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Abstract

This article contrasts aphasic patients� performance of word naming and lexical decision with that of intact college-aged readers.

We discuss this contrast within a framework of self-organization; word recognition by aphasic patients is destabilized relative to

intact performance. Less stable performance shows itself as an increase in the dispersion of patients� response times compared to

college students�. Dispersion is also more pronounced for low-frequency words than for high frequency words. We speculate, that

increased dispersion originates in a reduction of constraints that support naming and lexical decision performances. A sufficient

reduction of constraints yields qualitative changes in performance such as the production of semantic errors in deep dyslexia. These

hypotheses are offered as alternatives to postulating distinct modules.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Behavior comprises the effects of specialized brain

components—specialized mechanisms of perception,

language, motor control, and so on (plus random

background noise). Thus behavior may be reduced to

the causal properties of the specialized components.

Cognitive neuropsychology originates in these intuitive

assumptions. They promote equating causes with brain

damage and effects with behavior, as though behavior is
transparent to causal modules in the brain. Consider the

case of deep dyslexia. Deep dyslexia is largely defined by

the semantic error, as when BUSH is mistakenly read

aloud as /tree/. Semantic errors have suggested to the-

orists that one, or more than one, component of the

brain�s reading mechanism is partly or completely dam-

aged (e.g., see Buchanan, Hildebrandt, & MacKinnon,
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1999, or Morton & Patterson, 1980; Plaut & Shallice,

1993, respectively). In other words, the qualitative de-
parture from intact behavior (the effect) originates in

damage to a specific isolable component or components

of the brain (the cause). However, there are many nat-

ural systems for which this kind of cause and effect re-

ductionism is not possible. We claim that human beings

are in the latter category.
2. Self-organization

Some natural systems, perhaps all living systems, self-

organize their behavior at �the boundary between order

and chaos� (Depew & Weber, 1995). Self-organization

yields emergent behavior. But if human behavior is

emergent, then we would necessarily re-examine the

cause and effect reductionism that is the foundation of
modern cognitive neuropsychology. We would be forced

to re-think cognitive neuropsychology—how behavior

relates to the mind and body, how we should study

behavior, how behavior relates to brain damage, and so

on. Such a fundamental change requires first that the

mail to: buchanan@uwindsor.ca
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conventional research program is found lacking and
second that the new research program can be strongly

motivated. Although it remains a contentious claim, one

can currently make a case that these conditions for

change do exist.

Painstaking self-examination within cognitive neuro-

psychology, and elsewhere in cognitive science, has called

into question the primary methods of neuropsychology,

the conceptual and methodological tools of the trade.
The methods of dissociation and double dissociation are

theory dependent (Shallice, 1988). Dissociations have a

circular reliance upon the a priori truth of modularity.

They cannot supply independent evidence for or against

their parent modular theory. Double dissociations do

not imply distinct modules, for example, unless it is true

before the fact that the modules exist. One must have a

correct roadmap of cognitive modules before the fact to
reliably interpret dissociations after the fact.

Modularity itself is not supported by a reliable basis in

evidence (Farah, 1994; Fodor, 2000; Uttal, 2001). In light

of these facts, Shallice (1988) has suggested that cognitive

neuropsychologists rely on expert intuition concerning

deficits and modules, but no broad based agreement can

be reached on whose intuitions to trust (compare Wat-

kins, 1990). Particular accounts of patient data decide
which deficits are meaningful, but also which are not, so

competition among accounts tends toward stalemate

(Van Orden, Pennington, & Stone, 2001).

The positive case for self-organization and emergence

is more hopeful. Measurements of intact human per-

formance reveal signatures of self-organization (Kelso,

1995). One ubiquitous signature appears in the back-

ground noise of measurements of behavior. Background
noise is the irregular pattern of variation across repeated

measurements of human performance. It is what re-

mains after we minimize or eliminate effects of task,

experimental manipulations, and other external sources

of variability in behavioral measurements. Conventional

analyses assume that background noise is unstructured

random noise, but instead we find a pattern called 1/f

noise, or pink noise, a coherent nested pattern of cor-
related variability across trials, an informative so-called

fractal pattern in time.

Background noise, as pink noise, is expected if a

system self-organizes its behavior (Bak, 1996; Jensen,

1998). Background noise refers to internal sources of

variability. It tells us about the intrinsic dynamics of

mind and body, how processes of mind and body in-

teract. Ubiquitous pink background noise suggests
processes of mind and body that change each other�s
dynamics in their interaction. This kind of dynamics is

called interaction-dominant dynamics (Jensen, 1998).

Processes do not simply interact; they change each other

through their interaction.

It is especially pertinent to our purpose that pink

noise has been found in response time data. The many
kinds of response time experiments range from simple
reaction time, through the purportedly automatic task of

word naming (Van Orden, Holden, & Turvey, 2003a;

Van Orden, Moreno, & Holden, 2003b), to tasks that

require cognitive control such as response time for

mental rotation or lexical decision (Gilden, 1997, 2001).

The presence of this pink noise signature means that we

may seriously consider a self-organization hypothesis.

Like many other natural systems, both intact and brain
damaged participants behave as self-organizing entities.
3. Stability of performance options

How does a cognitive system behave at the boundary

between order and chaos? Mind and body together

produce behavior; their processes never work in isola-
tion. As noted, self-organization implies processes that

change each other�s dynamics as they interact. Conse-

quently, within limits, interdependence allows changes

in any one part of the system to be reflected throughout

the entire system. Human behavior is something like an

irreducible creative stream. One implication is that

component ‘‘effects’’ cannot be sorted out of such in-

terdependent dynamics. Consequently, within the new
research program, the interactions themselves become

the salient objects of study, not necessarily the inter-

acting components (Van Orden et al., 2003a).

In brain damage, large or small changes in the local

interactions of the nervous system may result in cata-

strophic qualitative changes at the level of global be-

havior. Likewise in self-organizing systems, small

changes in the local interaction among processes can be
amplified to become qualitative changes in global be-

havior. To illustrate this possibility, Farrar and Van

Orden (2001) and Kello (2003) mimicked dissociations

and double dissociations using small changes in param-

eters of self-organizing ‘‘neural’’ networks. In Kello�s
model, tiny changes in a single parameter sufficed to mi-

mic the regularization error (PINT pronounced to rhyme

with /mint/) as well as ‘‘absent’’ pseudoword naming
(words are named correctly; pseudowords are not)—a

double dissociation. In Farrar and Van Orden, tiny

changes in two model parameters sufficed to mimic the

previous double dissociation plus the semantic error of

deep dyslexia (BUSH named as /tree/, mentioned at the

beginning of this article), as well as a dissociation in

picture naming of spoken vs. written responses (the

spoken response to a picture of a bush is /tree/, but the
written response is BUSH). These neural-network exis-

tence-proofs demonstrate why qualitative changes in

behavior need not imply functional distinctions in the

brain. In light of the evidence for self-organization,

qualitative changes cannot be taken at face value to dis-

tinguish components of mind or brain (Van Orden, Jan-

sen op deHaar, & Bosman, 1997; VanOrden et al., 2001).
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The standard assumptions regarding patient data,
and indeed regarding unimpaired performance, may be

incorrect. But does that mean that patient studies are

futile? Of course not. It simply changes the way in which

we think about patient data. In particular, our focus

changes from behavioral ‘‘effects’’ to the stability of

performance options. For instance, Farrar and Van

Orden�s (2001) network simulations mimic dissociations

because tiny changes in the model�s parameters change
the relative stability of the model�s response options.

Relatively stable interactions among nodes are the

source of the model�s correct pronunciations and rela-

tively fast pronunciation times. However, after tiny

changes in parameters, correct and incorrect pronunci-

ations exchange stability. What was previously the more

stable correct pronunciation becomes less stable and is

no longer expressed. Although the previously less stable
error pronunciation does not gain stability, in an abso-

lute sense, it becomes relatively more stable than the

correct pronunciation and now shows itself as a

pronunciation error. Notice the resemblance to the

conventional notion of ‘‘release from inhibition.’’

Performance stability is estimated by performance

variability. Speaking very loosely, we shift our attention

from performance averages to performance variances,
estimates of dispersion of response times. We are not the

first to note that impaired performance shows increased

variability relative to intact. For example, college stu-

dents� response times pile up in a more narrowly dis-

persed distribution compared to elderly participant data

and patient data (in some tasks, compare Anderson,

Mennemeire, & Chatterjee, 2003; Hultsch, MacDonald,

& Dixon, 2002; Shammi, Bosman, & Stuss, 1998; Stuss,
Pogue, Buckle, & Bondar, 1994). Less stable perfor-

mances include a wider dispersion of response times

mostly exaggerated in the direction of slow response

times. This increasingly familiar observation of vari-

ability in patient data fits well within the self-organiza-

tion hypothesis. We describe this fit with respect to

contrasts of variability found in naming and lexical de-

cision data from patients and from college-aged partic-
ipants. Though we will have more to say about response

times it may also help to think of errors in terms of

stability.

For instance, most college students produce the same

kinds of responses—correct responses—on almost all

trials of most experiments. This is certainly true of word

naming when the items to be named are common

monosyllabic words. Patients who have suffered brain
damage produce a more varied mix of correct and in-

correct responses under the same conditions, both

across trials and across participants. Such errors are

response options that we claim are implicit in intact

performance. Errors are potentialities of intact perfor-

mance that are realized by brain damage. In a sense

then, errors may reveal hidden degrees of freedom,
potential options that usually remain hidden in correct
performances (Farrar & Van Orden, 2001). Conse-

quently patient data may reveal constraints that are not

easily seen in intact performance.

An analogy can be made to the connection weights in

neural-network models. Connection weights reflect

previous co-occurrences of node-activity. For example,

relations (‘‘connections’’) between words� printed and

spoken forms (‘‘nodes’’), and their pattern of use, their
semantics, constrain the pronunciations of deep dys-

lexics. Constraints that have accrued from relations

between word form and function limit the possibilities

for pronunciation. Previously less visible form-semantic

constraints are revealed in the semantic errors. This

means, in effect, that semantic errors are latent in correct

pronunciations, although form-semantic constraints

may be elicited in precise contexts of laboratory exper-
iments. For instance, form-semantic relations, like re-

lations between spellings and pronunciations, have been

teased out of intact performance (Farrar, Van Orden, &

Hamouz, 2001; Pecher, 2001; Pexman & Lupker, 1999;

Pexman, Lupker, & Hino, 2002; Strain, Patterson, &

Seidenberg, 1995).

Constraints are limits of possibility; limits on the set

of potentialities that a system may express. Consider a
somewhat silly example. Suppose you have the goal to

move your cat into a cat carrier. A Newtonian solution

would be to kick the cat in the direction of the carrier�s
opening. One makes of oneself a cause and the effect is a

cat on a trajectory that leads into the carrier. A more

humane way to achieve the same goal would be a bubble

fence of sorts, a flexible bubble of plastic that surrounds

the cat and the cat carrier. The bubble constrains the
movements of the cat; the cat cannot get outside the

bubble. Now shrink the volume of the bubble toward

the opening of the carrier. As the bubble shrinks, the

cat�s freedom to move is more and more constrained.

Eventually the only remaining degree of freedom is

through the opening of the carrier.

Traditional cognitive neuropsychology stems from the

Newtonian metaphor of cause and effect, representations
cause action. Conventional research dissociates internal

causes (representations) from other representations and

from external contexts of action. Control follows a

causal chain of representations between stimulus and

response or between intention and action (Van Orden &

Holden, 2002). On the other hand, self-organization re-

lies on the metaphor of constraint. A hierarchy of in-

terdependent constraints, at multiple scales of time and
space, limit the possibilities for behavior. External and

internal constraints are understood in terms of the same

theoretical language. Narrow constraints come into and

out of existence on the time scales of the changing situ-

ations in which action occurs. Control is an emergent

property a product of the interaction between organism

and environment (Van Orden et al., 2003a, 2003b).
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4. Performance after brain damage

Constraints, stability, and variability could prove to

be useful concepts to understand the consequences of

brain damage. The present study compares word-nam-

ing accuracy and lexical-decision performance in corre-

lation analyses. These two reading tasks, word naming

and lexical decision, are the most commonly used lab-

oratory reading tasks. As we will describe, the pattern of
inter-correlation among their performance measures is

notably different for patients than for intact partici-

pants. Our goal here is simply to describe differences

between patients and intact participants in terms that

take into account self-organization. We did not conduct

a definitive study. Experiments that motivate self-orga-

nization require very large data sets and specialized tools

of analysis. Our goal is to frame familiar kinds of data in
the language of self-organization. We attempt to make

modest speculative headway toward re-thinking the

consequences of brain damage.

4.1. Methods

4.1.1. Participants

Participants included 45 undergraduate students and
nine language impaired patients. Eight of the nine pa-

tients had language deficits subsequent to stroke while the

ninth patient had language deficits that arose from

treatment of a brain tumor.All patientswere right handed

and all had left-hemisphere damage, regardless of cause.

The college students volunteered for course credit; the

patients were paid 10 dollars per hour. One student�s
data were dropped from the analysis secondary to a data
entry error. All remaining students and patients

performed both word naming and lexical decision.

4.1.2. Procedure for the word naming tasks

College students read aloud 25, rare, multisyllabic,

English words printed in black 16-point Arial font on a

white sheet of paper. These 25 words presented moder-
Table 1

Correlation profile across naming and lexical decision performances by nine

RB MD WM BV JM J

p-Prime 1.3 2.2 2.3 2.6 2.6 2

SD all words 1583 1831 610 958 853 1

SD low-frequency

words

1248 2175 776 936 1320 1

SD high-frequency

words

1822 1501 429 748 502 4

Word naming

accuracy

79% 35% 68% 50% 79% 2

* p < :05.
**Marginal reliability ðp ¼ :06Þ.
ate to high levels of pronunciation difficulty. College
level readers would perform at ceiling for naming of

monosyllablic words (like those used with the patients).

We required words of sufficient pronunciation difficulty

to pull performance down from ceiling. These targets

were initially gathered from lists of words from college

aptitude tests. From these lists, 285 items were randomly

selected. Each item was subsequently read aloud by a

12-year-old volunteer and item selection was based on
his ease of pronunciation for each word. The final list

included 13 words that were pronounced correctly on

the first attempt (e.g., mendacious, veracity, and mal-

adroit) and 12 words that were incorrectly pronounced

or pronounced with difficulty (e.g., beatify, apocryphal,

and oligarchy).

Patients read aloud 300 common monosyllabic En-

glish words printed on index cards in 18-point Arial font
(see Buchanan, Hildebrandt, & MacKinnon, 1994 for

items). Both naming tasks were participant paced; no

time limits were imposed.

4.2. Procedure for the lexical decision task

The procedure for the lexical decision task was the

same for both college students and patients. The lexi-
cal decision targets comprised 148 pronounceable

nonwords and 148 words. The words were 74 yoked-

pairs of single-syllable high- and low-frequency targets.

Each yoked pair was similar in spelling and pronun-

ciation and matched precisely for number of letters

and first phoneme. In each lexical decision trial, the

target letter-string was preceded by a 250-ms fixation-

cross and then presented individually on a computer
screen using DirectRT software (Jarvis, 2002). The

target remained on the screen until the participant

pressed either a word or nonword response key. Word

and nonword trials were presented in the same fixed

randomized order for each participant. Participants

were instructed to respond quickly without compro-

mising accuracy.
patient participants

O MH LA BC r with

d-prime

r with word

naming

accuracy

.8 3 3.5 3.7 .36

017 813 523 343 ).77� ).56��

330 2175 531 357 ).65� ).70�

64 1501 357 282 ).80� ).31

3% 97% 100% 95% .36
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4.3. Results

4.3.1. Word naming results

College students and patients produced wide ranges

of accuracy scores (College students: range¼ 8–80%,

mean absolute score ¼ 11 correct pronunciations out of

25, SD ¼ 4:67; patients: range¼ 23–99%, individual

Patients� accuracy scores can be found in Table 1). A

detailed description of patients� errors is beyond the
scope of the present paper, but two of the patients (JO

and BV) produced the semantic errors characteristic of

deep dyslexia and the predominate type of error overall

was omissions, followed by words that were similar in

orthography or phonology to the target word. College

students produced no semantic errors, omissions, or

word substitutions. College students made errors of

mispronunciation that are common to these rare words
/beat-if-eye/ rather than /be-at-if-eye/ and /ap-o-cry-ful/

rather than /apo-cra-ful/, for example.

College students� and patients� errors are different in

kind, but they both express constraints that are latent in

correct pronunciations. Patients� errors replace otherwise
familiar words� pronunciations. Correct pronunciations
have exchanged stability with error pronunciations that

would be highly unlikely in intact performance—bizarre
semantic errors for instance. As we already explained,

these errors reveal response options that are latent in

intact performance to the same words.

Students� errors are so-called regularization errors.

Rare words are given novel but not entirely unexpected

pronunciations. These error pronunciations reveal con-

straints that are inherited from other words similar in

spelling and pronunciation—general statistical patterns
of relations between spelling and pronunciation (cf.

Kessler & Treiman, 2001).

If the rare words of our study became familiar words

for the same college students, then the regularization

errors would become latent in their performance. A

correct pronunciation in this case requires acquisition of

word-specific constraints, a correct pronunciation op-

tion with greater stability than the regularization error
option.

All these possibilities have been demonstrated as ex-

istence proofs. That is, neural-networks acquire con-

straints as their connection weights change, including

general statistical constraints that can produce regular-

ization errors and word-specific constraints that correct

regularization errors. Also, simulated brain damage can

change the configuration of constraints in a neural-net-
work model to reveal latent response options as pro-

nunciation errors (e.g., Plaut, McClelland, Seidenberg,

& Patterson, 1996).

4.3.2. Lexical decision accuracy measures

We calculated the d-prime statistic for performance in

the lexical decision task, to be used in the analysis of
correlations with other statistics. d-Prime is a bias-free
estimate of sensitivity to the word/nonword distinction. It

takes into account both correct and incorrect responses.

A high d-prime score means that the participant readily

distinguishes words from nonwords. d-Prime is com-

puted using the false alarm rate (proportion of incorrect

word responses to nonwords) and the hit rate (propor-

tion of correct word responses to words). Both college

students and patients produced relatively wide ranges of
d-prime scores (College students: range¼ 2.0–5.1; pa-

tients: range¼ 1.3–3.7, individual Patients� scores can be

found in Table 1; the patients� lexical decision data were

reported previously in Moreno, Buchanan, & Van Or-

den, 2002.)

We collapsed across the frequency distinction to

calculate d-prime. The d-prime calculation requires a hit

rate less than 100%. This rarely occurs for high fre-
quency words; most participants get 100% correct. We

used accuracy instead of d-prime to evaluate the fre-

quency manipulation (see the section below concerning

word frequency).

4.3.3. Contrast of response time dispersion between

patients and intact participants

We expected that dispersion of response times would
distinguish between patients and college students. We

tested this expectation in a nonparametric variance ratio

test that is related to a standard ANOVA. First we

computed the variance for each patient�s and each col-

lege student�s distribution of correct response times that

fell between 200 and 2500ms. We summed the variances

within each group, and divided each by n� 1; n� 1

equals 8 for the patients and 43 for the students. The
result is a variance statistic that is an analogue to the

mean square in an ANOVA. Dividing the two variance

statistics yields an F ratio, F ð8; 43Þ ¼ 2:32.
At this point, if a true F statistic had been computed,

and we were confident that the sampled population (or

populations) followed a normal distribution, then we

could use a standard F table to determine statistical

significance. However, our statistical question does not
plug directly into the logic of an ANOVA, and the

normality assumption seems tenuous at best. Further-

more, there were far fewer patients in our study than

college students, and it is possible that the obtained re-

sult is a consequence of that fact. A nonparametric

bootstrap procedure addresses these concerns (Efron &

Tibshirani, 1998).

The bootstrapping procedure evaluates the likelihood
of obtaining the previous observed F value by chance

alone. The logic of the nonparametric bootstrap test is

straightforward. We mix together the nine patients� and
the 44 college students� variance statistics to create a

distribution of 53 values reflecting the null hypothesis—

namely, that patient and student variance estimates

come from the same population. If the null hypothesis is
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true, then all permutations of the patient–student mix-
tures are, in a sense, equally likely.

The bootstrap procedure repeatedly re-samples, with

replacement, all 53 variances. With each replication an F

ratio is computed just as it was for the observed F ratio,

dividing the variance of 9 samples by the variance of 44

additional samples. Actual patient variances and student

variances could end up in either grouping. To estimate

statistical reliability, we divided the number of times the
bootstrap F value equaled or exceeded the previous

observed F value (2.32) by the total number of bootstrap

replications. This yields a very good estimate of the

chance probability of an F ratio equal to or greater than

the observed F ratio. We ran this analysis several times,

first using 1000 and then 10,000 bootstrap replications,

and always obtained probability estimates that fell well

below .01, a statistically reliable difference. Thus pa-
tients� variance statistics are reliably larger than stu-

dents� variance statistics; patients� response times are

more widely dispersed than students� in the direction of

exaggerated slow times.

We next used the bootstrap procedure to compare

variance statistics for response times to high and low-

frequency words taken separately. The observed F for

patients� vs. students� response times to high frequency
words was 1.61; the p value hovered between about .06

and .04 across repeated bootstrap analyses, a marginally

reliable outcome. The observed F for the contrast be-

tween patients� vs. students� response times to low fre-

quency words was 2.33, which is p < :01 by the

bootstrap. Patients produce reliably more-variable re-

sponse times to low-frequency words than do students.

Let us sum up the results of the bootstrap analyses.
Patients� response times are more widely dispersed in the

direction of exaggerated slow response times. However,

this difference is only clearly reliable in response times to

low-frequency words.

4.3.4. Lexical decision results (word frequency)

Both college students and patients produced tradi-

tional word-frequency effects that are seen using
standard inferential statistics (College Students� Accu-

racy: MHIGH ¼ 97%, MLOW¼ 86%, tð43Þ ¼ 9:99; RTs:

MHIGH¼ 709, MLOW ¼ 824, tð43Þ ¼ 11:76; Patients�
Accuracy: MHIGH ¼ 95%, MLOW ¼ 81%, tð8Þ ¼ 6:58;
RTs: MHIGH¼ 1558, MLOW ¼ 1894, tð8Þ ¼ 29:17). The

traditional exclusive focus on means dovetails with the

widely trusted assumption that word-frequency mod-

ulates the availability or ‘‘force’’ of a lexical repre-
sentation—the cause of a word response. It is usually

misleading, however, to use means, exclusively, in

response time analyses (Andrews & Heathcote, 2001;

Balota & Speiler, 1999; Plourde & Besner, 1997).

RTs to low-frequency words are reliably more vari-

able than to high frequency words (College Students:

SDHIGH ¼ 254, SDLOW ¼ 322, nonparametric sign test
zð44Þ ¼ 3:36; Patients: SDHIGH ¼ 749, SDLOW ¼ 1065,
nonparametric sign test zð9Þ ¼ 2:0). Moreover, the

magnitude of a participant�s word-frequency effect is

reliably predicted by the same participant�s magnitude

of difference in response time variability between low

and high frequency words (SDLOW )SDHIGH). This was

true for both college students and patients (r ¼ :73 and

r ¼ :89, respectively).
The relation between the relative size of traditional

word-frequency effects and the relative dispersion of

RTs is nested within the contrast between patients� and
students� performance. Patient�s distributions of correct
response times are more widely dispersed than student�s
distributions, and the exaggerated variability that dis-

tinguishes less stable patient performance from more

stable student performance is, in a sense, echoed along

the continuum of within-participant variability. Rela-
tively high performing students or patients display less

overall variability than their low performing peers, and

high performers also show less discrepancy in variability

between low and high frequency words.

The relation between relative dispersion and relative

mean RT has previously been examined from the con-

ventional reductive perspective. A reductive analysis

seeks to partition effects among the parameters of dis-
tributions or between separate distributions entirely.

The most common practice has been to parse effects

among the parameters of Gaussian vs. exponential dis-

tributions, where the distributions themselves are sum-

med (convolved) to mimic the overall dispersion of

participant RTs. These attempts have not been suc-

cessful. Over the course of four decades, such attempts

have failed time and again to reliably parse word factors
among distribution parameters (Moreno, 2002). This

leaves the door open to alternative approaches such as

our own.

In fact, Moreno (2002) simulated frequency effects as

largely due to more variable (less stable) word responses

to low-frequency words. These assumptions motivated

his simulations: the word and nonword responses of

lexical decision are the response options (attractors) of a
nonlinear dynamics system. Lexical factors translate

into constraints that yield more or less stable word re-

sponse attractors. The factor word ‘‘frequency’’ esti-

mates the word�s normative probability of occurrence in

broadly sampled text, which estimates opportunities to

acquire word-specific constraints. But every person has

an idiosyncratic history with every word, which has

different implications for high and low-frequency words.
A relatively high frequency word is likely to recur

often in many topics of discourse. High frequency words

are likely to be high frequency for all readers regardless

of idiosyncrasies of interest or background. Conse-

quently, the degree of constraint on word responding is

more uniform for high frequency words, which yields

less dispersed distributions of word response times.
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The typically low rates of occurrence for low-frequency
words mean that they are less likely to appear in broadly

sampled text, but participants sample text narrowly to

suit their interests and backgrounds. There are no

guarantees that a low-frequency word for the experi-

menter is a low-frequency word for the participant. The

variety of participants� samples of text yields more var-

iable patterns of word recurrence, which yield less stable

word responses overall, more widely variable constraints
equal more widely dispersed performance measures

(Holden, 2002; Van Orden et al., 2003b).

In summary, cognitive constraints intertwine with

other embodied constraints to self-organize a word re-

sponse, whether a key press or the spoken word �yes.� A
reader is less likely to accrue constraints to words that

recur less often in print. Thus word responses to low-

frequency words may self-organize with respect to
weaker constraints, which implies slower and more error

prone performance (Grossberg & Stone, 1986). We have

framed the distinction between high and low-frequency

words in terms of the relative likelihood of recurring

opportunities to accrue constraints. We claim that the

traditional view of word frequency as modulating a

cause, or as a factor that produces an effect, has ob-

scured the actual stochastic nature of word frequencies
and the attendant implications for performance such as

stochastic changes in relative dispersion.

4.3.5. Correlations between word naming and lexical

decision

We previously claimed that brain damage weakens or

eliminates accrued constraints that had previously served

intact performance. The conceptual framework is sensi-
bly applied to understand between-participant differ-

ences in performance variability (patient vs. students) as

well as within-participant between-word differences

(word frequency). The focus on abstract stochastic con-

straints and stability creates common ground for word

factors and brain injury. In this section we contrast pa-

tient and student performance again using correlation

analyses that compare performances of the two tasks.
Table 2

Correlation profile across naming and lexical decision performances by

intact participants

Averaged

values across

44 participants

r with

d-prime

r with word

naming

accuracy

d-Prime 3.08 .54�

SD all words 300 .21 .05

SD low-frequency

words

322 .18 .20

SD high-frequency

words

254 .22 .04

Word naming

accuracy

46% .54�

* p < :05, one-tailed test.
Table 1 summarizes the analyses of correlations in
patients� data, and Table 2 does the same with college

students� data. In Table 2, word naming accuracy and

lexical decision d-prime are reliably correlated, but

nothing else. In Table 1 most of the measures of dis-

persion are reliably correlated with word naming and d-

prime, but the previous correlation between accuracy

scores is not statistically reliable. The pattern of inter-

correlation in Table 1 is almost exactly opposite to the
pattern of Table 2. The two patterns together resemble a

double dissociation—a double dissociation of patterns of

inter-correlation among accuracy and dispersion mea-

sures, one could say.

The outcome for college students portrayed in Table

2 makes sense. College students were asked to name

aloud extremely uncommon words. Aptitude for artic-

ulating the pronunciation of an uncommon word is
likely related to identification of more or less common

words in lexical decision. In a conventional account, one

might even propose that an association between task

performances implies one (or more) shared modules, a

module that recodes printed words into phonologic

representations for example. However, a more conser-

vative possibility, more in line with the present story,

would be a common source of constraints that promotes
accuracy in both of the tasks—say time spent reading.

This possibility is more scientifically conservative be-

cause it need not bring into existence a shared causal

entity.

The picture of patients� performance that Table 1

presents is pretty much the opposite of Table 2. The

association we observed in college students� perfor-

mance is not reliable in patient performance. Also,
whereas college students produced no reliable correla-

tions with RT dispersion, patients� dispersion measures

are all negatively correlated with accuracy and most of

these correlations are statistically reliable. A conven-

tional approach might suggest that the common com-

ponent of word naming and lexical decision has been

partly or wholly eliminated by brain damage, and the

damage reveals new associations between dispersion and
accuracy.

We pointed out previously that word-specific con-

straints accrue stochastically; they depend on a reader�s
idiosyncratic history. Constraints also disappear sto-

chastically. Their specific vulnerabilities to brain dam-

age cannot be known a priori. That is why it would be

impossible to predict exactly the word-errors that any

particular patient would produce.
Brain damage causes stochastic changes in the matrix

of constraints. Thus accuracy scores in naming vs. lex-

ical decision would be perturbed by two relatively in-

dependent sources of random variation, because we

chose different words for naming than for lexical deci-

sion. As a consequence, patients� word naming and

lexical decision accuracy are not reliably correlated.
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Nevertheless, patients� measures of RT dispersion
predict accuracy; increased dispersion is associated with

less accurate word naming and lower d-prime scores in

lexical decision. In particular, the patients� SDs for lex-

ical decision times to low-frequency words reliably pre-

dicts overall word-naming accuracy (compared to SDs

to high-frequency words for instance).

Low-frequency words as a class usually recur infre-

quently. Low-frequency words accrue constraints infre-
quently and are more vulnerable to perturbation by an

insult to brain integrity (compare Grossberg & Stone,

1986; Plaut et al., 1996). With respect to brain damage,

low-frequency words compare to high-frequency words

like canaries to coal miners. All other things equal, they

are the first to go. Word naming is similarly vulnerable.

The two canaries are not conjoined twins; they simply

share the same cage, as we explain next.
Performance of word naming requires completely

articulated constraints to produce a singular articulation

of each word. Constraints must coordinate pronuncia-

tions across a state space with many degrees of freedom.

Lexical decisions, by contrast, appear to collapse all

constraints from all sources redundantly onto a single

dimension of lexicality (Estes & Maddox, 2002). Reli-

ance on a less redundant matrix of constraint leaves
word naming more vulnerable. All other things equal,

word-naming performance is more vulnerable to per-

turbation than lexical decision. Dispersion of low-fre-

quency-word lexical-decision RTs is correlated with

overall word naming accuracy by their coincident vul-

nerability—their shared cage.

The flip side of the previous situations shows itself in

the strong negative correlation between patients� SDs for
lexical decision times to high-frequency words and the d-

prime statistic. The constraints corresponding to high-

frequency words are most likely to be preserved after

brain damage; they are the last to go. Thus wide dis-

persion of high-frequency word response-times is a good

indication that constraints overall have been decimated.

For instance, damage that so fully perturbs lexical de-

cisions pushes word naming to the floor, thus the lack of
a statistically reliable correlation. Widely dispersed RTs

to high-frequency words are the last gasp of lexical de-

cision, so to speak. Sensitivity to the word/nonword

distinction shrinks as the distribution of high-frequency

word RTs expands.
5. Discussion

We set out to discuss ordinary patient data in terms

that are agreeable to a self-organization hypothesis. Our

purpose was simply to demonstrate that patient data

remain an important source of knowledge about system

dynamics, were we to take a self-organizational ap-

proach. We also described a stochastic view of word
frequency that takes into account idiosyncratic word
recurrence across a reader�s lifetime.

A self-organization approach may also supply con-

ceptual tools more in line with the phenomena of cog-

nitive neuropsychology. The striking consequences of

brain damage for a science of neuropsychology are un-

predictable qualitative changes in behavior. For in-

stance, qualitative developmental changes occur that

qualify how or whether extent of damage predicts be-
havioral changes (Lea, 2001). Moreover lesion size is not

a good predictor of severity of behavioral changes (e.g.,

in adult aphasics Frediksson et al., 2002). The character

and severity of deficits are not adequately predicted by

the quantity of change in a brain (as they would be in a

straightforwardly linear system).

Qualitative changes have been the center of discus-

sion since a recognizable neuropsychology came into
existence (Shallice, 1988). Before brain damage, a person

says /bush/ when shown the word BUSH, after damage

the same person says /tree/. Abrupt qualitative change is

also the defining feature of strongly nonlinear behavior.

Abrupt qualitative changes, the bread and butter of

cognitive neuropsychology, are the defining facts of

nonlinear dynamical systems.

Self-organizing systems are themselves strongly non-
linear, and we note again that evidence exists for the

self-organization hypothesis. Many cognitive scientists

concede some version of these facts—who still doubts

that the mind, brain, and body entail strong nonlinear-

ities? Our goal in this article has been to move further

toward an understanding of what that could possibly

mean.
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