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Abstract 
This article overviews several contemporary models that assume power law scaling is a 
plausible description of the skewed right tails that are typical of response time distributions. The 
properties and markers of these distribution functions have implications for cognitive and 
neurophysiological dynamics. The power law hypothesis suggests studies should collect larger 
samples, and that analyses may combine individual subjects’ data into a single set for a 
distribution-function contrasts. Techniques for contrasting response time measurements are 
illustrated on data from a previously published study comparing the performance of children 
diagnosed with dyslexia and a group of age-matched controls in flanker, color naming, word 
naming, and arithmetic performance. 
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INTRODUCTION 
Response time (RT) is the elapsed interval between the presentation of a stimulus and the 

execution of a response in a laboratory-based cognitive task. Response times are widely used in 
basic cognitive science and routinely used in neuropsychiatric assessments for reading 
disabilities and certain cognitive impairments (e.g., Ancelin, Artero, Portet, Dupuy, Touchon, & 
Ritchie, 2006; Epstein, Brinkman, Froehlich, Langberg, Narad, Antonini, & Altaye, 2011; 
Osmon, Kazakov, & Kassel, 2018; Tse, Balota, Yap, Duchek, & McCabe, 2010). To date, there 
is little scientific consensus regarding the fundamental statistical properties of response time 
distributions themselves (e.g., Holden, Van Orden, & Turvey, 2009; Jones & Dzhafarov, 2014; 
Luce, 1986). In light of their widespread use, an accurate statistical portrait of response time 
distributions would be extremely useful. We introduce several descriptions motivated by 
dynamic systems and complex network theory. 

This article is focused on response time probability density functions (PDFs) that entail 
strongly skewed power-law tails. Several groups have proposed that the characteristic positive 
skew in the right tails of response time distributions is consistent with a power-law decay 
function (e.g., Holden, & Rajaraman, 2012; Holden et al., 2009; Ihlen, 2013; Moscoso Del Prado 
Martin, 2008; Sigman, Etchemendy, Fernandez Slezak, & Cecchi, 2010). 

After first introducing techniques for modeling power-law distributions, we apply a 
selection of these models to a published data set that compares the perceptual performances of a 
group of children diagnosed with dyslexia and their age-matched controls (Holden, Greijn, van 
Rooij, Wijnants, & Bosman, 2014). The original article applied the fractal concept of distribution 
scaling to the performances. The goal was to evaluate a hypothesis that two groups differ in 
degree, rather than in kind. The present article revisits that basic question with more sensitive 
statistical techniques. 

We tentatively assume that response time PDFs are at least approximately stationary – 
they stabilize near a steady state for a given cognitive activity. This assumption is tentative 
because of reports that time-series of response times express 1/ƒa noise – long-range correlations 
and fractional dimensionality (Gilden, 2001; Van Orden, Holden, & Turvey, 2003; 2005). This 
pattern is also called pink noise, fractal time, and 1/ƒa scaling — the term we adopt going 
forward. 1/ƒa scaling unfolds over time and offers a window into the significance of the power-
law behavior in the tails of response time density functions, as we now explain. 

Lessons from Temporal Scaling 
Reports of monofractal 1/ƒa (e.g., Wijnants, 2014) and even multifractal scaling (e.g., 

Cavanaugh, Kelty-Stephen, & Stergiou, 2017) in sequential signals derived from human activity 
and physiology are now common. The essential characteristic of these scaling relations is a self-
similar pattern of fluctuation in the measured signals: fluctuations observed in runs of several 
successive measurements are statistically echoed in progressively larger and larger runs of 
observations (see Gilden, 2001; Holden, 2005; Riley & Holden, 2012 for overviews). These 
nested, scale-free patterns of fluctuation are associated with complex systems that self-organize 
their temporal and spatial behavior (Jensen, 1998). 

In human activity, the basis of 1/ƒa scaling is becoming clear. Consider a conventional 
cognitive task that presents successive trials requiring participants to respond with an elementary 
utterance or button-press indicating an identity or judgment about each presented stimulus. The 
duration of each response time gauges the time required for mind and body to register and 
organize a coherent response. However, the temporal scaling revealed in response time trial-
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series unfolds on slower time-scales than the trial-by-trial pace of the study, and the cognitive 
acts that are its focus (Van Orden et al., 2003). 

Instead, the 1/ƒa scaling captured in response time tasks emphasizes fluctuations in the 
physiological and bodily processes that support ongoing cognitive activity. Illustrative examples 
include interrelated metabolic fluctuations in respiration, heart rate, and consequent blood and 
brain oxygenation levels (Gonzales, Hessler, & Amazeen, 2010). Blood glucose levels are 
similarly intertwined with insulin levels and fluctuate on slightly slower time scales. Likewise, 
intrinsic 1/ƒa scaling is expressed in neurophysiological signals over time scales ranging from 
milliseconds to at least 20 minutes (e.g., EEG and MEG, Linkenkaer-Hansen, Nikouline, Pavla, 
& Limoniemi, 2001; PET, Bullmore et al., 2001; He, 2011; fMRI, Fox, & Raichle, 2007). 
Animal and human studies demonstrate that gross levels of major neurotransmitters such as 
GABA, glutamate, dopamine, their metabolites, and their receptor binding affinities all fluctuate 
on time scales ranging from just seconds to hours, days, and beyond (Casteñeda, Prado, Prieto, & 
Mora, 2004; Wirz-Justice, 1987). The intertwined states of these and countless other biological 
and physiological variables have the potential to contribute to performance variability over time. 

Biological and physiological fluctuations reflect ongoing multiscale cooperative and 
competitive interdependencies required to balance extrinsic environmental demands and intrinsic 
physiological requirements. Apparently, 1/ƒa scaling reflects this metastable coordinative 
activity (Kello, Anderson, Holden, & Van Orden, 2008; Kello, Beltz, Holden & Van Orden, 
2007). Physiological variables rarely evolve randomly or instantaneously, but any number of 
them can subtly impact an individual’s ongoing performance. As such, sequences of discrete, 
elementary cognitive acts carry the history of these influences on their backs, so to speak (Van 
Orden, Hollis, & Wallot, 2012). Rather than homeostasis, Bassingthwaighte, Liebovitch, and 
West (1994) adopt the term homeodynamics to emphasize the constantly evolving multiscale 
nature of physiological variables. 

All this coordinative activity is both accommodated and constrained by layers and layers 
of entrainments, interdependences, and rate-limiting interactions (Buzsáki, 2006; Izhikevitch, 
2007; Van Orden et al., 2012). Many essential physiological, perceptual, and movement 
processes rely on principles of self-organization and oscillatory entrainment to become enfolded 
into a unified coordinative organization, or synergy appropriate for supporting a given human 
activity – known as interaction dominant dynamics (Amazeen et al., 1995; Amon, Pavlov, & 
Holden, 2018; Holden & Rajaraman, 2012; Kelso, 1997; 2012; Kugler & Turvey, 1987; Van 
Orden et al., 2003). The essential lesson of 1/ƒa scaling in human performance is that 
homeodynamic coherence in body and mind is achieved through vast networks of 
neurochemical, metabolic, and physiological dynamics (Bassingthwaighte et al., 1994). 

Implications for Distribution Scaling 
In contrast to the slower time scales emphasized by 1/ƒa scaling analyses, this article 

illustrates techniques for using response time distributions to characterize coordinative activity 
and scaling behavior closer to the time-scale of responding. It emphasizes the interval between 
stimulus and response in a cognitive task. In fact, conventional probability density modeling and 
fitting techniques allow for this perspective, as we now explain. 

The time or trial-series approach to response time analysis collapses the aforementioned 
continuous multidimensional trajectories of homeodynamic fluctuations into a two-dimensional 
time-by-observation trajectory. Subsequently ignoring the sequential order, the time-axis, of the 
measurements further collapses the two-dimensional trajectory into set of one-dimensional points 
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that can be depicted with a conventional PDF (van Rooij, Nash, Rajaraman, & Holden, 2013). 
That is, the x-axis is response time, and the y-axis is the probability of observing a response time 
in any given time interval. Thus, conventional probability density functions portray response 
times as recurrent events, in a manner akin to the way Poincaré sections depict periodicity in a 
reduced state-space of a higher dimensional dynamic system. Of course, sampling intermittency 
and dimensional compression reduces dynamical resolution. However, the PDF characterization 
reveals the return times of a specific dynamical state that is of great interest to cognitive science: 
the registration of a coherent response following a relatively discrete cognitive act. 

Conventional PDFs assume a range of shapes. Several psychologically relevant examples 
fall along a continuum from the compact and symmetric normal distribution, to the somewhat 
skewed or heavy-tailed exponential and lognormal distributions, and the fat-tailed inverse power-
law distribution (West & Deering, 1995). 

Variability in a normal or exponential distribution arises from unsystematic, additive, and 
memoryless sources. By contrast, distribution scaling is symptomatic of multiscale coordinative 
activity, spanning a wide range of time scales (van Rooij et al., 2013; Holden et al., 2009; 
Holden & Rajaraman, 2012). As with 1/ƒa scaling, a positively skewed PDF with a tail that 
decays as a power law is often symptomatic of scale-free coordinative activity. A power law 
relates the very small and very large measurements, since they all obey the same scaling relation. 
In fact, the exponent describing a distribution’s power-law tail indexes the relative coherence of 
the coordinative dynamics supporting the measured variable, and it can be understood as a fractal 
dimension (Seuront, 2010; van Rooij et al., 2013). 

Essentially, the scaling expressed in repeated measurements of the same cognitive act 
serves as a gauge of the coordinative activity supporting the act. There are a few important 
caveats to this statement: First, this index is most reliable in the context of the same individual 
performing the same activity, under the same experimental circumstances. This article seeks to 
generalize the inference to between-subjects research designs. Thus, we assume that different 
individuals accomplish identical cognitive acts using similar coordinative dynamics. One might 
reasonably question this assumption. Nevertheless, it is a historically pervasive statistical and 
theoretical assumption in psychology and cognitive science. Second, scaling exponents do not 
uniquely characterize any given human activity. Different tasks, emphasizing different cognitive 
acts may yield identical scaling exponents. Owing to the flexibility of human activity, only 
comparisons of the relative magnitudes scaling exponents derived from carefully matched 
groups, or well controlled experimental contexts make comparative sense. 

In what follows, our working hypothesis is that performances yielding RT densities with 
particular parameters, observed in the context of a particular cognitive activity, require the 
support of a network of particular perceptual, cognitive and neurophysiological processes 
(Holden et al., 2012; Holden, Ma, & Serota, 2013; Holden et al., 2014). At any given point in 
time, fluctuations may arise in the organization of this network and its parametric quantities. This 
is true both for individuals performing a given task, and in contrasts across separate groups of 
individuals in different experimental conditions. 

Assuming comparable process networks that express fat-tailed behavioral measures 
implies individual participants’ performances can be viewed as samples or realizations of 
random variables that are representative of the potential network states supporting a given 
cognitive activity. In this situation, combining observations across participants may clarify the 
potential range of parametric variation that one must expect from the task, condition, or distinct 
participant groups, and thus improve the representativeness of statistical analyses that are derived 
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from the distribution of observations. 
DATA AGRIGATION SIMULATION 

If a power-law model provides a plausible description of an empirical distribution, then 
several statistical and methodological implications follow. Traditionally, experimental sample 
sizes are derived from either formal (e.g., power analysis) or informal Gaussian rules-of-thumb 
(e.g., 30 or more data points yields reasonable mean (location) estimates). Robust parameter 
estimates for power-law models, and especially the scaling exponents describing their skewed 
tails, require much larger samples. Sample sizes can easily be ramped up in some populations 
and experimental paradigms, but other populations and paradigms entail inherent limitations. For 
example, studies relating to populations that involve simultaneous imaging or EEG 
measurements, health impairments, children, or the aged, often face significant time-on-task 
limitations. This simulation tests the viability of a technique to compensate for smaller samples 
by combining data across participants in a given experimental cell. The simulation discussion 
section offers additional recommendations for experimental designs that quantify distribution 
scaling, and for interpreting different patterns of change in power-law model parameters. Once 
these methodological techniques are in place, we illustrate their use on a data set that contrasts 
the performance of a group of children with dyslexia and a group of age-matched normally 
reading children. 

Overview of Potential Power-Law Models 
Previously, we examined the skewed tails of the probability density functions of response 

times (Holden & Rajaraman, 2012; Holden et al., 2009; Ma, Holden, & Serota, 2015). Power-
law scaling prevailed as a more plausible description of empirical RT distribution’s tail behavior 
than models adopting exponentially decaying tail behavior or even exclusively lognormal 
behavior. 

In in this section, we first introduce three candidate distributions that implement power-
law tails: The Lévy alpha-stable distribution (Stable), the generalized inverse gamma distribution 
and the “Cocktail” lognormal-Pareto mixture distribution. Following our introduction to the 
power-law distribution models, we use both the generalized inverse gamma and the lognormal-
Pareto distributions to introduce fat-tailed research design practices and other methods for 
aggregating response time observations to support statistical inference. Finally, we illustrate the 
use of these selected techniques on a published data set that contrasted a sample of children 
diagnosed with dyslexia and matched age-appropriate readers. 

To begin, we summarize the parametric properties of three potential model distributions 
with power-law tails. Notably, model parameters that determine the origin or location of a 
distribution on the x-axis are referred to as location parameters. Scale parameters control the 
relative spread of the distribution. Higher-order asymmetries, such as skew and kurtosis, are 
controlled by shape parameters. More detailed explanations of the role of the location, scale, and 
shape parameters appear in the context of the definition of distribution rescaling in the simulation 
discussion section. 

The Stable Distribution. With the exception of , when the stable distribution reduces 
to a normal distribution, the stable distribution (Nolan, 2015), has a power-law tail, such that 

 (1) 
Here stability is bounded by a shape parameter: , defined below. Skewness is 

bounded as  and is the second shape parameter of the distribution. The parameters  
and  control its scale and location, respectively. In general, the stable distribution does not 
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have a closed-form expression, with the notable exceptions of the Cauchy and Lévy 
distributions. Instead, the stable distribution is described by a closed-form characteristic function 
and via parametric forms. 

The two important properties of the stable distribution are as follows: First, the sum of 
two independent and identically distributed (i.i.d.) variables distributed as , is 

distributed with  That is, the linear combination of i.i.d. variables result in the 
same distribution, up to a rescaled scale parameter – this is the definition of stability. Second, the 
sum of i.i.d. variables, whose PDF has an  tail, , tends to  as the 
number of variables in the sum grows, by the generalized central limit theorem. 

Ihlen (2013) proposed the stable distribution for fitting of RT distributions. His goal was 
to preserve the conventional assumption that cognitive performance originates in the output of 
sums of distinct cognitive processes. Ihlen reasoned that if the outputs of individual cognitive 
processes conform to the stable distribution, and are combined as sums in the resulting 
responses, then RTs themselves should be distributed as a stable distribution. Ihlen demonstrated 
that the stable was a better fitting distribution than the ex-Gaussian or shifted Wald for a large 
catalogue of RT data. However, no other fat-tailed distributions were evaluated, and Ihlen stated 
that other fat-tailed distributions might yet provide better fits. 

While the stable distribution is an attractive model due to its properties above – namely, 
power-law tails and additivity – its two main drawbacks are that its scaling exponents, , 
are limited to the range between 1 and 3, and the only permitted value of  is , otherwise 
the variable of the distribution is undefined for positive values, as is required by physically and 
biologically meaningful RT models dealing with elapsed time intervals greater than zero. Both 
the recinormal and Fieller's distributions, whose scaling exponent is limited to a single value of 2 
suffer from similar limitations (see Moscoso Del Prado Martin, 2008). Essentially, the permitted 
values of all three of these model exponents are contradicted by the observed exponent values in 
several large-sample RT studies (see, for instance, Holden et al., 2009; 2012; Ma et al., 2016). 
As such, we do not implement them as part of our illustrative modeling. 

Generalized Inverse Gamma Distribution. The application of generalized inverse gamma 
to RT modeling is motivated by its connection to the generalized Bouchaud-Mézard network 
model (Bouchaud, & Mézard, 2000) – and the network’s potential implications for brain 
dynamics. The Bouchaud-Mézard network is controlled by stochastic differential equations, that 
entail a stochastic activation-inhibition or “birth-death” dynamic (Ma et al., 2016, Ma, Holden, & 
Serota, 2013; Ma, & Serota, 2014). The generalized Bouchaud-Mézard network model is given 
by Eq. 3 in Ma, Holden, and Serota (2013) and describes exchanges between nodes in a partially 
connected complex network, subject to stochastic perturbations, which are proportional to the 
current node values. The network entails a connection strength parameter and connection 
numerosity parameter. Together, both parameters control the scaling exponent of the network’s 
output distribution. 

We do not propose direct architectural or functional links between the Bouchaud-Mézard 
network and the neurophysiological networks involved in human performance. However, the 
transitivity of network dynamics suggests the viability of using network simulations to test basic 
hypotheses regarding the potential influence of network connectivity parameters on performance. 
This objective is in-line with our hypothesis of a close correspondence between the shapes of 
observed RT distributions and the network dynamics of supporting cognitive and 
neurophysiological dynamics. The three important parameters in a generic Bouchaud-Mézard 
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network model are 1.) the exchange strength between the nodes, 2.) the magnitude of 
stochasticity , and 3.) the phenomenological parameter  describing the degree of 
connectivity in the network: is a fully connected network and is a vanishing number of 
connections. These parameters may be relevant to modeling or simulating connectivity and 
interactions among brain regions. 

The generalized inverse gamma distribution µ parameter defines its onset, so the 
generalized inverse gamma PDF is zero if , while for  it is given by: 

 (2) 

In Eq. (2),  and  are shape parameters,  is a scale parameter,  is the location parameter, 
and  indicates the Gamma function. The generalized inverse gamma shape parameters relate 

directly to the Bouchaud-Mézard model parameters as and , where 

 varies monotonically between  and . Except for , all generalized 
inverse gamma parameters must be greater than zero and, and in the context of RT fitting,  
must also be a positive number. For large , where , the generalized inverse gamma 
distribution exhibits a power-law tail given by 

  (3) 
Unlike the stable distribution, there is no a priori upper bound on the tail exponent of generalized 
inverse gamma. 

Lognormal-Pareto Mixture Distribution. In the cocktail model (Holden et al., 2012; 
Holden et al., 2009), the lognormal-Pareto mixture distribution is given by Eq. 4. While using 
slightly different notations, this form is equivalent to that in Holden et al. (2012): 

 (4) 

Here , where Erf is the error function, ,  and  are the shape 

parameters and  is the scale parameter. The other three parameters, ,  and  are 
determined from the condition of normalizability of lognormal-Pareto ( ) and 
continuity of lognormal-Pareto and its derivative at ; in particular,  and  are related by 

. 
The choice of the LN front end is motivated by multiplicativity. For large , 

  (5) 
As is for generalized inverse gamma, lognormal-Pareto does not have an upper bound for 
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the tail exponent. However, unlike the stable distribution and the generalized inverse gamma, 
which are infinitely differentiable at all points, lognormal-Pareto’s derivatives above first are 
discontinuous at . 

The lognormal-Pareto is motivated by the characteristic dynamics of coordinative 
synergies, such as those indicated by 1/ƒa scaling in human activity, called interaction dominant 
dynamics. As previously noted, individual RT measurements return discrete samples of the 
temporal evolution of continuously evolving dynamic trajectories. Thus, an RT distribution 
yields a collection of samples originating from a broad range of dynamic trajectories. Some 
samples reflect more organized and coherent dynamical states, others reflect less organized, less 
coherent dynamical states. More skilled performances tend to originate in more coherent 
coordinative dynamics. Less skilled performances likely rely on less coherent dynamics. Since 
recurrent dynamical systems operate on their own outputs, more constrained dynamics will yield 
lognormal variability, resulting from proportional interactions among supporting processes. Past 
a certain point, the relative instability of less coherent dynamics amplifies the role of recurrent 
feedback and noise, broadening the distribution, and yields power-law behavior. Thus, lognormal 
and power-law behavior anchor two ends of a continuum that are bisected by a qualitative 
(phase) transition from the more stable lognormal behavior to more variable inverse power-law 
behavior (see Holden, & Rajaraman, 2012; Holden et al., 2009; van Rooij et al., 2013).  

The transition from lognormal to power-law behavior is probabilistic, and occurs within 
the time course of individual trials. On any given trial, available constraints arising from task and 
stimulus, the individual’s relevant skill set, and the states of the physiological variables 
supporting the performance entail a potential to influence the relative coherence of performance 
dynamics. The result, over the course of a typical laboratory study, is a mixture of lognormal and 
inverse power-law samples (Holden et al., 2009; 2012). 

Simulation Method 
Simulation procedures. To contrast the behavior of individual and aggregated parameter 

estimates we conducted the following numerical simulation using the generalized inverse gamma 
model as an illustrative candidate distribution: 

(1) We fit the by-group aggregated RT data from each of the two groups with the 
generalized inverse gamma to obtain the initial parameter estimates of , , , , where 

, indicating either the Control and Dyslexic group respectively. The control group was 
initially comprised of 560 trials from each of 20 participants, the dyslexia group was comprised 
of 560 trials from each of 23 participants. However, trials resulting in errors were eliminated for 
both groups, and to equate the simulation samples, we simulated the C and D groups using 20 
synthetic subjects, each of which was comprised 560 simulated observations, for each of the two 
groups. The values in Table 1 are the result of those fits. 

(2) We used the parameter estimates of , , , , to generate group-size random 
variates from the model distribution (i.e. 560 obs. X 20 subs. = 11,200 samples). These synthetic 
group variables served as simulated counterparts for the empirical RT data used to generate 
parameters for the control (C) and children with dyslexia (D) groups in step (1). 

(3) Next, we conducted a bootstrap procedure (Efron, & Tibshirani, 1994) to estimate 
standard errors and confidence intervals for the parameters of the simulated variables , , , 

 for the C and D groups. Of course, there are other ways to generate parameter variability – we 
chose the bootstrap to parallel the by-group RT fitting procedure described in step (1). On each 
of 1000 bootstrap replications, both synthetic group-sized C and D distributions were randomly 
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resampled with replacement, and the parameters resulting from the fit were retained in the 
bootstrap distribution. 

(4) Next, we generated synthetic individual-subject sized random variables comprised of 
560 samples, where the parameters of these synthetic distributions were randomly sampled from 
a normal distribution of potential generalized inverse gamma parameter values whose mean was 
the real data parameter from step (1) and SD obtained in step (3). This mimicked the variability 
at the level of individual participants, as 560 synthetic data points were generated from a random 
sample of a, b, g, and µ parameters, twenty times, representing the participants comprising both 
conditions. These subject sample-size distributions were then fit individually to obtain the mean, 
SD, and range of the resulting parameters for comparison with the group sample-size 
distributions. 

(5) We then compared the parameters from the group-level and subject-level variables 
with the actual RT data parameters for the grouped and individual participants. 

The simulation outcomes illustrate this approach for the Holden et al. (2014) Arithmetic 
study, which contrasted simple addition performance children for with and without dyslexia. 
Participants pressed one button to indicate that individually displayed simple addition sums, 
together with an answer, were correct (e.g., 3 + 6 = 9) and another button to indicate incorrect 
sums (e.g., 4 + 3 = 2). The answers to all the sums were always below 10. The Arithmetic data 
was chosen as the simulation test-bed due to the heterogeneity entailed in its relatively broad RT 
densities, relative to the remaining tasks. 

Using the generalized inverse gamma as a candidate distribution, 20 simulated subject-
level variables of 560 samples each were generated, as in steps (1)-(4) above. To illustrate the 
results, we use two measures of variability – the tail scaling exponent, computed from the 
generalized inverse gamma parameters as ( ) in Eq. (3) and the distribution half-width 
(HW), defined as the width of the distribution along the line drawn at the half-height of the 
PDF’s maximum, which is the modal value of the PDF (MPDF). Both variability measures 
depend on the distribution’s shape parameters. 

We adopted the HW as a variability measure, rather than SD, because a PDF’s power-law 
tail strongly biases the latter. Both the HW and power-law scaling exponent depend on at least 
one shape parameter. Unlike the simple dependence of the latter (see Eqs. 3 and 5), the 
parametric dependence of HW can be quite complex. One can think of the HW as a width of the 
distributions, which is ordinarily characterized by root-mean-square of the distribution. HW is 
proportional to the scale parameter and has a complicated dependence on shape parameters that 
define exponents of power-law tails,  ag+1 and a+1 for the generalized inverse gamma and 
lognormal-Pareto models respectively. We use HW for characterization of the width of both 
models. Figure 1 depicts the relationship between a PDF’s modal value and its half width. 

-------------------------------------- 
Insert Figure 1 about here 

-------------------------------------- 
Simulation Results 

The simulation goal was to determine if aggregating observations across participants’ 
results in group distributions that are representative of those of the individuals comprising the 
group. From this perspective, there were two notable outcomes. First, the parameter estimates of 
the individual and group variables closely agreed with those of the actual RT data sets, at both 
the group and individual levels. Second, as one might expect, the most salient difference between 
both the actual and simulated group and individual parameter estimates is that grouped variables 

1+ag
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produce much narrower distributions, and thus confidence intervals. The numerical results are 
summarized in Table 1 and Figs. 2 and 3. Comparisons of the CIs for the synthetic group 
variables with actual group data, and with the ranges for subject level variables, suggest that 
fitting of individual subjects, and subsequently averaging those parameters, may be less accurate, 
and yield statistically less powerful contrasts. 

-------------------------------------- 
Insert Figure 2 about here 

-------------------------------------- 
Each of the four plots in Figure 2 depict two histograms. The histograms in the Figure’s 

upper right (A) and left (B) plots represent the half-width values for the control and dyslexia 
groups. In each plot, the darker histogram depicts the range of values when the half-width is 
computed separately for each individual participant in the group. The lighter histogram depicts 
the result when all the individual’s data is aggregated together, and then repeatedly resampled 
using a bootstrap resampling procedure. In both cases, the bootstrap distribution produced more 
consistent and less variable results. The bottom two plots (C & D) depict the results of repeating 
the fitting procedure using simulated data sets, that mimic the sample sizes in terms of number of 
trials and number of participants, but that were derived from parametric fits of the generalized 
inverse gamma model. The behavior of the simulated data is qualitatively similar to the real data, 
which suggests the entailed statistical procedures provide a reasonable depiction of the empirical 
patterns. 

-------------------------------------- 
Insert Figure 3 about here  

-------------------------------------- 
Each of the four plots in Figure 3 depict two histograms. The histograms in the Figure’s 

upper right and left plots (A & B) represent the scaling exponent describing the skew in each 
model’s tail for the control and dyslexia groups. In each plot, the darker histogram depicts the 
range of values when the scaling exponent is computed separately for each individual participant 
in the group. The lighter histogram depicts the result when all the individual’s data is aggregated 
together, and then repeatedly resampled using a bootstrap resampling procedure. In both cases, 
the bootstrap distribution produced more consistent and less variable results. The bottom two 
plots (C & D) depict the results of repeating the fitting procedure using simulated data sets, that 
mimic the sample sizes in terms of number of trials and number of participants, but that were 
derived from parametric fits of the generalized inverse gamma and lognormal-Pareto model. The 
behavior of the simulated data is qualitatively similar to the real data, which suggests the entailed 
statistical procedures provide a reasonable depiction of the empirical patterns. 

-------------------------------------- 
Insert Table 1 about here 

-------------------------------------- 
Table 1 compares empirical and simulated parameter estimates of the generalized inverse 

gamma tail exponent and half-width bootstrap distributions. Means are presented, with 
confidence intervals flanking each mean. Both the simulated and empirical data sets differed in a 
comparable manner. Aggregating the individual’s data into an omnibus group variable for a 
given task yield less variable parameter estimates, with means that were similar to those of the 
simulated and actual individual’s data sets. This indicates that aggregating power-law data with 
reasonably comparable parameter values does not impose qualitative changes in the 
distributions’ parametric properties. 
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Discussion 
The simulation results suggest that parameters derived from fat-tailed data distributions 

that are first aggregated across participants are less variable than those derived from averaging 
parameters taken from separate individual fits of each participant’s data. Given the potential 
noisiness of performance measurements from special populations, such as children, and that each 
group, control and dyslexia, contributed only about  combined data points, the quantitative 
agreement seems to be quite good as well. 

The outcome implies a potential benefit to the aggregation of individual’s observations 
into a group-level variable. The approach could be particularly useful when specific observations 
exert undue influence on individual-level parameter estimates, as when sample sizes are small. 
Comparing the dispersion of the synthetic individual fits to that of the all-in-one fits recommends 
an all-in-one approach. 

As we mentioned, there are alternative methods of generating the parameter variability, 
described in step (3). For instance, one could resample the raw RT distributions or use the 
Jackknife procedure (Efron et al., 1994). In this regard, it is notable that the bootstrap 
distributions of parameters from the simulated variables are narrower than those derived from 
empirical RT data, as evidenced in Figs. 1 and 2. Minimizing variability in parameter estimates 
is especially important for power-law distributions since larger samples are generally required 
than for narrower distributions such as the Gaussian or Exponential. Likewise, notable parameter 
variation can be expected in fits of individual participant’s power-law distributions, especially 
for small sample sizes. 

Next, we discuss several interpretable differences that can appear in the parameters of fat-
tailed distributions arising from systems that are governed by the interaction-dominant dynamics 
implicated by power-law distributions (Holden et al., 2009; van Rooij et al., 2013). Following 
that, we illustrate the technique on data from the published Holden et al. (2014) dyslexia study. 

Distribution Scaling Statistics and Methods 
Systems expressing power-law behavior must be studied using methods that 

accommodate more time-dependence and inherent variability than is typically assumed by linear 
statistics. The theorems that dictate classical statistical practices are often stretched to their limits 
in fat-tailed applications. For example, 1/ƒa scaling undermines the classical ergodicity 
assumption, and much larger sample sizes are required for inference in the context of systems 
expressing power-law behavior than those expressing Gaussian behavior among uncorrelated 
samples (Amon & Holden, 2019). Extreme observations are so rare in systems with Gaussian 
output distributions that few experiments are designed to discover them, and unusual 
observations are reasonably treated as outliers. However, extreme observations are much more 
likely in systems expressing power-law behavior – but they may still be rare. Thus, it is 
important to incorporate study designs that accommodate much larger samples than is typical 
under the assumptions of linear statistical analysis. 

Whenever possible, within-subject designs are recommended. If two categories of 
behavior are to be contrasted, pairwise yoking of stimuli often yields a design that is very 
sensitive for simple distribution contrasts. Each participant is exposed to yoked target stimuli that 
are matched on important control variables, but that differ in terms of the variable of interest. 
Both contrast distributions can then be comprised of measurements originating from the same 
individuals, on carefully paired target items that differ only in terms of the variable of interest 
(e.g., Holden, 2002). 

However, many experimental manipulations require between-participant designs. In 

410
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decision studies, for instance, one can use an ideal strategy manipulation (Stone, & Van Orden, 
1993). This design presents identical positive items but varies the categories of distractor or 
catch trials. Apparently, the method originated in lexical decision studies of word recognition, 
but it could be adapted to other decision paradigms. The basic idea behind the manipulation is to 
use different classes of distractor items that impact the relative difficulty of the required decision 
or discrimination (e.g., the signal-to-noise ratio). This design yields contrast distributions that are 
comprised of responses to identical target items from different individuals, who completed 
conditions with different distractor items. 

If enough targets can be presented, both the within- and between-subject designs allow 
one to complete statistical contrasts at the level of both individual participants and analyses that 
aggregate across participants. In general, aggregated analyses are more sensitive, and likely more 
representative of systems that express rare events. Usually one looks for similar outcomes in 
aggregated analyses and individual level analyses. Indeed, Bayesian hierarchical modeling may 
be useful for this kind of evaluation, and we hope to pursue it a future work. 

Similarly, some studies are designed to contrast separate groups of individuals, such as 
clinical classification studies, where a group of interest is compared to a control group. In these 
studies, health impairments may hamper efforts to present enough trials to individuals to yield 
stable individual level analyses. Given this circumstance, aggregated analyses become more 
important. Rather than fitting each subject individually, and then averaging the fits and other 
parameters over the group, it is often more efficient to aggregate observations from each 
participant into an omnibus distribution that is fit parametrically (e.g, Holden et al., 2018). 

That said, there is a legitimate historical concern in the RT literature that individual and 
aggregate analyses have a potential to yield qualitatively different outcomes (see Estes & 
Maddox, 2005). This concern centers around the impact of averaging practices: Is it better to fit 
models individually, by participant, and average the resulting parameters or is it sufficient to 
average the participant’s data and fit the average? Generally, the former is preferred. Notably, 
parameters that either stand alone or serve as the coefficient of a product that depends 
exclusively on the independent variable are unaffected by averaging (Estes, 1956). If two power 
law distributions are added or multiplied, the new distribution is a power law and the scaling 
exponent is simply the minimum of the aggregated distributions (Farmer, & Geanakoplos, 2008). 
The crucial point is that simple arithmetic combinations of power-law distributions yield 
qualitatively identical distributions, in which only the value of the exponent is impacted. Thus 
aggregating power-law distributions induces quantitative, but not qualitative changes in the 
distribution’s tail behavior. 

Our analyses of the dyslexia data, below, correspond to the simulation and combine 
individual participant’s raw scores into omnibus distributions that are subsequently used for 
parameter estimation. This practice does not impose arithmetic operations, and assumes the 
individual datasets entail parameters that are variable, but representative of a power-law model. 
We followed the Estes and Maddox (2005) recommendation to complete side-by-side simulation 
and real data analyses to test the relationship and validity of individual and omnibus fitting for 
the power-law models discussed earlier. In general, we found the relationship between the 
individual and omnibus empirical distribution parameters is very similar to those expressed by 
the simulated individual and omnibus distributions. This result illustrates the utility of using 
omnibus parameter estimation for power-law models when circumstances demand it. 

Parametric rescaling. Many natural systems are iterative in that they operate on their 
own outputs. For instance, new tree branches originate in existing branches. New river erosion 
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originates in an existing riverbed. Similarly, many dynamical systems operate on their own 
outputs, such as iterative “neural” networks often used to model cognitive performance. Iterative 
dynamics commonly produce proportionally rescaled outputs. Thus, self-similar rescaling is 
symptomatic of many real and synthetic fractal systems. 

Rescaling hypotheses are derived directly from the behavior of iterative systems. If one 
set of system outputs is a rescaled copy of another, presumably the same essential system 
dynamic is in place, but its activity is dilated or contracted either in time or in space. By 
extension, rescaling in related cognitive performances suggests a similar dynamic organization is 
in play, but more detailed perceptual or cognitive relationships had to be resolved before a 
response could be organized (also see Holden, 2002; 2013; Holden et al., 2014; van Rooij et al., 
2013). 

Suppose one uses an identical experimental method to collect RT data from two distinct 
groups of participants – for instance, children with and without dyslexia. Is it possible to relate 
the cognitive and neurophysiological dynamics supporting the performances in terms of the 
shape of the response time PDF? If the aggregate distributions of the two groups happen to be 
rescaled versions of each other, we hypothesize that the networks of perceptual, cognitive, and 
neurophysiological processes supporting the performances is organized in a qualitatively similar 
manner, as the only difference entailed by rescaling is time dilation or time contraction. By 
contrast, shape differences are symptomatic of more substantial dynamical changes. At 
minimum, the behavior of the BM model indicates that shifts in scaling exponents indicate 
connection strength changes in the process network supporting the performance. Scaling 
exponent shifts can also be symptomatic of more dramatic changes, such as a functional re-
organization of the supporting perceptual, cognitive and neurophysiological systems, resembling 
a phase transition in nonlinear dynamical system. 

Consider two PDFs, PDF1 and PDF2, depicting data from two experimental cells. Mean 
rescaling is defined such that if: 

 (6) 

where 

 (7) 

then the two PDFs are rescaled, with one group simply being proportionally faster (or 
slower) than the other. Ordinarily, the rescaling of an analytically defined PDF is achieved via 
rescaling of the scale parameter of a distribution. A familiar example of a scale parameter is the 
SD or σ of the normal distribution: 

 (8) 

where the mean  is a familiar example of a location parameter. Indeed, subjecting Eq. 
(8) to  (and simultaneously ) produces a set of two PDFs related by Eqs. (6) 
and (7). Rescaling the variable, , in PDF2 will bring the two distribution back into one 
via . On the other hand, for a lognormal distribution, 

 (9) 

 is a shape parameter and  – or rather  – is a scale parameter. The lognormal is 
a heavy-tail distribution, which enjoys wide utility across many fields (Limpert, Stahel, & Abbt, 
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2001). It is used here as the front end of the lognormal-Pareto distribution. Just as the normal and 
stable distributions provide a framework for additive systems via the central limit theorem and 
the generalized central limit theorem, the lognormal – as mentioned above – offers a framework 
for multiplicative interactions (i.e., additive in the logarithmic domain, see Holden et al., 2009; 
Van Rooij et al., 2013). 

Nonparametric rescaling. A simple nonparametric test of whether two distributions are 
rescaled versions of each other can be conducted as follows. Under the scaling assumption (6) 
and (7), we have 

  (12) 
and in particular: 

  (13) 
Consequently, the test of scaling between a control group (C) data and an experimental 

group (E) can be compared as follows: 
1.) evaluate the ratio of the mean of C and the mean of E; 
2.) evaluate the difference of the mean of ln C and mean of lognormal E; 
3.) zero out the mean of log-transformed data of each group by subtracting the mean of 

the respective log-transformed data; 
4.) perform a two-sample Kolmogorov-Smirnoff test on the zero-mean log-transformed 

data using a 5% significance level, where rejecting the null means rejecting the rescaling 
hypothesis. 

As noted, an exact rescaling results when multiplying by the ratio of two distribution’s 
means aligns their respective PDFs. Statistical rescaling results if multiplying by any constant 
other than a ratio of the means allows one PDF to approximate a second density function. While 
it is interesting to see exact self-similarity in an empirical system, statistical self-similarity is 
more common. For instance, coastlines are statistically self-similar, and their characteristic 
scaling exponents may change as a function of scale. Likewise, only 1/ƒ1 noise is exactly self-
similar in the sense that multiplying the time and amplitude axes by the same constant yields a 
statistically equivalent noise. However, scientists generally consider any spectral scaling 
exponent statistically greater than zero, and less than 3 to be a fractal noise. It is just that the time 
and amplitude axes must be rescaled by different proportions to yield identical self-affinity at a 
new scale. 

To summarize, if two RT distributions from well controlled experiments can be 
transformed into each other via rescaling without affecting their shape parameters, then the 
cognitive and physiological networks supporting the performances are effectively the same. By 
contrast, substantive changes in the shape parameters is symptomatic of more substantial 
quantitative changes in systems dynamics, and may even signal an alternate functional 
organization. 

DYSLEXIA MODELING STUDY 
We now use the generalized inverse gamma and lognormal-Pareto distributions to 

characterize the differences between the dyslexic and control groups as a function of the tasks 
described in detail in Holden et al. (2014). The original article contrasted the performance of 
children with dyslexia and matched age-appropriate readers in four laboratory tasks with varied 
reading related requirements. In Holden et al., each participant’s data was fit with an lognormal-
Pareto and the obtained parameters were averaged across subjects. That analysis suggested little 
difference between the control and dyslexic groups in the flanker task, and the group differences 

cxPDFxcPDF ln)(ln)(ln 12 -=×

cxPDFxcPDF ln)(ln)(ln 12 -=×



16 

 

in word naming were consistent with a rescaling. However, the method relied on averaging 
parameters across individual fits, and was likely less sensitive to between-group differences than 
the omnibus fitting outlined in the simulation described earlier. 

Here we adopt the procedure established in the earlier simulations to reveal additional 
information. We re-analyze the flanker, color naming, word naming, and arithmetic tasks 
(Holden et al., 2014). The tasks differed according to a loose rank order with respect to their 
differential emphasis on perceptual, linguistic, and higher-level cognitive demands. The flanker 
task emphasizes response inhibition and elementary perceptual-motor skills. A color-naming task 
emphasizes speaking aloud without reading. Speeded naming emphasizes reading aloud. An 
arithmetic task elicits high-level symbol-based cognitive activity without an explicit requirement 
for reading. 

Once we fit the distributions with generalized inverse gamma and lognormal-Pareto we 
used a bootstrap procedure (Efron et al., 1994) to determine the CIs and distributions of the 
parameters. As in the simulations, we use two shape-related markers to gauge variability: The 
HW of the distribution and the exponent of the power-law tail of PDF. HW, as defined above, is 
illustrated in Figure 1. The product of HW and MPDF defines the area of the dashed box in 
Figure 1. For sufficiently large samples, this product typically lies in a narrow range centered 
around 0.8, as illustrated in Table 2 and approximates the fraction of PDF that is not in the tail. 

-------------------------------------- 
Insert Table 2 about here  

-------------------------------------- 
Table 2 displays the values and products of the half-width and the modal PDF. Again, the 

products approximate the fraction of the PDF that is not in the distribution’s tail. The relatively 
smaller values for the group of children diagnosed with dyslexia indicate the respective 
distribution’s tails occupy relatively more of the PDF’s area. 

Method 
Participants and Procedure. The modeled data is from Holden, Greijn, van Rooij, 

Wijnants, and Bosman (2014). Twenty 6th grade Dutch students with dyslexia and 23 age-
matched controls completed four perceptual and cognitive tasks that measured response time and 
errors as dependent measures. Each task administered a total of 560 trials. The present analyses 
include only data that passed the task-by-task inclusion criteria detailed in the Holden et al. 
method to preserve outcome comparability. On each flanker trial, the flanker task required 
participants to press one of two buttons indicating whether the center target arrow in a row of 
five arrows was pointing to the left or right. On each color naming trial, participants pronounced 
the color of a visually presented color patch as quickly and accurately as possible. Again, RT 
was measured as the interval between the presentation of the color patch and the onset of a 
participant’s pronunciation. The experimenter coded accuracy manually during each participant’s 
color naming session. On each naming trial, participants pronounced individually presented 
words as quickly as possible. RT was measured as the interval between stimulus word 
presentation and the onset of a pronunciation. The experimenter coded accuracy manually during 
each participant’s naming session. On each arithmetic trial, participants pressed a “yes” button to 
indicate that a visually presented addition equation was correct (e.g., 2+2=4), or a “no” button 
for incorrect sums (e.g., 3+4=2). Half the trials depicted correct equations with answers being 
numbers less than ten, the other half were incorrect equations with answers being numbers less 
than ten. 

Results 
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According to the BIC and KS goodness-of-fit statistics, in each task both power-law 
models provide better descriptions of the empirical control and dyslexic distributions than two 
illustrative RT models, the exGaussian and the Weibull distributions (see tables 4 & 5.). Each 
plot in Figure 4 allows for a visual comparison of control and dyslexia power-law models as a 
function of task. 

Flanker. Plots A and B in Figure 4 depict the control and dyslexia data and fits for the 
generalized inverse gamma and lognormal-Pareto models. The distributions are very similar, and 
lie nearly atop one another when depicted on an axis that accommodate all tasks. Plots A and B 
of Figure 5 depict the bootstrap-resampled distribution of the generalized inverse gamma  
scaling exponents and the lognormal-Pareto  scaling exponents for both the control and 
dyslexia groups. Both model PDFs reveal only subtle differences between the two groups. 
Indeed, the bootstrap analyses indicated overlapping parameter distributions, with different 
means. In this case, the RT performances of the children diagnosed with dyslexia can be 
characterized as a near exact mean rescaling of the distribution of control performances. 
Similarly, the rescaling hypothesis could not be rejected by the nonparametric rescaling test. 
From a dynamical perspective, the rescaling can be interpreted as indicating a similar dynamical 
organization supporting both group’s performances. However, the performances of the group 
with dyslexia are slightly dilated in time, relative to the control group. 

Color Naming. The color naming results are presented in plots C and D of Figure 4. 
Relative to flanker performance, the shapes of control and dyslexia RT distributions diverged. 
The bootstrap analyses revealed that while the faster front ends of the distributions remained 
comparable, the scaling exponents describing the distribution’s tails were reliably different. 
Nevertheless, the plots indicate the shape differences to be relatively incremental. Thus, the 
PDFs are inconsistent with an exact mean rescaling, and only marginally approximate a more 
general statistical rescaling. 

Word Naming. The empirical word naming histograms and model fits are presented in 
plots E and F of Figure 4. The bootstrap distributions, depicted in plots E and F of Figure 5, 
revealed that relatively distinct scaling exponents characterize the control and dyslexia word 
naming performances. Both models indicate the dyslexia distribution’s tail is more skewed than 
the control group. Moreover, the HW of the control and dyslexia distributions is smaller than 
color naming indicating the tails of both word naming distributions occupy an increased portion 
of their respective density functions. From the perspective of the task progression, the shapes of 
word naming densities changed in a similar manner, but the changes in the dyslexia group were 
exaggerated relative to the control group. 

Arithmetic. The arithmetic results are depicted in plots G and H of Figure 4. Both the 
generalized inverse gamma and lognormal-Pareto bootstrap contrasts of the arithmetic 
distributions — plots G and H in Figure 5 — also revealed distinct control and dyslexia scaling 
exponents. The arithmetic task produced the smallest scaling exponents, and thus the most 
prominent power-law behavior among the four tasks. 

-------------------------------------- 
Insert Table 3 about here  

-------------------------------------- 
Table 3 depicts the mean scaling exponents and confidence intervals derived from the fits 

of the generalized inverse gamma and lognormal-Pareto models. The scaling exponents are 
depicted as a function of task and group. Smaller scaling exponents correspond to distributions 
with more dramatically skewed right tails. Both models indicate the word naming control 

1+ag
1+a
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distribution has the largest scaling exponent. The word naming scaling exponent for the group of 
children diagnosed with dyslexia is comparable to the scaling exponents from several of the 
other tasks. 

The mean scaling exponents and confidence intervals are derived from the fits of the 
generalized inverse gamma and lognormal-Pareto models. The scaling exponents are depicted as 
a function of task and group. Smaller scaling exponents correspond to distributions with more 
dramatically skewed right tails. Both models indicate the word naming control distribution has 
the largest scaling exponent. The word naming scaling exponent for the group of children 
diagnosed with dyslexia is comparable to the scaling exponents from several of the other tasks. 

-------------------------------------- 
Insert Figure 4 about here  

-------------------------------------- 
The two plots in each row of Figure 4 both depict the empirical control and dyslexia data 

sets as darker and lighter histograms, respectively. The Flanker data is in the top row (A & B), 
the color naming is in the second row (C & D), word naming appears in the third row (E & F) 
and arithmetic appears in the fourth row (G & H). The left-hand plots illustrate the generalized 
inverse gamma fits of the two groups as darker and lighter lines, respectively. Likewise, the 
right-hand plots illustrate the lognormal-Pareto fits of each group as darker and lighter grey lines. 
Both models achieved reasonably successful fits of the data sets, relative to fits of other models 
that are commonly used to represent response times (e.g., see Tables 4 & 5). 

-------------------------------------- 
Insert Figure 5 about here 

--------------------------------------- 
The two plots in each row of Figure 5 both depict the bootstrapped scaling exponents for 

the control and dyslexia data sets as darker and lighter histograms, respectively. Bootstrapped 
flanker exponents in the top row (A & B), the color naming exponents are in the second row (C 
& D), word naming exponents appear in the third row (E & F) and arithmetic exponents appears 
in the fourth row (G & H). The left-hand plots illustrate scaling exponents estimated with the 
generalized inverse gamma fits and darker and lighter histograms, respectively. Likewise, the 
right-hand plots illustrate scaling exponents derived from lognormal-Pareto fits as darker and 
lighter gray histograms. Both models arrived at quantitatively similar depictions of the relative 
magnitudes of the scaling exponents in each task by group cell. This suggests a relatively 
consistent underlying pattern of empirical differences. 

-------------------------------------- 
Insert Table 4 about here  

-------------------------------------- 
Table 4 presents the Bayesian information criterion (BIC) fitting outcomes of fits for the 

group data, using the two versions of the generalized inverse gamma (GIGa), the lognormal-
Pareto (LNP), the exGaussian, and the Wiebull. The BIC penalizes models with more free 
parameters. The bolded values are the best fits. This indicates the lognormal-Pareto was the most 
successful model. 

-------------------------------------- 
Insert Table 5 about here  

-------------------------------------- 
Table 5 presents the results of Kolmogorov–Smirnov (KS) difference tests for several 

model fits of the group data. Models included two versions of the generalized inverse gamma 



19 

 

(GIGa), the lognormal-Pareto (LNP), the exGaussian, and the Wiebull. The bolded values are the 
best fits. The KS tests of the maximum difference between the model and empirical distributions 
and also indicated the lognormal-Pareto as the most successful model. In contrast to the BIC, the 
KS test does not impose a penalty for the number of model parameters. 

Discussion 
The shapes of the control and dyslexia response time distributions diverged as a function 

of task. With respect to the two groups, the flanker distributions were very similar, and related by 
a mean rescaling. The color naming distributions shared similar half-widths. Their shapes were 
statistically distinct, as indicated by their scaling exponents which differed by between ½ to 1 
unit, as estimated by the lognormal-Pareto and generalized inverse gamma models, respectively. 
The control and dyslexic word naming distributions maintained similar halfwidths, but somewhat 
more distinct shapes than the color naming distributions. Their scaling exponents differed by 
between 1 and 3 units, according to the lognormal-Pareto and generalized inverse gamma fits. 
Finally, bootstrap contrasts of two group’s arithmetic distributions revealed distinct half-widths 
and distinct shapes. The arithmetic scaling exponents differed by about 1 to 1.5 units, according 
to the lognormal-Pareto and generalized inverse gamma fits. The absolute difference between the 
arithmetic exponents is relatively small numerically, but relative to the other tasks, both are 
closest to the minimum scaling exponent values that are permitted by these statistical models. 

The word naming task displayed the greatest between-group shape differences. However, 
the average word naming scaling exponents were larger than those of the remaining tasks, and 
were therefore the most compact and least skewed distributions. The flanker, color naming, and 
arithmetic tasks yielded progressively more robust scaling behavior. Thus, in terms of the tasks, 
word naming yields the most constrained power-law behavior and arithmetic the most salient 
power-law behavior. 

A potential inconsistency with the aforementioned task continuum is that reading printed 
text is arguably the most difficult of the four tasks, especially for children diagnosed with 
dyslexia. If larger scaling exponents are associated with increased skill, then why does word 
naming tend to return such large scaling exponents? It is important to remember that school 
children receive extensive reading and literacy instruction. Most schools begin implementing 
literacy-oriented curricula by the first grade. Thus, even 6th graders with weaker reading skills 
have nevertheless learned task relevant skills. By contrast, the remaining tasks are relatively 
novel for both groups of children. For instance, the button-press tasks impose time pressure and 
arbitrary mappings between their binary responses and the children’s hands (cf. Holden et al., 
2014). It is the control participant’s word naming distribution that is truly unique among the Task 
by Group sub-distributions or experimental cells. Unsurprisingly, it is consistent with a skilled 
performance. It is notable that the dyslexic children’s word naming distributions are reasonably 
similar to the other examples of relatively less-skilled performances indexed by the remaining 
experimental cells. 

Historically, debate in the dyslexia literature questioned if dyslexia was most 
productively viewed as a qualitative or quantitative impairment. That is, do the reading skills of 
children diagnosed with dyslexia and their age-matched controls differ by degree, or in kind? 
The in-kind view interprets reading difficulties as the result of an absence or dysfunction of a 
reading-dedicated cognitive component. The historical emphasis on contrasts of mean naming 
times between controls and participants with dyslexia reinforced this interpretation. For example, 
simple location shifts imply a compensatory processing delay. Indeed, the mean response times 
in the word naming task differ the most between the dyslexic and control groups. 
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However, the modeling reveals that the mean differences are driven by relatively 
consistent but incremental distribution shape changes, both across and within tasks. This 
outcome suggests relatively subtle between-group differences in low-level perceptual, cognitive, 
or neurophysiological dynamics that are progressively amplified as a function of task difficulty 
and relative skill (Holden et al., 2014). From this perspective, the word naming task reveals the 
largest group differences because it requires much more extensive skills than any of the 
remaining tasks. The shape of control group’s word naming distributions is most consistent with 
the relatively constrained, well-organized dynamics of skilled performance. The shapes of the 
remaining distributions, including the dyslexic participant’s word naming distributions are more 
consistent with the less constrained dynamics of less skilled performance (e.g., see Holden et al., 
2009). As noted, historically the term dyslexia meant a qualitative difference. Due to the 
difficulty of distinguishing between those with and those without a reading disorder, 
contemporary researchers advocate for alternative terms, such as good versus poor decoders, to 
emphasize the continuum in relative reading skills illustrated by the two participant groups (A. 
Bosman, personal communication, April 22, 2019). 

. 
General Discussion 

The power-law response time models revealed a relatively consistent pattern of 
decreasing scaling exponents, both within tasks, in contrasts between groups, and across tasks, as 
a function of increasing task complexity. Thus, progressively decreasing scaling exponents track 
a loose continuum of progressively increasing task difficultly, within which the control group 
expressed more stable performances. This outcome is notable because the incremental nature of 
the within-task shape changes tends to mirror between-task shape differences. 

Cognitive manipulations that exclusively produce mean shifts in response time 
distributions are exceedingly rare (Holden et al., 2009). From a dynamical perspective, 
distribution rescaling illustrates a least-common denominator in the boundary between the 
presence and absence of a cognitive effect. Elsewhere, we explained how rescaling likely results 
from the mismatch between absolute clock time and the change-based relative time arising from 
the rate-limiting, often proportional, physiological transactions that are characteristic of 
biological systems (Holden, 2013; Holden, Ma, & Serota, 2013). 

On the linear axis of response time, proportional dynamics appear as a lognormal-shaped 
distribution. More exaggerated power-law behavior results from the emergence of feedback 
dynamics rooted in less stable or less constrained cognitive and bodily dynamics. This proposal 
yields concrete behavioral hypotheses, despite the fact that specific biological or physiological 
markers are rarely observed directly in response time tasks. 

Consider the classic word frequency effect in lexical decision: Faster and more accurate 
response times to commonly encountered words, as compared to less common words. 
Conventional connectionist narratives attributed the frequency advantage to stronger 
relationships among a word’s orthographic, phonological, and semantic dimensions (e.g., 
McClelland & Rumelhart, 1981) The stronger associative connections were posited to arise as a 
consequence of learning, resulting from encountering and using common words more often. The 
Bouchard-Mezard network dynamics predict the relative strengths of the dynamical relationships 
supporting a performance influence response time scaling exponents. As such, network 
principles predict smaller response time scaling exponents to low versus high frequency words. 
This hypothesis was recently confirmed in large standard lexical decision task that manipulated 
word frequency using the lognormal-Pareto model (Amon & Holden, 2019). The same outcome 
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is mirrored in the scaling exponent differences revealed by the control versus dyslexia group 
contrasts. Apparently, stronger connection strengths support more skilled reading, and weaker 
connection strengths support less skilled reading. 

Likewise, studies exploring related hypotheses revealed similar results. For instance, 
Cooper and Shepard’s classic letter rotation task asks participants to distinguish normal letters 
from mirror revered versions when presented at various orientations. Statistical rescaling results 
from small deviations up to about 60 degrees from their upright orientations. Larger deviations 
exceeding 120 decrease scaling exponents, indicating performances that are supported by weaker 
coordinative dynamics (van Rooij, Nash, Rajaraman & Holden, 2013). A related approach 
revealed subtle differences in the in the eye-movement latencies that distinguished between 
patients diagnosed with prodromal and mild Alzheimer’s disease from each other, and 
appropriate controls (Holden et al., 2018). In the future, we hope to extend our approach to 
additional clinical contexts, such as studies of the efficacy of ADHD medications (e.g., Epstein 
et al., 2011). 

Historically, cognitive scientists are hesitant to link physiological dynamics to cognitive 
dynamics unless reductive or causal relations are established as a basis for such discussion. In 
this article, the entry point for the claim of a link is renormalization group theory (e.g., Bruce & 
Wallace, 1989). As one zooms out from micro to macro time-scales, self-similarity and 
interdependence are implicated by the qualitatively similar PDF’s observed across various time-
scales. In this view, neurophysiological variability is coarse-grained in behavioral 
measurements, and is thus echoed in measures of behavioral variability. 

This coarse-graining hypothesis is generally consistent with independently conducted 
physiological studies. For instance, heavy tailed lognormal distributions are symptomatic of 
autocatalytic growth in many biological processes (Koch, 1966). They indicate multiplicative 
amplification, and are evident across multiple physiological scales. Thus, it is unsurprising that 
lognormal distributions are characteristic of many neurophysiological properties of the brain 
(Bassingthwaighte et al., 1994). They characterize the firing rates and bursting behavior of 
individual neurons. They depict the range of the relative synaptic connection strengths among 
neurons, and the durations of temporal synchrony events that emerge in populations of spiking 
neurons (Buzsáki & Mizuseki, 2014). Eye-movements typically unfold on slightly slower time-
scales than the aforementioned neurophysiological dynamics, but they do typically unfold on 
faster timescales than the behavioral measurements that are representative of response time tasks. 
Eye-movement latency distributions, themselves are heavy-tailed, and typically correspond to the 
lognormal (Holden et al., 2018). So, when lognormal and power-law distributions are found to 
characterize response times (e.g., Holden et al., 2009; 2012), the most plausible working 
hypothesis is that response times inherit contingencies from faster-time scale neurophysiological 
events because their variability patterns are constrained by those supporting processes. The 
rescaling hypothesis articulates this perspective, as time contraction and dilatation are self-affine 
transformations — not qualitative changes. By contrast, a change in the characteristic scaling 
exponent suggests aspects of the micro-macro control hierarchy have somehow changed. 
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Table 1: Comparisons of Actual and Simulated Parameter Estimates 
Task: 
Arithmetic    Control     Dyslexic   

Data Type Parameter Lower 95% CI M (SD) Upper 95% CI Lower 95% CI M (SD) Upper 95% CI 

Group ag+1 4.47 4.66 (.16) 5.11 2.95 3.11 (.09) 3.29 

Simulated G ag+1 4.8 4.87 (.2) 5.14 3.06 3.11 (.05) 3.24 

Group HW 0.54 .56 (.02) 0.6 0.38 .44 (.03) 0.49 

Simulated G HW 0.56 .57 (.01) 0.59 0.43 .45 (.01) 0.47 

Individual ag+1 11.51 5.38 (2.24) 3.14 2.1 3.8 (1.24) 6.88 

Simulated I  ag+1 [2.4] 4.94 (1.56) [7.76] [1.9] 3.13 (.71) [4.27] Rng 

Individual HW 0.36 0.46 (.09) 0.63 0.38 .44 (.03) 0.49 

Simulated I  HW 0.3 .52 (.08) 0.6 0.14 .41 (.11) 0.72 
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Table 2: Half-Width and Modal PDF values. 

 HW MPDF HW × MPDF 

Arithmetic Control 0.679 1.215 0.825 

Arithmetic Dyslexia 0.742 1.002 0.743 

Flanker Control 0.235 3.516 0.825 

Flanker Dyslexia 0.236 3.464 0.818 
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Table 3: Half-Widths and Average Scaling Exponents by Task and Group 

 
  

       Power law Model     

     GiGa    LNP  
     ag+1   a+1  

Task Condition HW 5% M  95% 5% M  95% 

Flanker Control 0.45 4.54 4.90 5.29 4.06 4.23 4.58 
  Dyslexia 0.46 4.35 4.66 4.91 3.64 3.91 4.22 

Color Naming Control 0.48 4.83 5.03 5.21 4.52 4.60 4.81 
  Dyslexia 0.41 4.18 4.40 4.63 3.95 4.01 4.17 

Word Naming Control 0.35 6.45 7.69 8.21 4.84 5.40 6.13 
  Dyslexia 0.32 4.29 4.48 4.99 4.23 4.47 4.82 

Arithmetic Control 0.58 4.47 4.66 5.11 3.72 3.87 3.98 
  Dyslexia 0.39 2.95 3.11 3.29 2.78 2.85 2.99 
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Table 4: Bayesian information criterion (BIC) fitting results 
Data type GIGa LNP GIGa3 exGaussian Weibull 

Flank Control -8945.49 -10930.81 -7353.03 -5783.67 -2176.32 
Flank Dyslexia -6976.41 -8254.16 -6380.29 -6263.99 54.84 
Color Control 2968.64 1890.10 33131.87 3355.69 6670.21 
Color Dyslexia 8552.18 -415.58 13282.01 12549.15 15921.20 
Name Control -2117.84 -8642.09 -1389.72 -1142.68 538.68 
Name Dyslexia -899.043 -7601.006 517.740 4483.709 6769.26 
Arith. Control 13348.55 9685.56 13791.30 14685.69 18881.39 
Arith. Dyslexia 13692.73 10263.34 15363.81 18702.14 16148.29 
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Table 5. Kolmogorov–Smirnov (KS) difference fitting results. 
Data type GIGa LNP GIGa3 exGaussian weibull3 

Flank Control 0.02 0.008 0.025 0.039 0.072 
Flank Dyslexia 0.034 0.015 0.039 0.055 0.091 
Color Control 0.029 0.019 0.032 0.032 0.072 
Color Dyslexia 0.025 0.017 0.03 0.047 0.076 
Name Control 0.026 0.012 0.029 0.029 0.066 
Name Dyslexia 0.035 0.014 0.040 0.057 0.090 
Arith. Control 0.022 0.015 0.025 0.032 0.067 
Arith. Dyslexia 0.026 0.019 0.028 0.068 0.056 
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Fig. 3 
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Fig 4  
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Fig. 5 
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