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ALGEBRAIC TOPOLOGY HOMEWORK PROBLEMS

WINTER QUARTER 2011

Please provide plenty of details! Pix are definitely kewl (⌣̈).

There are a few warm-up problems on stuff covered last Autumn—you might even
recognize some of them.

(1) Let (X, T ) be a compact Hausdorff space. Let S,U be topologies on X . Corroborate
the following:

(a) S strictly coarser than T implies that (X,S) is not Hausdorff.

(b) U strictly finer than T implies that (X,U) is not compact.

(Hint: What can you say about the identity map?)

(2) (a) Find an embedding of S1 × I into S2. Explain why this also gives an embedding
of S1 × (0, 1) into S

2. Give an example of an embedding of S1 × (0, 1) into S
2 that

does not come from an embedding of S1 × I into S2.

(b) Explain why the following spaces are all the ‘same’ (i.e., all homeomorphic):

S
1 × (0, 1), S

1 × R, S
2 \ {a, b}, R

2 \ {0}, {z ∈ R
2 : r < |z| < s};

here a, b are any two distinct points on S2 and 0 ≤ r < s ≤ ∞.

(c) Explain why the spaces B2, (−1, 1)2,R2 are homeomorphic.

(d) What about the R3 subspaces S2, ∂I3, (S1 × I) ∪ (B2 × {0, 1}) ?

(3) Recall that a set in Rn is convex provided the line segment joining any two points of
the set also lies in the set.

(a) Prove that every convex polygon in R
2 is homeomorphic to D

2.

(b) What about an arbitrary convex compact subset of R2?

(c) What about an arbitrary convex compact subset of Rn?

(4) LetK be a compact subset of
∨

λ∈ΛXλ for some collection {Xλ | λ ∈ Λ} of topological
spaces. Explain why there must be a finite set Φ ⊂ Λ such that K ⊂

∨

λ∈ΦXλ.

(5) Define an equivalence relation on R2 by writing (x, y) ∼ (x′, y′) if x′ − x ∈ Z. Prove
that R2/∼ is a surface. What surface is it?

(6) Define an equivalence relation on Q := {(x, y) ∈ R2 | x ≥ 0, y ≥ 0} by setting
(x, 0) ∼ (0, 7x). Prove that Q/∼ is a surface. What surface is it? Give an explicit
description of a Euclidean disk about the “origin”.

Suppose the equivalence relation is given by (x, 0) ∼ (0, sinh x). Do we still get a
surface? If so, what changes must be made in your proof?
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(7) Define an equivalence relation on the set T of points (x, y, z) ∈ R3 that satisfy

x ≥ 0 , y ≥ 0 , z = 0 or y ≤ 0 ≤ z , x = 0 or x ≤ 0 , z ≤ 0 , y = 0

by setting (x, 0, 0) ∼ (0,−3x, 0) and (0, 0, z) ∼ (0, 0,−2z) for all x, z ∈ R. Prove that
T/∼ is a surface. What surface is it? Give an explicit description of a Euclidean
disk about the “origin”.

Suppose the identifications of the “boundary” points are given via some non-linear
homeomorphisms. Do we still get a surface? What changes occur in your proof?

(8) Define an equivalence relation on R2 by writing (x, y) ∼ (x′, y′) if n := x′ − x ∈ Z

and y′ = (−1)ny. Prove that R2/∼ is a surface. What surface is it?

(9) (a) Explain why the Möbius band MB is not a surface. It is a (connected) 2-manifold
with boundary. What is the “boundary” of MB? (Note that for any topological space
X , we have ∂X = ∅, right? So, the “boundary” of MB is not really it’s topological
boundary, unless we think of MB as being embedded in some larger ambient space
such as R3. We could call this, e.g., the “edge” of MB, but . . . what is the “boundary”
of an n-manifold with boundary? It’s not really an “edge”, is it?)

(b) Demonstrate that the Möbius band with its “boundary” removed is homeomorphic
to the quotient space

([0, 1]× (0, 1)) /∼ where (0, y) ∼ (1, 1− y) .

Do you recognize this space from some above problem? Let’s call this the Möbius

plane and denote it by MP.

(c) Prove that MP is a surface. Can you see/prove that MP 6≈ S1 × R?

(d) Let D2 ⊃ ∂D2 = S1 ϕ
−→ MB be a homeomorphism with image the “boundary” of

MB. What is the adjunction space MB ⊔ϕ D
2?

(e) Let ψ be a homeomorphism between the two “boundaries” of two Möbius bands
MB1,MB2. What is the adjunction space MB2 ⊔ψ MB1?

(10) There are four different ways of describing the 2-dimensional torus T2.
• as the product space T2 := S1 × S1, a subspace of R2 × R2;
• as the tire tube surface TT, a subspace of R3, obtained by rotating the circle
{(x, y, z) ∈ R3 : (y − 2)2 + z2 = 1, x = 0} about the z-axis; or, more simply,

TT := {(x, y, z) : (2−
√

x2 + y2)2 + z2 = 1} ;
• as the quotient space I2/ ∼ where (x, 0) ∼ (x, 1) and (0, y) ∼ (1, y), which is
called the flat torus ;

• as the orbit space R2/Γ where Γ is the group of all horizontal and vertical
translations (x, y) 7→ (x + m, y + n) with m,n ∈ N; equivalently, R2/∼ where
(x+ 1, y) ∼ (x, y) ∼ (x, y + 1).

Demonstrate that these four spaces are homeomorphic.

(11) (a) Describe the quotient of the torus T2 modulo its longitudinal circle S1 × {1}.

(b) What is the quotient space of T2 modulo S1 ∨ S1 = (S1 × {1}) ∪ ({1} × S1) (the
wedge of its longitudinal and latitudinal circles) ? It is a common surface!
(Suggestion: Look at the square I2 with its identifications.)
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(12) The Klein bottle KB is the quotient space obtained from the square I2 via the
boundary identifications (0, y) ∼ (1, 1 − y) and (x, 0) ∼ (x, 1). Prove that KB is a
surface.

(13) Let A be a non-degenerate closed annulus in the plane and define an equivalence
relation on A by identifying antipodal points on the outer circle and also identify-
ing antipodal points on the inner circle. Show that the resulting quotient space is
(homeomorphic to) the Klein bottle KB.

(14) An object of interest to algebraic geometers is n-dimensional projective space

which is the quotient space defined by Pn := Sn/∼ where x∼−x; i.e., we identify
antipodal points x and −x. (Actually, this is real projective space; there is also a
complex projective space. Moreover, algebraic geometers use a somewhat different
description for projective space.)

(a) Prove that Pn is homeomorphic to the quotient space Dn/∼ where x ∼ y if x = y
or x, y ∈ ∂Dn = Sn−1 and x = −y (i.e., we identify antipodal boundary points).

(b) Prove that Pn is an n-manifold.

(c) Demonstrate that P1 ≈ S1. Can you see/prove that P2 6≈ S2?

(d) Let D2 q
−→ P2 be the quotient map that identifies antipodal points of the unit

circle S1 = ∂D2. Let A := D2(0; 1/2) ∪ {(x, y) ∈ D2 : |y − x| < 1/10} ⊂ D2. Explain
why q|A is an identification map. Draw a picture of B := q(A); it is a “basket” with
a certain type of “handle”.

(e) What is the space P2 \ B2 where B2 is any (open) regular Euclidean disk in P2?

(f) Find a space X with the property that X = U ∪B where U 6= ∅ is open in X and
B is homeomorphic to S

1 = ∂D2, via some homeomorphism ϕ, and is such that the
adjunction space D2 ⊔ϕ X is (homeomorphic to) P2.

(15) Sketch pictures for each of the spaces S2 \ B2,T2 \ B2,P2 \ B2,KB2 \ B2; in each of
these, B2 denotes any (open) regular Euclidean disk in the ambient surface. When
possible, identify the space. (E.g., S2 \ B2 ≈ D2, right?)

(16) Review the definition of a polygon diagram and the answer the following.

(a) What happens if some color is used for exactly one edge?

(b) What if three edges have the same color?

(17) Find polygon diagrams that provide flattenings for S2,P2. Be sure to use polygons!

(18) Provide a formal statement that describes the following claim: When we create the
geometric realization of a polygon diagram, we may either make all of the identifica-
tions at once (as per our definition), or, we can make the identifications one color at
a time; both processes produce the same space. Be sure to provide a proof of your
assertion.

(19) Suppose that a is a “vertex point” in the geometric realization of some polygon surface
diagram with the property that the identification pre-image of a consists of exactly
one vertex of the polygon. Give an explicit description of the regular Euclidean disks
centered at a.
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Figure 1. A triangle diagram for the Dunce Cap

(20) Give a list of all possible triangle diagrams and their associated geometric realizations.
When possible, describe the geometric realization in “concrete” terms. For example,
you can describe some of these by starting with a “wire frame skeleton” and attaching
a disk via certain maps. (One such diagram is pictured in Figure 1; it’s geometric
realization DC is called the dunce cap space. Is DC a manifold?)

Here is some terminology for problems #(21)-#(25) below. Let’s call a topological
space

• a topological disk if it is homeomorphic to D2 ,
• an arc if it is homeomorphic to I .

For the (closed) unit disk D
2, viewed as a subspace of R2, we have ∂D2 = S

1 where
here ∂ means with respect to to the ambient R3 topology. (Of course, for a topo-
logical space X , ∂X = ∅, right?). For a topological disk D = h(D2) with h some
homeomorphism, we write ∂D := h(∂D2). We shall see, eventually, that this notion
is well-defined (i.e., it does not depend on the homeomorphism h).

Let D be a topological disk. Let v0, v1, . . . , vn−1, vn = v0 be n successive points
along ∂D, with n ≥ 2. Let Ai be the (closed) subarc of ∂D from vi−1 to vi. Thus
∂D = A1 ∪ · · · ∪ An and the subarcs only intersect at their endpoints. Let Λ be a
word consisting of n letters (or their “inverses”). We call (D; Λ) a disk diagram .

Exactly as we did for polygon diagrams, use Λ to label the subarcs A1, . . . , An: each
subarc gets both a “color” and a “direction”. Let ∼Λ denote the equivalence relation
induced by this labeling. Then the geometric realization of the disk diagram
(D; Λ) is the topological space D/Λ := D/∼Λ.
An equivalent way to define this geometric realization is to view it as the adjunction
space D/Λ := K ⊔ϕ D where K := ∂D/Λ is the one-skeleton obtained from the
boundary of the disk D and the attaching homeomorphism ϕ : ∂D → K is just the
restriction of the quotient map D → D/Λ. Thus the geometric realization D/Λ is
the space obtained by attaching the disk D to the one-skeleton K as described by
the boundary label Λ.

(21) Prove that the geometric realization of a disk diagram is a compact connected space.
When will it be a manifold? When a surface?

(22) Let ω := e2πi/n ∈ S
1; often we call ω an n-th root of unity because ωn = 1. The

pseudo-projective plane of order n is the quotient space PPn := D2/ ∼ where
the equivalence relation is defined by identifying points z, w ∈ ∂D2 = S1 that satisfy
w = ω z.

(a) Describe PPn as the geometric realization of some disk diagram.
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(b) Prove that PP2 is a surface. Do you recognize it?

(c) Is PPn a manifold if n > 2?

(23) (a) Let I, J be arcs in S1 = ∂D2. Find a homeomorphism D2 Ψ
→ D2 with Ψ(I) = J .

(b) Suppose I
ψ
→ J is a homeomorphism with ψ(I) = J for some arcs I, J in S1 = ∂D2.

Find a homeomorphism D2 Ψ
→ D2 with Ψ|I ≡ ψ.

(Hints: First do this with S1 replaced by R, and then replaced by I.)

(24) Suppose that, for i = 1, 2, Di are topological disks and Ai ( ∂Di are arcs. Let
ψ : A1 → A2 be any homeomorphism. Demonstrate that D2 ⊔ψ D1 ≈ D2. What
elementary transformation of polygonal presentations does this correspond to? What
happens if Ai = ∂Di?

(25) Suppose that D is a topological disk and A,B ⊂ ∂D are non-overlapping adjacent
arcs with A ∩ B = {z} a single point. Let ψ : A → B be an ‘orientation reversing’
homeomorphism; i.e., ψ(z) = z. Prove that D/(x ∼ ψ(x)) ≈ D

2. What elementary
transformation of polygonal presentations does this correspond to?

(26) Let P be a polygonal presentation. Suppose that the geometric realization |P| is a
surface. Prove that by pasting together appropriated edges, P can be ‘reduced’ to a
polygon diagram.

(27) Identify the geometric realization of each of the following polygonal presentations.

(a) P :=< abacb−1c−1 >

(b) P :=< abca−1b−1c−1 >

(c) P :=< abc, bde, c−1df, e−1fa >

(d) P :=< abc, bde, dfg, fhi, haj, c−1kl, e−1mn, g−1ok−1, i−1l−1m−1, j−1n−1o−1 >

We recall the connected sum operation whose “definition is pictured” in Figure 2.
We use this notion to describe the operations of attaching a cap, attaching

a handle, attaching a cross-cap, or attaching a cross-handle to a given
surface. If we start with a given surface M , then these actions applied to M produce
the surfaces M#S2, M#T2,M#P2,M#KB respectively.

Below we examine alternative descriptions for these connected sum operations. Before
doing this we consider several ‘warm-up’ problems.

Figure 2. Two connected sums of tori: T2#T2 ≈ T2
2 and T2

2#T2 ≈ T2
3
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(28) Prove that for any n-manifold M , M#Sn ≈M . (Figure 7 illustrates a special case.)

We define an operation on surfaces called tube connection. We start with two
surfacesM0,M1. Let Bi be an open regular Euclidean disk inMi with Si := ∂Bi ≈ S1.
Consider any embedding

S
1 × I ⊃ S

1 × {0, 1}
h
−→ (M0 \B0) ∪ (M1 \B1)

with S1×{i}
h|
−→ Si ⊂ Mi \Bi a homeomorphism for each i ∈ {0, 1}. We use the map

h to attach the tube S1× I to each of the punctured surfaces (M0 \B0), (M1 \B1), the
‘bottom’ of the tube being attached to S0 and the ‘top’ of the tube to S1. Formally,
the tube connection of M0 and M1 is the adjunction space

M0#tM1 := [(M0 \B0) ∪ (M1 \B1)] ⊔h
[

S
1 × I

]

.

(29) Let M0,M1 be surfaces. Prove that M0#tM1 ≈M0#M1.

Next we describe an alternative way to view the operations of attaching a handle

or attaching a cross-handle to a given surface. Note that in contrast to the
connected sum operation, these are operations on a single surface. In fact, we do
this in somewhat more generality. So, let X be a topological space (you can think
of a surface if you wish). Assume that D is a closed Euclidean disk in X ; this just
means that D ≈ D2 ⊂ R2. Let D0, D1 be two disjoint closed Euclidean disks in the
interior of D. (You might as well picture this in D2.) Let Bi denote the interior
of Di and Si := ∂Bi = ∂Di. Now mark each Si with an orientation arrow. If both
orientation arrows go in the same direction (both clockwise or both counterclockwise,
in the R2 picture), then we say that the orientations are twisted ; otherwise—when the
orientation arrows go in opposite directions—we say that the orientations are non-

twisted. In the first picture in Figure 3 the orientations are non-twisted; in Figure 4
they are twisted. (Below I explain this terminology; I use it to follow Lee!)

Figure 3. Attaching a handle to a surface
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Figure 4. Attaching a cross-handle to a surface

Let S0
h
−→ S1 be any homeomorphism induced by the orientations on each of S0, S1:

as the point z traces out the circle S0 going in S0’s direction, h(z) traces out the circle
S1 going in S1’s direction. Starting with the twice-punctured space X \ (B0 ∪ B1),
we paste together the circles S0, S1 by identifying the points z ∼ h(z) for z ∈ S0. We
thus obtain the quotient space

[X \ (B0 ∪ B1)] / (z ∼ h(z)) .

This new space depends on whether the orientations of the circles S0, S1 are twisted
or non-twisted. In the latter case, we say that a handle has been attached to X and
we denote this space by

X#aH := [X \ (B0 ∪ B1)] / (z ∼ h(z)) ;

in the twisted case, a cross-handle has been attached to X , denoted

X#aCH := [X \ (B0 ∪ B1)] / (z ∼ h(z)) .

See the pictures in Figures 3, 4, 5.

(30) Let M be a surface. Prove that: (a) M#aH ≈M#T2 and (b) M#aCH ≈M#KB.

Hints: Figures 3 and 5 illustrate the idea behind (a). To give a proper/correct/formal
proof, I suggest that you first prove that T2 \ B2 ≈ D

2#aH.

Figure 5. Attaching a handle to a surface produces its connected sum with T2
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Figure 6. Attaching a cross-cap

In a similar way, we can interpret the operations of attaching a cap or attaching
a cross-cap as pasting together the boundary semicircles of a once punctured space
X \B. See Figures 6 and 7.

Finally, we connect the two ends of a tube to just one surface. See the bottom
pictures in Figure 4. Again, we do this in somewhat more generality. So, let X be
a topological space (you can think of a surface if you wish). Assume that D is a
closed Euclidean disk in X , that D0, D1 are two disjoint closed Euclidean disks in the
interior of D, that Bi is the interior of Di, and Si := ∂Bi = ∂Di. Mark each Si with
an orientation arrow. Again, the orientations are twisted if both orientation arrows
go in the same direction and non-twisted otherwise.

Consider any embedding

S
1 × I ⊃ S

1 × {0, 1}
h
−→ X \ (B0 ∪ B1)

with S
1 × {i}

h|
−→ Si ⊂ X \ (B0 ∪ B1) a homeomorphism for each i ∈ {0, 1} that

respects the orientations of S0, S1: as z ∈ S1 ×{i} traces out S1×{i} in its ‘positive’
direction, the point h(z) ∈ Si traces out the circle Si in the appropriate direction. We

Figure 7. Attaching a cap to T2 gives T2#S2 ≈ T2
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use the map h to attach the tube S1×I to the twice-punctured space X \(B0∪B1), the
‘bottom’ of the tube being attached to S0 and the ‘top’ of the tube to S1. Formally,
we consider the adjunction space

[(X \ (B0 ∪B1)] ⊔h
[

S
1 × I

]

.

(31) Let X be a surface. Form the space [(X \ (B0 ∪ B1)] ⊔h [S1 × I] described in the
preceding two paragraphs. Prove that:
(a) when the orientations are non-twisted, this space is homeomorphic to

X#aH ≈ X#T2 ,
(b) when the orientations are twisted, this space is homeomorphic to

X#aCH ≈ X#KB .

In (a) above the tube is attached to X \ (B0 ∪B1) with no twisting (see the bottom
pictures in Figure 4) whereas in (b) we must “twist” the tube so that the orientations
will align; to visualize this “twisting” pass the tube “across” the surface of the space
and attach the two ends of the tube to “opposite” sides of the space.

(32) Let A
j
→֒ X be an injective map from a set A into a space X and give A the subspace

topology; typically A is an actual subset of X , but it need not be such (right?).

We say that A is a retract of X if there is a continuous map X
r
→ A with r ◦ j = 1A;

in this case, the map r is called a retraction of X onto the subspace A.

(a) Let X be Hausdorff. Suppose A ⊂ X is a retract of X . Verify that A is closed.

(b) Prove that if X is connected, or compact, then so is any retract of X .

(c) Prove that a retraction is an identification map.

(33) Prove that there exists a retraction of X onto a subspace A if and only if for every
space Y and every continuous map f : A→ Y there is a continuous map F : X → Y
with f = j ◦ F (where j : A →֒ X).

(34) Prove that two constant maps X
h,k
−→ Y are homotopic if and only if h(X) and k(X)

lie in the same path component of Y .

(35) Let f, g : X → R
n
∗ be any two maps from a topological space X into the punctured

Euclidean space Rn∗ := Rn \ {0}. Assume that for all points x ∈ X ,

|f(x)− g(x)| ≤ |f(x)|.

Corroborate that f ≃ g. (Does this remind you of a theorem in Complex Analysis?)

(36) Let V be a vector space. We say that S ⊂ V is star-shaped with respect to v ∈ V
provided for each x ∈ X , the line segment [v, x] lies in S. Prove that any two maps
f, g : X → S from a topological space X into a star-shaped subset of a vector space
are homotopic.

(37) Let Z be a locally compact Hausdorff space. Assume X
p
→ Y is an identification

map. Prove that the product map

X × Z
p×1Z−−−→ Y × Z

is also an identification map. (Here Z
1Z−→ Z denotes the identity map on Z.)
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(38) Let X
p
−→ Y be an identification map. Suppose X × I

H
−→ Z is a homotopy that

respects the identifications of p in the sense that

∀ x, x′ ∈ X : p(x) = p(x′) =⇒ ∀ t ∈ I , H(x, t) = H(x′, t) .

Demonstrate that H induces a homotopy Y × I
H̃
−→ Z which has the property that

H̃ ◦ (p× 1I) = H .

(39) Prove that any retract of a contractible space is contractible.

(40) Recall that [X, Y ] denotes the set of homotopy classes of maps from X to Y .

(a) Prove that for any space X , [X, I] contains a single element.

(b) Show that when Y is path connected, [I, Y ] contains a single element.

(c) Confirm that a contractible space is path connected.

(d) Prove that if X is contractible and Y is path connected, then [X, Y ] contains a
single element.

(41) Demonstrate that for any space X , the following are equivalent.

(a) X has the homotopy type of a point.

(b) 1X is null-homotopic.

(c) For all spaces Z and all maps f, g : Z → X , f ≃ g.

(d) For all spaces Z, [Z,X ] consists of a single element.

(42) A deformation of X into A is a homotopy X× I
H
→ X of 1X to j◦d where X

d
→ A is

any continuous map (and j : A →֒ X is an injective map). When such a deformation
exists, we say that X is deformable to A.

Suppose X is deformable to A and A
f,g
−→ Y are homotopic maps. Suppose X

F,G
−−→ Y

are any extensions of f, g (meaning f = j ◦ F and g = j ◦G). Prove that F ≃ G.

(43) A deformation retraction of X into A is a homotopy X × I
H
→ X of 1X to j ◦ r

where r : X → A is a retraction from X onto A (and j : A →֒ X an injective map).
If such a deformation retraction exists, we call A a deformation retract of X .

Sometimes the above notion is called a weak deformation retraction to contrast it
with a strong deformation retraction; the latter has the additional requirement that
the homotopy from 1X to j ◦ r must be relative to A. This means that every point
of A is kept fixed: for all a ∈ A and all t ∈ I, H(a, t) = a.

Note that for a (weak) deformation retract, the inclusion and retraction are inverse
homotopy equivalences.

Prove that a subspace A of a space X is a (weak) deformation retract of X if and
only if A is a retract of X and X is deformable into A.

(44) Prove that the center circle of a Möbius band is a strong deformation retract of the
Möbius band.

(45) (a) Prove that the circle {(x, y) ∈ R2 : x2 + y2 = 1} is a strong deformation retract
of the once punctured plane R2

∗ := R2 \ {0}.

(b) Demonstrate that the figure eight space FE := {(x, y) ∈ R2 : (x ± 1)2 + y2 = 1}
is a strong deformation retract of the twice punctured plane R2

∗∗ := R2 \ {(±1, 0)}.
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Figure 8. Dumb Bell, Figure Eight, and Theta Spaces

(46) Provide rigorous proofs for the following facts concerning the dumb bell, figure eight,
and theta spaces DB, FE, Θ that are pictured in Figure 8.

(a) Each of these is a deformation retract of a twice punctured plane.

(b) These spaces are all homotopically equivalent.

(c) No two of these spaces are homeomorphic.

(47) Recall that the natural comb NC, harmonic comb HC, and doubled harmonic

comb DHC are the subspaces of R2 defined by

NC := ([0,∞)× {0}) ∪
∞
⋃

n=0

({n} × [0, 1]) ,

HC := ([0, 1]× {0}) ∪ ({0} × [0, 1]) ∪
∞
⋃

n=1

{1/n} × [0, 1] ,

DHC := ({0} × [−1, 1]) ∪ ([0, 1]× {1}) ∪
∞
⋃

n=1

({1/n} × [0, 1])

∪
∞
⋃

n=1

({−1/n} × [−1, 0]) ∪ ([−1, 0]× {−1}) .

(a) Which of these spaces is (or is not) contractible?

(b) For each of these spaces X let p(x, y) := (0, y) and put A := p(X).

(i) Is A a retract of X? If so, is p a retraction of X onto A?

(ii) Is A a (strong or weak) deformation retract of X? If so, is p a retraction of X
onto A satisfying the requirement that j ◦ p ≃ 1X? (Here j : A →֒ X is the inclusion
map and 1X the identity map on X .)

(iii) Does p define a homotopy equivalence between X , A?

(48) Recall that the 2-torus is T2 := S1 × S1. Confirm that T2 \ {pt} has the homotopy
type of the figure eight space FE.

(49) Prove that the torus T2 := S1 × S1 is a deformation retract of (S1 ×D2) \ (S1 × {0}).

(50) Recall that when Z is a closed subspace of X and Z
ϕ
→ Y is continuous, the space

Y ⊔ϕ X , called the adjunction of X to Y via ϕ, is constructed by attaching X to
Y using ϕ as follows:

Y ⊔ϕ X is the quotient space (X ⊔ Y )/ (z ∼ ϕ(z)) ;

a more precise description of the equivalence relation is that u ∼ v if either (i) u = v
or (ii) u, v ∈ Z and ϕ(u) = ϕ(v) or (iii) u ∈ Z and v = ϕ(u) ∈ Y .
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(a) Suppose X ⊃ A ⊃ Z
ϕ
→ Y with A,Z closed and ϕ continuous. Prove that Y ⊔ϕA

is a closed subspace of Y ⊔ϕ X .

(b) Assume X ⊃ Z
ϕ
→ Y with Z closed and ϕ continuous. Suppose Z is a strong

deformation retract of X . Demonstrate that Y ⊔ϕ Z is a strong deformation retract
of Y ⊔ϕ X .

(51) Classify the letters in the alphabet, as pictured, up to homeomorhpism type, and
then up to homotopy type.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
(52) Determine the homotopy type of the complement of the coordinate axes in R3.

(Hint: This space has the same homotopy type as a wedge of some circles.)

(53) Let X be the quotient space obtained by identifying the north and south poles in S2.
Let Y := R3\S where S := S1×{0} = {(x, y, 0) ∈ R3 : x2+y2 = 1}. Let Z := TT∪D

where TT is the tire tube space TT := {(x, y, z) ∈ R
3 : (2 −

√

x2 + y2)2 + z2 = 1}
and D := D2 × {0} = {(x, y, 0) ∈ R3 : x2 + y2 ≤ 1}.

Prove that X, Y, Z all have the same homotopy type.

(Suggestion: the space PC := {(x, y, z) ∈ R3 : (r−
√

x2 + y2)2+ z2 = r2}, with r = 1
or r = 1/2, might prove helpful.)

(54) Suppose that for all λ ∈ Λ, Xλ and Yλ have the same homotopy type. Confirm that

the product spaces×Xλ and× Yλ have the same homotopy type.

(55) Let m,n ∈ Z with n > m ≥ 0. Demonstrate that Rn \ Rm has the same homotopy
type as Sn−m−1. (Here we view R

m ≈ R
m × {0} ⊂ R

n; and R
0 := {0}.)

(56) Let m,n ∈ N. With one exception, each of the following spaces has the homotopy
type of a wedge of finitely many circles.

R
2 \ {x1, . . . , xm} , S

2 \ {z1, . . . , zm} , T
2
n \ {t} , P

2
n \ {p} .

Prove these assertions.

(57) Find a space X with a point a ∈ X such that the inclusion map {a} →֒ X is a
homotopy equivalence, but {a} is not a (strong) deformation retract of X . Can you
find a homotopy equivalence that is not a (weak) deformation retraction?

(58) The cone over X is the quotient space Cone(X) := (X × [0, 1]) / (X × {1}) .

(a) Prove that the cone over a compact X ⊂ Rn is homeomorphic to the
geometric cone

GC(X) := {((1− t)x, t) ∈ R
n × R = R

n+1 : 0 ≤ t ≤ 1}

formed by taking the union of all line segments joining points of X × {0}
(a subspace of Rn+1) to the point (0, . . . , 0, 1) ∈ Rn+1.

(b) Is Cone(X) homeomorphic to GC(X) for every closed set X ⊂ Rn?

(c) Verify that Cone(X) is compact whenever it is locally compact.

(d) Prove that for any space X , Cone(X) is contractible.

(e) Demonstrate that a continuous map X → Y is null-homotopic
if and only if it extends to a continuous map Cone(X) → Y .
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(59) The mapping cylinder associated with a continuous map X
f
−→ Y is defined by

MCf := ((X × I) ⊔ Y ) /[(x, 0) ∼ f(x)] .

Thus, MCf = Y ⊔F (X × I) where F : X × {0} → Y is F (x, 0) := f(x). For example,
when Y = {pt} is a singleton (so f is a constant map), MCf is homeomorphic to the
cone Cone(X).

(a) Show that there are natural ‘inclusion’ maps X
i
→֒ MCf and Y

j
→֒ MCf that are

embeddings of X, Y onto closed subspaces X̃, Ỹ of MCf .

(b) Verify that X
i
−→ MCf is homotopic to X

j◦f
−−→ MCf .

(c) Show that the projection X× I → X×{0} induces a natural retraction MCf
r
−→ Y

with the property that f = r ◦ i.

(d) Confirm that MCf ≃ Y by demonstrating that Y is a strong deformation retract
ofMCf . More precisely, construct a strong deformation retraction R : MCf×I → MCf

which illustrates that 1MCf
≃ j ◦ r (rel Ỹ ).

Thanks to transitivity of ≃, the above tells us that X ≃ Y if and only if X ≃ MCf .
The following further elucidates this phenomena.

(e) Prove that X is a retract of MCf if and only if f has a left homotopy inverse.

(f) Prove that MCf is deformable to X if and only if f has a right homotopy inverse.

(60) Prove that X is contractible if and only if, for any constant map X
k
−→ {a}, X is a

retract of MCk .

(61) Demonstrate that two spaces X , Y have the same homotopy type if and only if there
is a space Z containing both X and Y as deformation retracts.

(62) Recall that Π(X) := P(X)/∼ (the set of equivalence classes of paths modulo path
homotopy). Define Θ : Π(X) → X ×X by Θ([α]) = (α(0), α(1)). Demonstrate that:

(a) Θ is surjective if and only if X is path connected.

(b) Θ is bijective if and only if X is simply connected.

(63) Let x ∈ X and y ∈ Y . Find a natural isomorphism between π1(X × Y, (x, y)) and
π1(X, x)× π1(Y, y).

(64) Let X
r
→ A be a retraction of X onto a subspace A. Prove that for each a ∈ A,

π1(X, a)
r∗−→ π1(A, a)

is an epimorphism (i.e., a surjective homomorphism).

(65) Let a ∈ A ⊂ Rn and (A, a)
h
→ (Y, y). Suppose h extends to a continuous map

Rn → Y . Prove that h∗ is the trivial homomorphism (that maps everything to the
identity e in π1(Y, y)).

(66) Let A ⊂ X and write A
j
→֒ X for the inclusion map. Let X

f
→ A be continuous.

Suppose H : X × I → X is a homotopy between j ◦ f and 1X .

(a) Show that if f is a retraction, then j∗ is an isomorphism.

(b) Prove that if H(A× I) ⊂ A, then j∗ is an isomorphism.

(c) Give an example for which j∗ is not an isomorphism.



14 ALGEBRAIC TOPOLOGY HOMEWORK PROBLEMS WINTER QUARTER 2011

(67) Let α and β be paths in X from a to b and b to c respectively. Put γ := α ∗β. Prove
that Φγ = Φβ ◦ Φα. (These are the change of base point homomorphisms.)

(68) Let x, y be two points in a path connected space X .

(a) When will a given pair of paths joining x, y induce the same isomorphism of the
fundamental groups π1(X, x), π1(X, y)?

(b) When will all paths joining x, y induce the same isomorphism of the fundamental
groups?

(69) Determine necessary and sufficient conditions for π1(X, x) to be abelian.

(70) Prove that: For a path connected space, the homomorphism of fundamental groups
induced by a continuous map is independent of base point, up to isomorphisms of
the groups involved.

More precisely, let X
f
→ Y be continuous with f(x0) = y0 and f(x1) = y1. Let (fx)∗

denote the homomorphism of fundamental groups induced by f : (X, x) → (Y, f(x)).
Suppose α is a path in X from x0 to x1. Put β := f ◦ α. Prove that

Φβ ◦ (fx0)∗ = (fx1)∗ ◦ Φα .

In other words, we have the following commutative diagram of group homomor-
phisms:

π1(X, x0)
(fx0 )∗−−−→ π1(Y, y0)





y

Φα





y

Φβ

π1(X, x1)
(fx1 )∗−−−→ π1(Y, y1)

(71) Suppose A
j
→֒ X is an injection and X

r
→ A a retraction. Let a ∈ A. Assume that

j∗[π1(A, a)] is a normal subgroup of π1(X, a). Prove that π1(X, a) is isomorphic to
Im(j∗)×Ker(r∗).

(72) Prove that each of the spaces NC, HC, and DHC is simply connected. (These are the
natural, harmonic, and doubled harmonic comb spaces as defined in problem #(47).)

(73) Let X = S
m ∨ S

n with m,n > 1. Let x be the ‘vertex’ of this wedge (i.e., the ‘wedge
point’). Calculate π1(X, x). (Careful! The union of two simply connected spaces
need not be simply connected.)

(74) Suppose X = U ∪ V with U, V both open and U ∩ V path connected. Consider the
inclusion maps i : U →֒ X , j : V →֒ X .

(a) What can you say about the fundamental group of X if:
j∗ is the trivial homomorphism? both i∗ and j∗ are trivial?

(b) Give an example where i∗ and j∗ are trivial, but neither U nor V is simply
connected.

(75) Munkres has two nice problems dealing with special cases of the Seifert-Van Kampen
Theorem; see p.433 #’s 1, 2.

(76) Let M,N be connected n-manifolds. Describe the fundamental group of the con-
nected sum M#N .



ALGEBRAIC TOPOLOGY HOMEWORK PROBLEMS WINTER QUARTER 2011 15

(77) Determine the fundamental groups of the following spaces:

S
1 ∨ S

1 , S
2 ∨ S

2 , S
2 ∨ S

1 , S
2 ∪ I

T
2 ∨ T

2 , P
2 ∨ P

2 , TT ∪D1 , TT ∪D2

TT ∪D1 ∪D2 , TT ∪ A , R
3 \ A , R

4 \ L .

Here S2 is the unit sphere in R3, I := {(x, y, z) ∈ R3 : x = 0 = y,−1 ≤ z ≤ 1}, T2 is
the 2-dimensional torus, TT is the usual tire tube space in R3,

D1 := {(x, y, z) ∈ R
3 : (x− 2)2 + z2 ≤ 1, y = 0},

D2 := D
2 × {0} = {(x, y, z) ∈ R

3 : x2 + y2 ≤ 1, z = 0},

A := X ∪ Y ∪ Z is the union of the three coordinate axes X , Y , Z in R3, and
L := {(0, 0, 0, w) ∈ R4 : w ∈ R} is the ‘vertical’ axis in R4.

The space TT∪D1 is called a torus with a membrane. What can you say about
TT∪D1 versus TT∪D2 ? Does it matter whether we add a ‘vertical’ or a ‘horizontal’
membrane? (Perhaps the adjectives ‘meridianal’ and ‘latitudinal’ are more accurate.)
What if we replace the torus with the Klein bottle?

(78) Recall that the wedge of spaces Xi (i ∈ I) (with respect to ‘base points’ xi ∈ Xi) is
defined by

Z =
∨

i∈I

Xi := X/A = X/∼ where X :=
∐

i∈I

Xi and A := {xi : i ∈ I} ;

thus Z is the quotient space of the disjoint union of the spaces Xi where for all
i, j ∈ I, xi ∼ xj . Let z ∈ Z denote the ‘wedge point’ (aka, the ‘vertex’ or ‘common
point’), i.e., the equivalence class A in Z.

In class we outlined an argument showing that for spaces with non-degenerate base
points xi (meaning that there is an open set Ui ⊂ Xi such that {xi} is a strong
deformation retract of Ui) and a finite index set, say I = {1, . . . , N} ⊂ N,

π1(Z, z) ∼=
N

∗
n=1

π1(Xn, xn) .

Now assume that I is an arbitrary index set. Suppose that for each i ∈ I, Xi ≈ S1.
Put L := {ℓi | i ∈ I} where ℓi represents the path homotopy class of a loop λi in Xi

which generates π1(Xi, xi). Demonstrate that π1(Z, z) is the free group on L.
Hint: First, consider the case where I is a finite set (and use induction). Next, show
that L is a set of generators. Recall that (images of) loops and path homotopys are
compact (and remember HW#(4)).

(79) Consider the Hawaiian earring space

HE :=

∞
⋃

1

Cn where Cn is the circle Cn := S
1((1/n, 0); 1/n) ⊂ R

2.

Let ℓn := [λn] where λn is a loop which generates π1(Cn, 0).

(a) Confirm that π1(HE, 0) is not generated by {ℓn | n ∈ N}.

(b) According to problem #(78) above, HE is not homeomorphic to any wedge of
circles. Provide a direct proof of this.



16 ALGEBRAIC TOPOLOGY HOMEWORK PROBLEMS WINTER QUARTER 2011

(c) Demonstrate that π1(HE, 0) is uncountable. (Hint: Recall that any sequence in
{0, 1} can be identified (via a binary expansion) with a real number in [0, 1].)

(d) Explain why the fundamental group of a wedge of countably many circles is
countable.

(e) What about the spaces EE,R/Z, I/M from last quarter’s HW#(70)?

(80) Recall the definition of the pseudo-projective plane PPn of order n; see problem
#(22). Determine the fundamental group of PPn.

(81) Recall the definition of the dunce cap space DC; see problem #(20) and Figure 1.
Determine the fundamental group of DC.

(82) (a) Prove that < a, b | abab−1 = 1 > is a presentation for the fundamental group of
the Klein bottle KB.

(b) Show that < c, d | c2d2 = 1 > is a presentation for the fundamental group of the
surface P2

2 := P2#P2.

(c) Supposedly, KB ≈ P2
2, so these two presentations should be the same (i.e., they

should define isomorphic groups). Verify this. (Hint: Define c by a = cb and conju-
gate the relation abab−1 = 1.)

(83) Find a presentation for the fundamental group of T2#P2.

(84) Let (X̃, p,X) be a covering space.

(a) Let Y ⊂ X , Ỹ := p−1(Y ), q = p|Ỹ . Confirm that (Ỹ , q, Y ) is a covering space.

(b) Suppose that X is connected. Demonstrate that each fibre p−1(x) has the same
cardinality.

(c) Suppose that X is connected and locally path connected. Prove that if C is a
component of X̃, then p(C) = X and p|C : C → X is a covering projection. Is p|C a
homeomorphism?

(85) (a) Check that for each n ∈ Z the map z 7→ zn is a covering S1 → S1.

(b) Suppose p(z) is a polynomial in z ∈ C of degree n. Let F be the set of critical
values of p. What theorem in Complex Analysis (or Advanced Calculus) ensures that
p : C \ p−1(F ) → C \ F is an n-sheeted covering projection?

(c) Verify that the map z 7→ ez is a covering projection from C onto C∗ := C \ {0}.

(86) (a) Consider the maps R2 p
→ R×S1 q

→ S1 given by p(r, t) := (r, e2πit) and q(r, z) := z.
Which of p, q are covering projections?

(b) What happens if we replace the cylinder R × S1 with the infinite Möbius plane
MP? Recall that the infinite Möbius plane can be defined via

MP := R
2/∼ where (x, y) ∼ (x+ 1,−y).

(87) Let X̃
p
−→ X be a covering projection with X̃ second countable.

(a) Suppose X̃ is an n-manifold and X is Hausdorff. Show that X is an n-manifold.

(a) Suppose X is an n-manifold. Show that X̃ is an n-manifold.
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(88) Let X̃ := {(z, w) ∈ C2 : w2 = z 6= 0}. (You can think of X̃ as the graph of the
‘two-valued’ complex square root ‘function’.) Prove that the projection C2 → C onto

the first coordinate restricts to a 2-sheeted covering X̃ → C∗ := C \ {0}.

(89) Let X̃
p
−→ X be an n-sheeted covering projection. Suppose X̃,X,M are connected

m-manifolds. Prove that X#M has an n-sheeted covering with total space the con-
nected sum of X̃ together with n copies of M . (Suggestion: Do the connected sum
operation inside an evenly covered neighborhood.)

(90) Let X̃
p
−→ X be a covering projection. Suppose X is compact and for each x ∈ X ,

p−1(x) is finite. Prove that X̃ is compact.

Prove that X̃ is compact if and only if p is a finite-sheeted covering.

(91) Let X
q
→ Y

r
→ Z be covering projections. Suppose that for each z ∈ Z, r−1(z) is

finite. Prove that p := r ◦ q is a covering map. What if some r−1(z) were not finite?

(92) Suppose X
p
→ Z, X

q
→ Y , Y

r
→ Z are all continuous maps. Assume that p = r ◦ q.

Consider the assertion: If two of these maps are covering projections, then so is the
third. Demonstrate the validity of this claim when the ‘two’ maps are p, r or p, q.
Determine whether or not it holds for q, r. What if you knew, e.g., that r were an
n-fold covering?

(93) Let m,n ∈ N.

(a) Prove that the composition of an m-fold covering and an n-fold covering is an
mn-fold covering.

(b) Find an example of two covering projections whose composition is not a covering.

(94) Let R+ := {r ∈ R : r > 0}, R2
∗ := R2 \ {0}, and define R× R+

p
→ R2

∗ by

p(t, r) := (r cos(2πit), r sin(2πit)) = re2πit .

(a) Prove that p is a covering projection.

(b) Find lifts of the paths α, β, γ := α ⋆ β where α(t) := (2− t, 0) and
β(t) := ((1 + t) cos(2πit), (1 + t) sin(2πit)) = (1 + t)e2πit.

(95) Let (X̃, p,X) and (Ỹ , q, Y ) be covering spaces. Show that (X̃ × Ỹ , p× q,X × Y ) is
a covering space. Use this to find a covering space for the torus.

(96) Consider the covering projection R
2 exp× exp
−−−−−→ T

2 where exp(t) := e2πit; cf. #(95). Let
λ be the path in T2 = S1 × S1 defined by

λ(t) := (e2πit, e4πit) = (exp(t), exp(2t)) .

Sketch a picture for the trajectory of λ when T2 is identified with the tire tube space
TT. Find a lift λ̃ of λ to R

2 and sketch its trajectory.

(97) Recall that there are four different ways of ‘defining’ the 2-dimensional torus T2;
see #(10). Each of these ‘definitions’ provides a different way to determine the
fundamental group π1(T

2).

(a) Use the definition T
2 := S

1 × S
1, in conjunction with HW #(63), to determine

π1(T
2, (1, 1)).
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(b) Consider the covering map R2 exp× exp
−−−−−→ T2; cf. #(95). Mimic our proof that

π1(S
1, 1) ∼= Z to confirm your answer to (a). Provide a detailed explanation why the

2-torus has an abelian fundamental group.

(c) What goes wrong with these arguments if we attempt to use them to find the
fundamental group of the Klein bottle? Recall that the Klein bottle can be defined
via KB = R2/∼ where (x+ 1,−y) ∼ (x, y) ∼ (x, y + 1).

(98) Let X̃
p
−→ X be a covering projection. Suppose X̃ is path connected and X is simply

connected. Demonstrate that p is a homeomorphism.

(99) Let X̃
p
−→ X be a covering projection. Suppose F : I2 → X is continuous. Prove

that there exists a δ > 0 such that if S ⊂ I2 is any δ × δ subsquare of I2, then F (S)
lies inside an evenly covered neighborhood. (A δ × δ square in I2 is a set of the form
[a, a+ δ]× [b, b+ δ] for some a, a+ δ, b, b+ δ ∈ I.)

(100) (a) Construct several different 4-fold connected coverings of the figure eight space.

(b) Construct a covering of the plane onto the Klein bottle.

(c) Construct a 2-fold covering of the torus onto the Klein bottle.

(101) Prove continuity for the lift ϕ̃ of ϕ constructed in our proof of the Lifting Criterion

Theorem.

(102) Find a covering space (X̃, p,X) and a map X̃
ϕ
→ X such that ϕ has no lifting through

p, but ϕ ◦ ϕ does.

(103) (a) Show that every continuous map P
2 → S

1 is null-homotopic.

(b) Find a map T2 → S1 that is not null-homotopic.

(104) Verify that every map S2 → T2 is null-homotopic.

(105) Prove that there does not exist a double covering of the Klein bottle onto the torus.

(106) Let (X̃, p,X), (Ỹ , q, X) be covering spaces and suppose (X̃, p,X)
ϕ
→ (Ỹ , q, X) is

a covering morphism. Confirm that (X̃, ϕ, Ỹ ) is also a covering space (i.e., ϕ is a
covering projection).
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