

Department of Mathematical Sciences 839 Old Chemistry Building PO Box 210025 Phone (513) 556-4075 Cincinnati OH 45221-0025 Fax (513) 556-3417

DIFFERENTIAL TOPOLOGY HOMEWORK PROBLEMS SPRING QUARTER 2011

Please provide plenty of details! Pix are definitely kewl $(\ddot{\circ})$.

- (1) (a) Let $R > \varepsilon > 0$ be given. Prove that there is a smooth function $\mathsf{R}^n \stackrel{f}{\to} \mathsf{R}$ that satisfies:
	- for all $x \in \mathbb{R}^n$, $0 \le f(x) \le 1$,
	- $\{|x| \leq \varepsilon\} = f^{-1}(\overline{\{1\}})$, and
	- $\{|x| \ge R\} = f^{-1}(\{0\})$.

(Such a function f is called a smooth *bump* function.)

(b) Let K be a compact subset of R^n and let U be an open neighborhood of K. Construct a smooth function $g : \mathbb{R}^n \to [0,1]$ that satisfies

$$
K \subset g^{-1}(1) \quad \text{and} \quad \mathsf{R}^n \setminus U = g^{-1}(0) \, .
$$

(Start by finding such a g with $g^{-1}(0) \subset \mathbb{R}^n \setminus U$.)

(2) Prove that each smooth atlas on a topological manifold determines a unique maximal smooth at also Suggestion: Let A be a smooth at also on M .

(a) Show that $\mathcal{M} := \{(W, \theta) \mid (W, \theta)$ is a coordinate chart for M that is compatible with all charts in A is a smooth at also on M.

- (b) Check that $\mathcal{M} \subset \mathcal{A}$ and that \mathcal{M} is maximal.
- (c) Show that if B is any smooth atlas on M that contains A, then $\mathcal{B} \subset \mathcal{M}$.
- (d) Finally, check that if N is a maximal atlas containing A, then $M \subset \mathcal{N}$.
- (3) Let M, N be smooth manifolds. Prove that $M \stackrel{\Phi}{\rightarrow} N$ is a diffeomorphism if and only if Φ is a bijection and both Φ , Φ^{-1} are smooth.
- (4) Let (U, φ) be a coordinate chart on a smooth manifold M. Prove that $U \stackrel{\varphi}{\rightarrow} \varphi(U)$ is a diffeomorphism.
- (5) Let M be a smooth manifold. Suppose that $\tilde{M} \stackrel{p}{\rightarrow} M$ is a covering projection. Prove that there is a unique smooth at also for \tilde{M} relative to which p is a local diffeomorphism. (You need to assume either that \tilde{M} is connected or that it is second countable.)
- (6) Let $M \stackrel{f}{\rightarrow} \mathsf{R}$ be a differentiable function (so M is a smooth manifold). Suppose that (x^1, \ldots, x^m) and (y^1, \ldots, y^m) are coordinates on some open set in M. Show that at each point p in this open set,

$$
\forall 1 \leq k \leq m \,, \quad \frac{\partial f}{\partial y^k}(p) = \sum_{i=1}^m \frac{\partial f}{\partial x^i}(p) \frac{\partial x^i}{\partial y^k}(p) \,.
$$

Date: April 25, 2011.

(7) Define an equivalence relation on $\mathsf{R}^{n+1}\setminus\{0\}$ by saying $x \simeq y$ if $x = ty$ for some $t \in \mathsf{R}$. Let M be the quotient space. For each i $(1 \leq i \leq n+1)$, let U_i be the set of equivalence classes [z] of points (z_1, \ldots, z_{n+1}) for which $z_i \neq 0$ and define $\varphi_i : U_i \to \mathbb{R}^n$ by

$$
\varphi_i([z_1,\ldots,z_{n+1}])=\left(\frac{z_1}{z_i},\ldots,\frac{\hat{z}_i}{z_i},\ldots,\frac{z_{n+1}}{z_i}\right)\in\mathsf{R}^n,
$$

where $\hat{\ldots}$ means that we leave this part out. Prove that the collection $\{(U_i, \varphi_i) : 1 \leq$ $i \leq n+1$ is a smooth atlas for M. What (familiar) space is M?

- (8) Recall that the *general linear group* $\mathcal{GL}(n, R)$ is the subset of $\mathcal{M}(n, R)$ (the $n \times n$ matrices with real coefficients) of all non-singular $n \times n$ matrices.
	- (a) Verify that $\mathcal{GL}(n,\mathbb{R})$ is a submanifold of $\mathcal{M}(n,\mathbb{R})$. What is its dimension?
	- (b) Is $\mathcal{GL}(n,\mathbb{R})$ compact? Is it connected?
- (9) Prove that the smooth sphere $Sⁿ$ (e.g., with a differential structure given by using stereographic projection) is diffeomorphic to $Sⁿ$ with the differential structure it inherits as a submanifold of R^{n+1} .
- (10) (a) Let $(-\varepsilon,\varepsilon) \stackrel{\gamma}{\to} M$ be a smooth path in some m-manifold M with $\gamma(0) = p$. Suppose (U, φ) and (V, ψ) are coordinate charts about p. Prove that

$$
(\psi \circ \gamma)'(0) = D(\psi \circ \varphi^{-1})(\varphi(p))[(\varphi \circ \gamma)'(0)].
$$

(b) Let $(-\varepsilon, \varepsilon) \xrightarrow{\alpha, \beta} M$ be smooth paths in some m-manifold M with $\alpha(0) = p = \beta(0)$. Suppose (U, φ) is a coordinate chart about p and $(\varphi \circ \alpha)'(0) = (\varphi \circ \beta)'(0)$. Prove that for all coordinate charts (V, ψ) about p , $(\psi \circ \alpha)'(0) = (\psi \circ \beta)'(0)$.

(11) Let (U, ϕ) be a coordinate chart (for some smooth m-manifold M) centered at the point p; so, $\varphi(p) = 0$ and $\{\frac{\partial}{\partial x^i}|_p \mid 1 \le i \le m\}$ is a basis for the tangent space $T_p(M)$, where $(x^1, \ldots, x^m) = \varphi$. Let $\{\partial_i := D_{e_i} \mid 1 \leq i \leq m\}$ be the standard/usual/ordinary basis for $T_0(\mathsf{R}^m)$.

Corroborate that $T_p(M) \xrightarrow{\varphi_*} T_0(\mathbb{R}^m)$ is the map that sends $\frac{\partial}{\partial s_p}$ ∂x^i $\Big|_p \mapsto \partial_i$ for $1 \leq i \leq m$.

- (12) Let M, N be smooth manifolds.
	- (a) Define a smooth structure for $M \times N$ and verify that

$$
T_{(p,q)}(M \times N) \cong T_p(M) \times T_q(N) .
$$

(b) Let $M \stackrel{F}{\to} M \times N$ be the map $F(p) := (p, q)$ where $q \in N$ is some fixed point. Check that F is smooth and that $F_*: T_p(M) \to T_{(p,q)}(M \times N)$ is given by $F_*(X) =$ $(X, 0)$.

(c) Let $M \xrightarrow{G} M \times M$ be the map $G(p) := (p, p)$. Show that G is smooth and that $G_*(X) = (X, X).$

(d) Let $M \stackrel{\vartheta}{\to} N$ be a smooth map and define $M \stackrel{\Theta}{\to} M \times N$ by $\Theta(p) := (p, \vartheta(p)).$ Prove that Θ is smooth and that $\Theta_*(X) = (X, \vartheta_*(X)).$

- (13) Prove that the product $F_1 \times F_2 : M_1 \times M_1 \to N_1 \times N_2$ is a diffeomorphism if both $F_1: M_1 \to N_1$ and $F_2: M_2 \to N_2$ are diffeomorphisms.
- (14) Prove that the following maps are smooth, and determine their derivatives:
	- (a) the product $\mathcal{GL}(n,\mathbb{R})\times\mathcal{GL}(n,\mathbb{R})\to\mathcal{GL}(n,\mathbb{R}),$ $(A,B)\mapsto AB$.
	- (b) the 'left-translation' $L_A : \mathcal{GL}(n, \mathbb{R}) \to \mathcal{GL}(n, \mathbb{R}), M \mapsto L_A(M) := AM$ (for a given $A \in \mathcal{GL}(n,\mathbb{R})$.
	- (c) the exponential map $R \to S^1$, $t \mapsto \exp(it) = (\cos(t), \sin(t)) \in R^2$.
	- (d) the product $S^1 \times S^1 \to S^1$, $(z, w) \mapsto zw$.
	- (e) the 'power' $S^1 \to S^1$, $z \mapsto z^n$ (where $n \in \mathbb{Z}$).
- (15) (a) Prove that the 'left-translation' L_A is a diffeomorphism. (b) Prove that the exponential map $R \to S^1$ is a local diffeomorphism.
- (16) Let $M \stackrel{\vartheta}{\rightarrow} N$ be a smooth map. Recall that the **graph** of ϑ is

 $\mathrm{Gr}(\vartheta) := \{(p, \vartheta(p)) \in M \times N \mid p \in M\}.$

Demonstrate that for each $(p, q) \in Gr(\vartheta)$ we have

$$
T_{(p,q)}(\mathrm{Gr}(\vartheta)) = \mathrm{Gr}(\vartheta_*) \subset T_{(p,q)}(M \times N),
$$

where, of course, $T_p(M) \xrightarrow{\vartheta_*} T_q(N)$.

- (17) Suppose $M \stackrel{F}{\to} N$ is \mathcal{C}^{∞} and M is connected. Prove that $F_* = 0$ if and only if F is a constant map.
- (18) Find the derivative F_* of each of the following maps.
	- (a) $S^1 \stackrel{F}{\rightarrow} S^1$ is $F(z) := \lambda z$ for some fixed $\lambda \in S^1$.
	- (b) $S^1 \stackrel{F}{\rightarrow} S^1$ is $F(z) := z^n$ for some fixed $n \in \mathbb{Z}$.
	- (c) $\mathsf{T}^2 \stackrel{F}{\to} \mathsf{S}^1$ is $F(z, w) := zw$.
	- (d) $\mathsf{T}^2 \stackrel{F}{\to} \mathsf{S}^2$ is $F((x, y), (u, v)) := (ux, uy, v)$.
- (19) Find non-trivial smooth maps (and calculate their derivatives),

$$
S^2 \to P^2 \quad R^2 \to KB \ , \quad T^2 \to KB \ .
$$

- (20) Recall that the **special linear group** $SL(n, R)$ is the subset of $\mathcal{M}(n, R)$ of matrices having determinant 1.
	- (a) Verify that $\mathcal{SL}(n,\mathbb{R})$ is a submanifold of $\mathcal{M}(n,\mathbb{R})$. What is its dimension?
	- (b) Is $\mathcal{SL}(n,\mathbb{R})$ compact? Is it connected?
	- (c) Determine the tangent space for $\mathcal{SL}(n, \mathbb{R})$ at the identity.
- (21) Recall that the *orthogonal group* $\mathcal{O}(n)$ is the subset of $\mathcal{M}(n, R)$ of all matrices A satisfying $AA^{tr} = I$.
	- (a) Verify that $\mathcal{O}(n)$ is an $n(n-1)/2$ -dimensional submanifold of $\mathcal{M}(n,\mathsf{R})$.
	- (b) Is $\mathcal{O}(n)$ compact? Is it connected?
	- (c) Determine the tangent space for $\mathcal{O}(n)$ at the identity.

(22) Prove that $\mathcal{GL}(n, \mathbb{R})$ is homeomorphic to $\mathcal{O}(n) \times \mathbb{R}^{n(n-1)/2}$. (Hint: See Spivak, p.144, #31(h).)

> Department of Mathematics, University of Cincinnati, OH 45221 E-mail address: David.Herron@math.UC.edu