycle model. J Exp Psychol Hum
Percept Performance 1987, 13:178–192.

60. Haken H, Kelso JAS, Bunz H. A theoretical model of
phase transitions in human hand movements. Biol
Cybern 1985, 51:347–356.

61. Kelso JAS. Phase transitions and critical behavior in
human bimanual coordination. Am J Physiol 1984,
246:R1000–R1004.

62. Schmidt RC, Turvey MT. Phase-entrainment dynam-
ics of visually coupled rhythmic movements. Biol
Cyber 1994, 70:369–376.

63. Chen Y, Ding M, Kelso JAS. Long memory processes
(1/fα type) in human coordination. Phys Rev Lett
1997, 79:4501–4504.

64. Chen Y, Ding M, Kelso JAS. Origins of timing errors
in human sensorimotor coordination. J Mot Behav
2001, 33:1–8.

65. Delignières D, Fortes M, Ninot G. The fractal dynam-
ics of self-esteem and physical self. Nonlinear Dyn
Psychol Life Sci 2004, 8:479–510.

66. Gilden DL, Thornton T, Mallon MW. 1/f noise in
human cognition. Science 1995, 267:1837–1839.

© 2012 John Wiley & Sons, Ltd.



Advanced Review wires.wiley.com/cogsci

67. Aks DJ, Zelinsky GJ, Sprott JC. Memory across eye
movements: 1/f dynamic in visual search. Nonlinear
Dyn Psychol Life Sci 2002, 6:1–25.

68. Hausdorff JM, Purdon PL, Peng C-K, Ladin Z,
Wei JY, Goldberger AL. Fractal dynamics of human
gait: stability of long-range correlations in stride inter-
val fluctuations. J Appl Physiol 1996, 80:1448–1457.

69. Hausdorff JM, Mitchell SL, Firtion R, Peng C-K, Cud-
kowicz ME, Wei JY, Goldberger AL. Altered fractal
dynamics of gait: reduced stride-interval correlations
with aging and Huntington’s disease. J Appl Physiol
1997, 82:262–269.

70. Jordan K, Challis JH, Newell KM. Long range cor-
relations in the stride interval of running. Gait and
Posture 2006, 24:120–125.

71. Kiefer AW, Riley MA, Shockley K, Villard S, Van
Orden GC. Walking changes the dynamics of cog-
nitive estimates of time intervals. J Exp Psychol Hum
Percept Performance 2009, 35:1532–1541.

72. Warren WH. The dynamics of perception and action.
Psychol Rev 2006, 113:358–389.

73. Jirsa VK, Kelso JAS, eds. Coordination Dynamics:
Issues and Trends. Berlin: Springer-Verlag; 2004.

74. Turvey MT. Action and perception at the level of
synergies. Hum Mov Sci 2007, 26:657–697.

75. Smith LB, Thelen E. A Dynamic Systems Approach
to Development: Applications. Cambridge, MA: MIT
Press; 1993.

76. Piaget J. The Construction of Reality in the Child.
Cambridge, MA: MIT Press; 1954.
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not exhibit the real Zipf’s law-like rank distribu-
tion. PLoS One 2010, 5:e9411. doi:10.1371/journal.
pone.0009411.

115. Zipf GK. Human Behaviour and the Principle of Least
Effort. An Introduction to Human Ecology. New
York, NY: Hafner; 1972. (Originally published 1949,
Addison-Wesley: Cambridge, MA).

116. Holden JG, Rajaraman S. The self-organization of
a spoken word. Front Psychol 2012, 3: 209.
doi:10.3389/fpsyg.2012.00209.

117. Moscoso del Prado F. Scale-invariance of human
response latencies. In: Taatgen NA, van Rijn H, eds.
Proceedings of the 31st Annual Conference of the Cog-
nitive Science Society. Austin, TX: Cognitive Science
Society; 2009, 1270–1275.

118. Schneider ED, Sagan D. Into the Cool. Chicago, IL:
University of Chicago Press; 2005.

119. Viswanathan GM, Raposo EP, da Luz MGE. Lévy
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