

Department of Mathematical Sciences 839 Old Chemistry Building PO Box 210025 Phone (513) 556-4075 Cincinnati OH 45221-0025 Fax (513) 556-3417

TOPOLOGY HOMEWORK PROBLEMS AUTUMN QUARTER 2010

Please provide plenty of details! Pix are definitely kewl $(\ddot{\circ})$.

(1) Define
$$
\mathbb{N} \times \mathbb{N} \stackrel{d}{\to} \mathbb{R}
$$
 by $d(m, n) := \left| \frac{1}{m} - \frac{1}{n} \right|$.

- (a) Verify that d is a distance function on $\mathbb N$.
- (b) Is the sequence $(n)_{n=1}^{\infty}$ a Cauchy sequence in (\mathbb{N}, d) ? Does it converge in (\mathbb{N}, d) ?
- (2) Consider the identity map $(X, d_1) \stackrel{\text{id}}{\rightarrow} (X, d_2)$ where d_1 and d_2 are distance functions on some non-empty set X . Give conditions (both necessary and sufficient, if possible) that describe when: id is a continuous map, id is an open map, id is a homeomorphism.
- (3) Let $S \stackrel{f}{\to} X$ be a function from some set S to some set X. Suppose d is a distance function on X. Define $d_f : S \times S \to \mathbb{R}$ by $d_f(s,t) := d(f(s), f(t))$. Determine conditions on f that guarantee that d_f is a distance function on S. (The metric d_f is called the *pullback* of d by f .)
- (4) Let P be any set of positive numbers. Prove that there exists a metric space (X, d) with the property that $\{d(x, y) | x, y \in X\} = P \cup \{0\}.$
- (5) List the distinct topologies on the set $\{a, b\}$.
- (6) List the distinct topologies on the set $\{a, b, c\}$.
- (7) Let C be a collection of subsets of some set X. Prove that there is a unique smallest topology on X that contains \mathcal{C} ; this is called the **topology generated by** \mathcal{C} .
- (8) Let $\{\mathcal{T}_{\alpha}\}\$ be a collection of topologies on some non-empty set X.
	- (a) Prove that $\bigcap_{\alpha} \mathcal{T}_{\alpha}$ is a topology on X. Is $\bigcup_{\alpha} \mathcal{T}_{\alpha}$ a topology on X?

(b) Show that there is a unique smallest topology on X that contains each of the \mathcal{T}_{α} , and there is a unique largest topology on X that is contained in each \mathcal{T}_{α} .

(c) Suppose $X := \{a, b, c\}$ and $\mathcal{T}_1 := \{X, \emptyset, \{a\}, \{a, b\}\}, \mathcal{T}_2 := \{X, \emptyset, \{a\}, \{b, c\}\}.$ Find the smallest topology on X that contains both \mathcal{T}_1 and \mathcal{T}_2 , and the largest topology on X contained in each of \mathcal{T}_1 and \mathcal{T}_2 .

- (9) Let B be a basis for some topology $\mathcal T$. Prove that $\mathcal T$ is the topology generated by B.
- (10) Let B be a basis for some topology $\mathcal T$ on some set X. Prove that for each $A \subset X$, the following are equivalent:
	- (a) $A \in \mathcal{T}$.
	- (b) $\forall a \in A$, $\exists U \in \mathcal{T}$ such that $a \in U \subset A$.
	- (c) A is the union of elements of $\mathcal T$.
	- (d) $\forall a \in A, \exists B \in \mathcal{B}$ such that $a \in B \subset A$.
	- (e) A is the union of elements of β .

Formulate a Lemma that gives both (b) \iff (c) and (d) \iff (e).

Date: January 4, 2011.

- (11) Prove that each of the following collections is a basis for the standard topology on R. (a) $\{(a, b) | a, b \in \mathbb{R} \text{ with } a < b\}.$ (b) $\{(p,q) | p,q \in \mathbb{Q} \text{ with } p < q\}.$ (c) $\{(r+1/n, r-1/n) \mid r \in \mathbb{Q}, n \in \mathbb{N}\}.$ Notice that the latter two collections are countable!
- (12) Demonstrate that $\{[a, b) | a, b \in \mathbb{R} \text{ with } a < b\}$ is a basis for a topology \mathcal{T}_{low} (called the lower limit topology) on R. Often we write \mathbb{R}_{low} to indicate the set R together with its lower limit topology.

Is the collection $\{[p,q) | p,q \in \mathbb{Q} \text{ with } p < q\}$ a basis for the lower limit topology on R?

- (13) Show that $\{(r, s) | 0 < r < s < 1\} \cup \{(0, r) \cup (s, 1) | 0 < r < s < 1\}$ is a basis for a topology on $[0, 1)$. Do you "see" what space we get with this topology?
- (14) Let $p := (0, 1) \in \mathbb{R}^2$ and put $X := \mathbb{R} \cup \{p\}.$ (a) Show that $\{(a, b) | a, b \in \mathbb{R} \text{ with } a < b\} \cup \{(-r, 0) \cup \{p\} \cup (0, r) | r > 0\}$ is a basis for a topology on X. (We call X, with this topology, the *line with two origins*.) (b) Show that $\{(a, b) | a, b \in \mathbb{R} \text{ with } a < b\} \cup \{X \setminus [-r, r] | r > 0\}$ is a basis for a topology on X . Do you "see" what space X is with this topology?
- (15) Let $p := (0, 0, 1) \in \mathbb{R}^3$ and put $X := \mathbb{R}^2 \cup \{p\}$. Show that

$$
\{\mathbb{B}^2(z;r) \mid z \in \mathbb{R}^2, r > 0\} \bigcup \{X \setminus \mathbb{D}^2(z;r) \mid z \in \mathbb{R}^2, r > 0\}
$$

is a basis for a topology on X. Do you "see" what space X is with this topology?

(16) Let S be a collection of subsets of some set X. Let B be the collection of all sets that can be expressed as a finite intersection of elements of S; thus $B \in \mathcal{B}$ if and only if there are $S_1, \ldots, S_n \in \mathcal{S}$ with $B = S_1 \cap \cdots \cap S_n$.

If B is a basis for some topology $\mathcal T$ on X, then we call S a **subbasis for** $\mathcal T$. What conditions on S and/or T ensure that S is a subbasis for \mathcal{T} ?

Prove that if a collection S of subsets of some set X is a subbasis for a topology $\mathcal T$ on X, then $\mathcal T$ is the topology generated by S. (Recall $(\#7)$.) When does the converse hold?

- (17) Prove that $\mathcal{S} := \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{(-\infty, b) \mid b \in \mathbb{R}\}\$ is a subbasis for the standard topology on R.
- (18) Let H be the collection of all open half-planes in \mathbb{R}^2 each determined by a horizontal or vertical line. Prove that $\mathcal H$ is a subbasis for the standard topology on $\mathbb R^2$.
- (19) Let $\mathcal{C} := \mathcal{C}([0,1], \mathbb{R}) := \{[0,1] \stackrel{f}{\to} \mathbb{R} \mid f \text{ is continuous}\}.$ For each $x \in [0,1]$ and each open U ⊂ ℝ, put

$$
S(x;U) := \{ f \in \mathcal{C} \mid f(x) \in U \}.
$$

Prove that $\mathcal{S} := \{S(x; U) \mid x \in [0, 1], U \subset \mathbb{R}$ open} is a subbasis for a topology \mathcal{T}_{po} on C; we call \mathcal{T}_{po} the **point-open topology** on $\mathcal{C}([0,1],\mathbb{R})$.

Prove that a sequence $(f_n)_{n=1}^{\infty}$ in C converges to some $f \in \mathcal{C}$ with respect to the point-open topology \mathcal{T}_{po} if and only if $(f_n)_{n=1}^{\infty}$ converges pointwise to f on [0, 1]. (For this reason, \mathcal{T}_{po} is often called the **topology of pointwise convergence**.)

What happens if we replace $[0, 1]$ by \mathbb{R} ? What can you say about convergence in $\mathcal{C}(\mathbb{R}, \mathbb{R})$ with respect to its point-open topology?

(20) Let $\mathcal{C} := \mathcal{C}([0,1], \mathbb{R}) := \{[0,1] \stackrel{f}{\to} \mathbb{R} \mid f \text{ is continuous}\}.$ For each compact $C \subset [0,1]$ and each open $U \subset \mathbb{R}$, put

$$
S(C;U) := \{ f \in C \mid f(C) \in U \}.
$$

Prove that $\mathcal{S} := \{S(C; U) \mid C \subset [0, 1] \text{ compact}, U \subset \mathbb{R} \text{ open} \}$ is a subbasis for a topology \mathcal{T}_{co} on \mathcal{C} ; we call \mathcal{T}_{co} the *compact-open topology* on $\mathcal{C}([0,1],\mathbb{R})$.

Prove that a sequence $(f_n)_{n=1}^{\infty}$ in C converges to some $f \in \mathcal{C}$ with respect to the compact-open topology \mathcal{T}_{co} if and only if $(f_n)_{n=1}^{\infty}$ converges uniformly to f on [0, 1]. (For this reason, the compact-open topology \mathcal{T}_{co} , on $\mathcal{C}([0,1],\mathbb{R})$, could be called the topology of uniform convergence on $\mathcal{C}([0,1], \mathbb{R})$.

What happens if we replace $[0, 1]$ by \mathbb{R} ? What can you say about convergence in $\mathcal{C}(\mathbb{R}, \mathbb{R})$ with respect to its compact-open topology?

- (21) Let (X, d) be a metric space. Prove that $X \times X \stackrel{d}{\to} \mathbb{R}$ is continuous.
- (22) Let $X \stackrel{f}{\to} Y$ be a map between topological spaces. Suppose $\mathcal B$ and $\mathcal S$ are a basis and a subbasis (respectively) for the topology on Y . Demonstrate that the following are equivalent:
	- (a) f is continuous.
	- (b) $\forall B \in \mathcal{B}$, $f^{-1}(B)$ is open in X.
	- (c) ∀ $S \in \mathcal{S}$, $f^{-1}(S)$ is open in X.
- (23) Consider the identity map $(X, \mathcal{T}_1) \stackrel{\text{id}}{\rightarrow} (X, \mathcal{T}_2)$ where \mathcal{T}_1 and \mathcal{T}_2 are topologies on some non-empty set X . Give conditions (both necessary and sufficient, if possible) that describe when: id is a continuous map, id is an open map, id is a homeomorphism.
- Recall that U is a **neighborhood** of a point x (in some topological space) provided U is open and $x \in U$. If U happens to belong to an understood basis, we also call it a basis neighborhood.
- We say that a map f is continuous at a point x (in some topological space) provided for each neighborhood V of $f(x)$ there is a neighborhood U of x such that $f(U) \subset V$. Here either (or both) of the terms 'neighborhood' can be replace by 'basis neighborhood'. Right?
- (24) Prove that a map $X \stackrel{f}{\rightarrow} Y$ between topological spaces is continuous if and only if for each x in X , f is continuous at x .
- (25) Let X, Z be topological spaces. Assume $A \subset X$, $B \subset Y \subset Z$ are each given their subspace topologies. Let $X \stackrel{f}{\to} Y$ be continuous.
	- (a) Prove that the inclusion map $A \stackrel{j}{\hookrightarrow} X$, defined by $j(x) := x$, is continuous.
	- (b) Prove that $A \xrightarrow{f|A} Y$ is continuous.
	- (c) If $f(X) \subset B$, prove that $X \stackrel{f}{\to} B$ is continuous.
	- (c) Prove that $X \stackrel{f}{\rightarrow} Z$ is continuous.

Thus restricting the domain or restricting the target or expanding the target does not destroy continuity!

- (26) Let $X \stackrel{f}{\rightarrow} Y$ be a map between two sets. Suppose that Y is a topological space. Find the smallest (i.e., coarsest) topology on X that makes f a continuous map. (Hint: What sets must be open?)
- A map $X \stackrel{f}{\to} Y$ is called an **embedding** if $X \stackrel{f}{\to} f(X)$ is a homeomorphism.
- (27) Define $\mathbb{S}^1 \times \mathbb{R} \stackrel{f}{\to} \mathbb{R}^2$ by $f(z,r) := e^r z$. Prove that f is an embedding. What is $f(\mathbb{S}^1\times\mathbb{R})$?

Construct a similar embedding $\mathbb{S}^n \times \mathbb{R} \to \mathbb{R}^{n+1}$, and determine the image of $\mathbb{S}^n \times \mathbb{R}$.

(28) Define $\mathbb{D}^2 \overset{F}{\to} \mathbb{R}^3$ by

$$
(x, y, z) := F(r \cos \theta, r \sin \theta) := (k(r) \cos \theta, k(r) \sin \theta, h(r))
$$

where, for $0 \leq r \leq 1$,

$$
h(r) := 2r - 1
$$
 and $k(r) := \sqrt{1 - h(r)^2}$.

- (a) Explain why F maps the circle $\mathbb{S}^1(0;r)$ to a circle in \mathbb{R}^3 at 'height' $h(r)$.
- (b) Prove that F is continuous and determine $F(\mathbb{D}^2)$.
- (c) Is $F: \mathbb{D}^2 \to \mathbb{R}^3$ an embedding?
- (d) Is $F : \mathbb{B}^2 \to \mathbb{R}^3$ an embedding?
- (29) In each of the following lists, determine which spaces are homeomorphic to which; construct the maps!
	- (a) $(0, 1), (0, 1], [0, 1], \mathbb{R}$
	- (b) $\mathbb{B}^2, \mathbb{D}^2, \mathbb{R}^2, \mathbb{S}^2 \setminus {\{\mathrm{pt}\}, \mathbb{S}^2_+ := \{(x, y, z) \in \mathbb{S}^2 \mid z \ge 0\}}$
- (30) Classify, up to homeomorphisms, the non-empty intervals (open, closed, neither, finite, or infinite) in R.
- (31) Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces. Show that the collection

$$
\mathcal{B} := \{ U \times V \mid U \in \mathcal{T}, V \in \mathcal{U} \}
$$

is a basis for a topology on $X \times Y$.

This is called the **product topology** on $X \times Y$. A word of caution is in order here: this description of the product topology is only valid for finite products. That is, if $(X_1, \mathcal{T}_1), \ldots, (X_n, \mathcal{T}_n)$ are topological spaces, then

$$
\mathcal{B} := \{U_1 \times \cdots \times U_n \mid U_i \in \mathcal{T}_i\}
$$

is a basis for the product topology on $X_1 \times \cdots \times X_n$. But this is **not** the correct definition for the product topology on an infinite product space.

(32) Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces. Show that the collection

$$
\mathcal{S} := \{ U \times Y \mid U \in \mathcal{T} \} \bigcup \{ X \times V \mid V \in \mathcal{U} \}
$$

is a subbasis for the product topology on $X \times Y$.

(33) Prove that the usual (metric) topology on $\mathbb{R}^2 := \mathbb{R} \times \mathbb{R}$ is the same as the product topology. That is, show that the appropriate identity map is a homeomorphism.

- (34) Prove that a subspace of a Hausdorff space is Hausdorff, and that a product of two Hausdorff spaces is Hausdorff.
- (35) Prove that a topological space X is a Hausdorff space if and only if

$$
\Delta := \{(x, x) \mid x \in X\} \text{ is a closed subset of } X \times X.
$$

- (36) Show that the Continuity Test (part of the Characteristic Property) for Product Spaces fails if we use the "box topology" instead of the product topology.
- (37) Let X be a topological space, Λ a non-empty set, and consider the product space X^{Λ} . Thus

$$
X^\Lambda = \bigtimes_{\lambda \in \Lambda} \ X_\lambda \quad \text{where each set } X_\lambda := X \, .
$$

Consider the map $X \stackrel{f}{\to} X^{\Lambda}$ defined by $f(x) := (x_{\lambda})_{\lambda \in \Lambda}$ where each $x_{\lambda} := x$. Is f an embedding?

- (38) Let $\{(X_{\lambda}, \mathcal{T}_{\lambda}) \mid \lambda \in \Lambda\}$ be a collection of topological spaces. Let $\bigtimes_{\lambda \in \Lambda} X_{\lambda} \stackrel{\pi_{\mu}}{\longrightarrow} X_{\mu}$ denote the usual projection map. Prove that π_{μ} is a continuous open map.
- (39) Let $\{(X_{\lambda}, \mathcal{T}_{\lambda}) \mid \lambda \in \Lambda\}$ be a collection of topological spaces. Suppose $X_{\lambda \in \Lambda} X_{\lambda} \stackrel{f}{\to} Y$ is continuous. Demonstrate that for each $\mu \in \Lambda$ and each fixed $(a_{\lambda}) \in \mathsf{X}_{\lambda \in \Lambda} X_{\lambda}$, the map $X_{\mu} \stackrel{f_{\mu}}{\longrightarrow} Y$ defined by

$$
f_{\mu}(x) := f((x_{\lambda}))
$$
 where $x_{\mu} := x$ and for $\lambda \neq \mu$, $x_{\lambda} := a_{\lambda}$

is continuous. Does the converse hold? (This is an Advanced Calculus question!)

(40) Let $\{(X_{\lambda}, \mathcal{T}_{\lambda}) \mid \lambda \in \Lambda\}$ be a collection of topological spaces. Suppose that for each $\lambda \in \Lambda$ there is a non-empty subset $A_{\lambda} \subset X_{\lambda}$. Prove that

$$
\mathsf{int}\left[\bigtimes_{\lambda\in\Lambda}A_\lambda\right]\subseteq\bigtimes_{\lambda\in\Lambda}\mathsf{int}[A_\lambda]
$$

and equality may not hold, but always

$$
\mathsf{cl}\left[\bigtimes_{\lambda\in\Lambda}A_\lambda\right]=\bigtimes_{\lambda\in\Lambda}\mathsf{cl}[A_\lambda].
$$

What happens if we use the "box topology" on $X_{\lambda \in \Lambda} X_{\lambda}$?

(41) Recall that we can view the product set \mathbb{R}^N as the set of all sequences in \mathbb{R} . Let \mathbb{R}^{∞} denote the subset of $\mathbb{R}^{\mathbb{N}}$ that consists of all sequences that are 'eventually zero'. Thus $(a_n)_1^{\infty}$ belongs to \mathbb{R}^{∞} precisely when there exists an $N \in \mathbb{N}$ such that for all $n \geq N$, $a_n = 0.$

Determine the closure of \mathbb{R}^{∞} with respect to each of the product and box topologies on $\mathbb{R}^{\mathbb{N}}$.

(42) Let $\{(X_{\lambda}, \mathcal{T}_{\lambda}) \mid \lambda \in \Lambda\}$ be a collection of topological spaces and $\{Z \stackrel{g_{\lambda}}{\longrightarrow} X_{\lambda} \mid \lambda \in \Lambda\}$ a collection of continuous maps. Prove that there is a unique continuous map

$$
Z \stackrel{g}{\rightarrow} \bigtimes_{\lambda \in \Lambda} X_{\lambda}
$$

with the property that for all $\lambda \in \Lambda$, $g_{\lambda} = \pi_{\lambda} \circ g$ (here π_{λ} are the usual projections).

(43) Let $\{Z_\lambda \xrightarrow{f_\lambda} X_\lambda \mid \lambda \in \Lambda\}$ a collection of continuous maps. Prove that there is a unique continuous map

$$
Z := \bigtimes_{\lambda \in \Lambda} Z_{\lambda} \stackrel{f}{\to} \bigtimes_{\lambda \in \Lambda} X_{\lambda} =: X
$$

with the property that for all $\lambda \in \Lambda$, $\rho_{\lambda} = \pi_{\lambda} \circ f$; here $\pi_{\lambda}: X \to X_{\lambda}$ and $\rho_{\lambda}: Z \to Z_{\lambda}$ are the usual projections. We write $f := \mathsf{X}_{\lambda \in \Lambda} f_{\lambda}$.

Deduce that when each f_{λ} is a homeomorphism, so is f.

(44) Let $\{(X_{\lambda}, \mathcal{T}_{\lambda}) \mid \lambda \in \Lambda\}$ be a collection of topological spaces. Suppose for each $\lambda \in \Lambda$, Z_{λ} is a subspace of X_{λ} . Prove that

$$
\bigtimes_{\lambda \in \Lambda} Z_{\lambda}
$$
 is a subspace of $\bigtimes_{\lambda \in \Lambda} X_{\lambda}$.

 (45) Prove that for any topological spaces X, Y, Z

$$
X \times Y \approx Y \times X \quad \text{and} \quad (X \times Y) \times Z \approx X \times (Y \times Z).
$$

(46) Use pictures to show that $[0, 1] \times [0, 1) \approx (0, 1) \times [0, 1)$.

Thus while X , is "associative" and "commutative", there is no "cancellation law".

- (47) Let X, Y be the closed annuli with matched and mismatched fins pictured in Figure 1. Draw sketches that suggest a homeomorphism between $X \times [0, 1]$ and $Y \times [0, 1]$. Are X and Y homeomorphic?
- (48) Let W denote the "torus surface" (i.e., the tire tube space in \mathbb{R}^3) with an open disk removed (from the surface). Let Z denote the closed unit disk with two smaller open disks removed. Draw sketches that suggest a homeomorphism between $W \times [0, 1]$ and $Z \times [0, 1]$. Are W and X homeomorphic?
- (49) Show that for *any* two topological spaces X and Y, there exists a space Z such that $X \times Z \approx Y \times Z$.
- (50) Let L be a line in the plane \mathbb{R}^2 . Describe the subspace topologies on $L \subset \mathbb{R}_{\text{low}} \times \mathbb{R}$ and on $L \subset \mathbb{R}_{\text{low}} \times \mathbb{R}_{\text{low}}$. (These are familiar topologies!)
- (51) The *dictionary order* \prec on \mathbb{R}^2 is defined by

This defines a *total ordering* \leq on \mathbb{R}^2 , and this total ordering induces the so-called dictionary order topology \mathcal{T}_{do} on \mathbb{R}^2 . (See Lee, especially problem (2-12) on p.37.) We write $\mathbb{R}^2_{\text{do}} := (\mathbb{R}^2, \mathcal{T}_{\text{do}})$ to denote the set \mathbb{R}^2 with its dictionary order topology. Compare the following topologies on \mathbb{R}^2 :

- (a) \mathcal{T}_{do}
- (b) the standard topology
- (c) the product topology on $\mathbb{R}_{\text{disc}}\times\mathbb{R}$
- (d) the topology described in problem (2-5) on p.37 of Lee
- (52) The dictionary order on \mathbb{I}^2 is just the restriction of the dictionary order on \mathbb{R}^2 to \mathbb{I}^2 , and so \mathbb{I}^2 also has a *dictionary order topology*.
	- Compare the following topologies on \mathbb{I}^2 :
	- (a) the standard topology
	- (b) the dictionary order topology
	- (c) the subspace topology that \mathbb{I}^2 inherits as a subset of \mathbb{R}^2_{do}
- (53) Define an equivalence relation on R by writing $x \sim y$ if $y x \in \mathbb{Q}$. Prove that \mathbb{R}/\sim is an uncountable space with the trivial (i.e., indiscrete) topology.
- (54) Define an equivalence relation on \mathbb{R}^2 by writing $(x, y) \sim (x', y')$ if $x' x \in \mathbb{Z}$. Prove that \mathbb{R}^2/\sim is a surface (i.e., a 2-manifold). What surface is it?
- (55) Define an equivalence relation on \mathbb{R}^2 by writing $(x, y) \sim (x', y')$ if $n := x' x \in \mathbb{Z}$ and $y' = (-1)^n y$. Prove that \mathbb{R}^2/\sim is a surface (i.e., a 2-manifold). What is it?
- (56) There are four different ways of describing the 2-dimensional torus \mathbb{T}^2 .
	- as the product space $\mathbb{T}^2 := \mathbb{S}^1 \times \mathbb{S}^1$, a subspace of $\mathbb{R}^2 \times \mathbb{R}^2$;
	- as the *tire tube surface* TT in \mathbb{R}^3 obtained by rotating the circle $\{(x, y, z) \in$ \mathbb{R}^3 : $(y-2)^2 + z^2 = 1, x = 0$ } about the z-axis; or, more simply,

TT :=
$$
\{(x, y, z) : (2 - \sqrt{x^2 + y^2})^2 + z^2 = 1\};
$$

tion space \mathbb{I}^2/\sim where $(x, 0) \sim (x, 1)$ and $(0, 1)$

- as the quotient space \mathbb{I}^2/\sim where $(x,0)\sim(x,1)$ and $(0,y)\sim(1,y)$, which is called the $flat$ torus;
- as the orbit space \mathbb{R}^2/Γ where Γ is the group of all horizontal and vertical translations $(x, y) \mapsto (x + m, y + n)$ with $m, n \in \mathbb{N}$; equivalently, \mathbb{R}^2/\sim where $(x + 1, y) \sim (x, y) \sim (x, y + 1).$

Demonstrate that these four spaces are homeomorphic.

- (57) The **Klein bottle** KB is the quotient space obtained from the square \mathbb{I}^2 via the boundary identifications $(0, y) \sim (1, 1 - y)$ and $(x, 0) \sim (x, 1)$. Prove that KB is a surface.
- (58) Let A be a non-degenerate closed annulus in the plane and define an equivalence relation on A by identifying antipodal points on the outer circle and also identifying antipodal points on the inner circle. Show that the resulting quotient space is homeomorphic to the Klein bottle KB.
- (59) Let M be the quotient space obtained from the cube $(-1,1)\times(-1,1)\times[-1,1]\subset\mathbb{R}^3$ by identifying, for each $(x, y) \in (-1, 1)^2$, the points $(x, y, 1)$ and $(-x, y, -1)$. Prove that M is a 3-manifold. (You may stipulate that M is Hausdorff and second countable.)
- (60) The **disjoint union** $X := \coprod_{\lambda \in \Lambda} X_{\lambda}$ of an indexed collection of sets $\{X_{\lambda} | \lambda \in \Lambda\}$ is characterized by the following two properties:
- (i) For each $\lambda \in \Lambda$, there exist an 'injection' $X_{\lambda} \xrightarrow{j_{\lambda}} X$.
- (ii) For all sets Z and all functions $X_{\lambda} \xrightarrow{h_{\lambda}} Z$, there exist a unique function $X \xrightarrow{h} Z$ such that for all $\lambda \in \Lambda$, $h_{\lambda} = h \circ j_{\lambda}$. X_{λ} $K_{\lambda} \xrightarrow{j_{\lambda}} X$
 $h_{\lambda} \searrow f h$

 $k \choose h$ --

Z You could/should show that for each $x \in X$, there exists a $\lambda \in \Lambda$ and a point $x_{\lambda} \in X_{\lambda}$ with $j_{\lambda}(x_{\lambda}) = x$; moreover, if $j_{\lambda}(x_{\lambda}) = j_{\mu}(x_{\mu}),$ then $\lambda = \mu$ and $x_{\lambda} = x_{\mu}$.

(a) Check that when the sets X_{λ} are disjointed (i.e., for all $\lambda, \mu \in \Lambda$ with $\lambda \neq \mu$, $X_{\lambda} \cap X_{\mu} = \emptyset$), we can take $X = \bigcup_{\lambda} X_{\lambda}$ (the usual union) and for j_{λ} we can use the natural inclusion $X_{\lambda} \hookrightarrow \bigcup_{\lambda} X_{\lambda}$.

In practice we can always replace each set X_{λ} with $X_{\lambda} \times \{\lambda\}$ to obtain disjointed sets. Then $X := \bigcup_{\lambda} (X_{\lambda} \times \{\lambda\})$ serves as the disjoint union $\coprod_{\lambda} X_{\lambda}$, and the 'injections' $j_{\lambda}: X_{\lambda} \to X$ can be defined by $j_{\lambda}(x) := (x, \lambda)$.

Now let $\{X_{\lambda} \mid \lambda \in \Lambda\}$ be a collection of topological spaces. The **disjoint union topology** \mathcal{T}_{du} on $X := \coprod_{\lambda} X_{\lambda}$ is the largest (i.e., finest) topology on X with the property that each 'injection' $j_{\lambda}: X_{\lambda} \to X$ is continuous. Thus (one can prove that) $U \subset X$ is open in X if and only if for all $\lambda \in \Lambda$, j_{λ}^{-1} $\lambda^{-1}(U)$ is open in X_{λ} . This means that all of the "topological stuff" occurs in each space X_{λ} separately.

(b) Check that when the sets X_{λ} are disjointed, a subset of X is open (i.e., belongs to \mathcal{T}_{du} if and only if its intersection with each X_{λ} is open in X_{λ} , and a subset of X is closed if and only if its intersection with each X_{λ} is closed in X_{λ} .

(c) Prove that each 'injection' $X_{\lambda} \stackrel{j_{\lambda}}{\longrightarrow} X$ is an embedding. Because of this fact, typically one identifies X_{λ} with its image $j_{\lambda}(X_{\lambda}) \subset X$.

(d) Prove the following Continuity Test for the disjoint union topology on $X := \coprod_{\lambda} X_{\lambda}$. X_λ $\iota_{\lambda} \xrightarrow{j_{\lambda}} X$
 $f_{\lambda} \searrow f$ For every topological space Z,

 \mathscr{C}_f --Z $X \stackrel{f}{\rightarrow} Z$ is continuous $\iff \forall \lambda \in \Lambda, X_{\lambda} \xrightarrow{f \circ j_{\lambda}} Z$ is continuous.

(e) Prove that the disjoint union topology is the unique topology on X that enjoys the property given in part (c).

- (61) For each $n \in \mathbb{N}$, let $X_n := (0,1)$. Check that $\mathbb{R} \setminus \mathbb{Z} \approx \coprod$ n∈N X_n . (This is <u>not</u> $\mathbb{R}/\mathbb{Z}!$)
- (62) For each of the following sets X_n , describe a set $E \subset \mathbb{R}^2$ such that $E \approx \prod$ n∈N X_n . $X_n := \mathbb{I}$ or \mathbb{S}^1 or \mathbb{B}^2 or \mathbb{I}^2 or \mathbb{R} .
- (63) For each $n \in \mathbb{N}$, let H_n be the hyperbola in \mathbb{R}^2 described by $xy = 1/n$. Let A be the union of the two coordinate axes in \mathbb{R}^2 . Determine whether or not $A \bigsqcup \bigsqcup_n H_n$ and $A \cup \bigcup_n H_n \subset \mathbb{R}^2$ are homeomorphic. (Hint: Argue that any homeomorphism would have to map A to A and thus map $\coprod_n H_n$ to $\bigcup_n H_n$, but) Describe a set $E \subset \mathbb{R}^2$ such that $E \approx A \begin{bmatrix} 1 \end{bmatrix} \prod H_n$. n∈N
- (64) Let $\{X_\lambda \mid \lambda \in \Lambda\}$ be a collection of topological spaces. Select points $a_\lambda \in X_\lambda$ and put $A = \{a_{\lambda} \mid \lambda \in \Lambda\}$. The **wedge** of the spaces X_{λ} (with respect to the points a_{λ}) is defined by

$$
\bigvee_{\lambda \in \Lambda} X_{\lambda} := X/A = X/\! \sim \qquad \text{where} \quad X := \coprod_{\lambda \in \Lambda} X_{\lambda}
$$

and $a_{\lambda} \sim a_{\mu}$ for all $\lambda, \mu \in \Lambda$. Thus a set in $\bigvee_{\lambda} X_{\lambda}$ is open (or closed) if and only if its intersection with each X_{λ} is open (or closed, resp.) in X_{λ} .

(a) Consider topological spaces X and Y with distinguished points $a \in X$ and $b \in Y$. Demonstrate that

$$
X \vee Y \approx (X \times \{b\}) \cup (\{a\} \times Y) ,
$$

where the latter space is regarded as a subspace of $X \times Y$.

- (b) Formulate a conjecture regarding $X \vee Y \vee Z$. What about $X_1 \vee \cdots \vee X_n$?
- (65) Give a 'geometric' description for the following spaces:

 $\mathbb{R}/[0,1], \mathbb{R}/(0,1), \mathbb{R}/[0,1), \mathbb{R}/\{0,1\}.$

For example, in class we proved that $\mathbb{R}/[0,1] \approx \mathbb{R}$ and we gave a conjecture (but no proof) that $\mathbb{R}/\{0,1\} \approx \mathbb{R} \vee \mathbb{S}^1 \vee \mathbb{R}$.

(66) Let Z be a closed subspace of X and suppose $Z \stackrel{\varphi}{\to} Y$ is continuous. We construct a space $Y \sqcup_{\varphi} X$, called the **adjunction of** X **to** Y **via** φ , by attaching X to Y using φ as follows:

$$
Y \sqcup_{\varphi} X
$$
 is the quotient space $(X \sqcup Y)/z \sim \varphi(z)$;

a more precise description of the equivalence relation is that $u \sim v$ if either (i) $u = v$ or (ii) $u, v \in Z$ and $\varphi(u) = \varphi(v)$ or (iii) $u \in Z$ and $v = \varphi(u) \in Y$.

There are natural maps $X \xrightarrow{q_X} Y \sqcup_{\varphi} X$ and $Y \xrightarrow{q_Y} Y \sqcup_{\varphi} X$ obtained by precomposing the quotient map $(X \sqcup Y) \stackrel{q}{\to} (Y \sqcup_{\varphi} X)$ with the natural inclusions $X \stackrel{i}{\hookrightarrow} X \sqcup Y$ and $Y \stackrel{j}{\hookrightarrow} X \sqcup Y$ respectively.

(a) Prove that the natural map $Y \xrightarrow{q_Y} Y \sqcup_{\varphi} X$ is an embedding onto a closed subspace.

(b) Prove that the natural map $X \setminus Z \stackrel{q_X|}{\longrightarrow} Y \sqcup_{\varphi} X$ is an embedding onto an open subspace.

Here
$$
q_X
$$
 := $q_X|_{X \setminus Z}$.

(c) Suppose $X \stackrel{f}{\to} W$ and $Y \stackrel{g}{\to} W$ are continuous maps with $f|_Z = g \circ \varphi$. Demonstrate that there is a unique map $\Psi: Y \sqcup_{\varphi} X \to W$ with the property that

$$
\Psi \circ q_X = f
$$
 and $\Psi \circ q_Y = g$.

(67) One of the main objects of interest to algebraic geometers is so-called *n*-dimensional **projective space** which is defined by $\mathbb{P}^n := \mathbb{S}^n / \sim$ where $x \sim -x$; i.e., we identify so-called antipodal points x and $-x$. (Actually, this is real projective space; there is also a complex projective space. Moreover, algebraic geometers use a somewhat different, albeit homeomorphic, description of projective space.)

(a) Prove that \mathbb{P}^n is homeomorphic to the quotient space \mathbb{D}^n/\approx where $x \approx y$ if $x = y$ or $x, y \in \partial \mathbb{D}^n = \mathbb{S}^{n-1}$ and $x = -y$ (i.e., we identify boundary antipodal points).

(b) Demonstrate that $\mathbb{P}^1 \approx \mathbb{S}^1$. Do you think that $\mathbb{P}^2 \approx \mathbb{S}^2$?

(c) Find a space X with the property that $X = U \cup B$ where $U \neq \emptyset$ is open in X and B is homeomorphic to $\mathbb{S}^1 = \partial \mathbb{D}^2$, via some homeomorphism φ , and is such that the adjunction space $\mathbb{D}^2 \sqcup_{\varphi} X$ is (homeomorphic to) \mathbb{P}^2 .

(68) Which of the spaces in Figure 2 below are homeomorphic?

Figure 2. Some 'one-dimensional' "wire" topological spaces

(69) The natural comb NC, harmonic comb HC, and doubled harmonic comb DHC are the subspaces of \mathbb{R}^2 defined by

$$
\mathsf{NC} := ([0, \infty) \times \{0\}) \cup \bigcup_{n=0}^{\infty} (\{n\} \times [0, 1]) ,
$$

\n
$$
\mathsf{HC} := ([0, 1] \times \{0\}) \cup (\{0\} \times [0, 1]) \cup \bigcup_{n=1}^{\infty} \{1/n\} \times [0, 1] ,
$$

\n
$$
\mathsf{DHC} := (\{0\} \times [-1, 1]) \cup ([0, 1] \times \{1\}) \cup \bigcup_{n=1}^{\infty} (\{1/n\} \times [0, 1])
$$

\n
$$
\cup \bigcup_{n=1}^{\infty} (\{-1/n\} \times [-1, 0]) \cup ([-1, 0] \times \{-1\}) .
$$

- (a) Find two of NC, HC, HC₀ := HC \ ($\{0\} \times \mathbb{I}$), DHC that are homeomorphic.
- (b) Find two of the spaces NC,HC,HC_0, DHC that are not homeomorphic.
- (70) The **Hawaiian earring** and **expanding earring** are the subspaces of \mathbb{R}^2 defined by

$$
\mathsf{HE} := \bigcup_{1}^{\infty} \mathbb{S}^1((1/n, 0); 1/n) \quad \text{and} \quad \mathsf{EE} := \bigcup_{1}^{\infty} \mathbb{S}^1((n, 0); n)
$$

where $\mathbb{S}^1(z; r)$ is the circle in \mathbb{R}^2 with center z and radius r. Which of the following spaces are homeomorphic?

HE, EE,
$$
\mathbb{R}/\mathbb{Z}
$$
, \mathbb{I}/\mathbb{M} , $\mathbb{R}/\{\pm 2^n : n \in \mathbb{N}\}$

Here $\mathbb{M} := \{0, 1, 1/2, 1/3, 1/4, \dots\}.$

For each $n \in \mathbb{N}$, put $X_n := \mathbb{S}^1$ and let $a_n := (1,0) \in \mathbb{S}^1$. Set $X := \bigvee_{n \in \mathbb{N}} X_n$. Which of the spaces $\mathsf{HE}, \mathsf{EE}, \mathbb{R}/\mathbb{Z}, \mathbb{I}/\mathbb{M}$ are homeomorphic to $X?$

- (71) Let (A_n) be a sequence (finite or infinite) of connected subspaces of some topological space X. Suppose that for all $n, A_n \cap A_{n+1} \neq \emptyset$. Prove that $\bigcup_n A_n$ is connected.
- (72) Let $\{A_\lambda \mid \lambda \in \Lambda\}$ be a family of connected subspaces of some topological space X. Suppose A is another connected subspace of X and for all $\lambda \in \Lambda$, $A \cap A_{\lambda} \neq \emptyset$. Prove that $A \cup \bigcup_{\lambda} A_{\lambda}$ is connected.
- (73) Suppose a connected subspace C of X intersects both $A \subset X$ and $X \setminus A$. Prove that C meets ∂A .
- (74) Prove that any uncountable set, with its countable complement topology (see Lee, $p.36, \#(2-3), \mathcal{T}_3$, is a connected space. Characterize its connected and disconnected subspaces.
- (75) Determine the homeomorphism types of connected spaces with exactly three points.
- (76) Describe, up to homeomorphisms, the connected spaces that can be constructed from four compact intervals via identifications among their endpoints.
- (77) A topological space is *totally disconnected* if its only connected subspaces are onepoint sets. Show that every discrete space is totally disconnected. Does the converse hold?
- (78) Prove that any product of totally disconnected spaces is totally disconnected.
- (79) Prove that if U is a dense open subset of $\mathbb{I} = [0, 1]$, then $\mathbb{I} \setminus U$ is totally disconnected.
- (80) Let X, Y be connected topological spaces. Suppose $A \subsetneq X$ and $B \subsetneq Y$. Prove that $(X \times Y) \setminus (A \times B)$ is connected.
- (81) Let $X \stackrel{p}{\to} Y$ be an identification map. Suppose that Y is connected and that for all $y \in Y$, $p^{-1}(y)$ is also connected. Prove that X is connected.
- (82) Let S be a connected subspace of a connected space X. Suppose that $\{A, B\}$ is a separation of $X \setminus S$. Prove that both $A \cup S$ and $B \cup S$ are connected.
- (83) If S is a connected subspace of a topological space X, are either its interior or boundary connected? If both the interior and boundary of S are connected, must S be connected?
- (84) Let $\mathbb{S}^1 \stackrel{f}{\to} \mathbb{R}$ be continuous. Prove that there exists an $s \in \mathbb{S}^1$ with $f(s) = f(-s)$.
- (85) (a) If A is a path connected subspace of X, is \bar{A} path connected? (b) If $f: X \to Y$ is continuous and X is path connected, is $f(X)$ path connected? (c) Is a product of path connected spaces path connected? (d) If $\{A_\lambda \mid \lambda \in \Lambda\}$ is a collection of path connected subspaces of X, and $\bigcap_\lambda A_\lambda \neq \emptyset$, is $\bigcup_{\lambda} A_{\lambda}$ path connected?
- (86) Show that for any countable set $S \subset \mathbb{R}^2$, $\mathbb{R}^2 \setminus S$ is path connected.
- (87) Determine the components of the space $(\mathbb{I} \setminus \mathbb{M})^2 = (\mathbb{I} \setminus \mathbb{M}) \times (\mathbb{I} \setminus \mathbb{M})$ where $\mathbb{I} := [0, 1]$ and $\mathbb{M} := \{1/n \mid n \in \mathbb{N}\}.$
- (88) What are the components and path components of \mathbb{R}_{low} ? Describe all continuous maps $f : \mathbb{R} \to \mathbb{R}_{\text{low}}$.
- A topological space X is said to be **locally connected at** x (a point of X) provided for each neighborhood U of x there exists a *connected* neighborhood V of x with $V \subset U$. A space X is **locally connected** if it is locally connected at each of its points.
- A topological space X is said to be *locally path connected at x* (a point of X) provided for each neighborhood U of x there exists a path connected neighborhood V of x with $V \subset U$. A space X is **locally path connected** if it is locally path connected at each of its points.
- (89) The **harmonic rake** HR and **natural rake** NR subspaces of \mathbb{R}^2 are pictured below and defined by

$$
\mathsf{HR} := (\{0\} \times [0,1]) \cup \bigcup_{n=1}^{\infty} ([c, a_n]) \text{ and } \mathsf{NR} := (\{0\} \times [0,1]) \cup \bigcup_{n=1}^{\infty} ([c, b_n])
$$

where $c := (0, 1)$ and $a_n := (1/n, 0)$ and $b_n := (n, 0)$.

Determine the sets of all points at which HR or NR is locally connected or locally path connected.

Figure 3. The Harmonic and Natural Rakes

- (90) Is local connectivity preserved by continuous maps? By homeomorphisms?
- (91) If S is a locally connected subspace of some space X, is \overline{S} locally connected?
- (92) Find a subset of \mathbb{R}^2 that is path connected but is not locally connected anywhere.
- (93) Prove that for any topological space (X, \mathcal{T}) , the following are equivalent: (a) X is locally connected.
	- (b) Every component of every open subspace of X is open.
	- (c) There is a basis for $\mathcal T$ consisting of connected sets.

Formulate (and prove) a similar result for locally path connected spaces.

- (94) Suppose that X is a locally path connected space. Prove that:
	- (a) Every open connected subspace of X is path connected.
	- (b) The components and path components of X are exactly the same.
	- (c) All components of X are both open and closed.
- (95) Let $S := \{(r \cos \theta, r \sin \theta) \in \mathbb{R}^2 \mid r \geq 0, \theta \in [0, 2\pi] \cap \mathbb{Q}\}\)$ (the set of "polar rays with rational radian angle").
	- (a) Prove that S is a connected subspace of \mathbb{R}^2 . Is it path connected?
	- (b) Determine the components of the subspace $S \setminus \{(0,0)\}.$
	- (c) Is S locally connected?
- (96) Prove that a connected metric space having more than one point is uncountable.
- (97) Let $X \stackrel{f}{\to} Y$ be a map of topological spaces with Y compact and Hausdorff. Prove that f is continuous if and only if the *graph of f*,

$$
G_f := \{(x, f(x)) \mid x \in X\}
$$

is a closed subspace of $X \times Y$.

- (98) Let A, B be compact subspaces of X, Y respectively. Suppose W is an open set in $X \times Y$ that contains $A \times B$. Prove that there are open sets $U \subset X$ and $V \subset Y$ such that $A \times B \subset U \times V \subset W$.
- (99) Let $X \stackrel{p}{\to} Y$ be a continuous closed surjection. Suppose that Y is compact and that for each $y \in Y$, $p^{-1}(y) \subset X$ is also compact. Prove that X is compact. (Hint: Show that for any open set $U \supset p^{-1}(y)$ there exists an open neighborhood V of y such that $p^{-1}(V) \subset U$.)
- (100) Let X be a metric space and $\emptyset \neq A \subset X$. Recall that the *distance from x to A* is

$$
dist(x, A) := \inf_{a \in A} |x - a|.
$$

- (a) Prove that $dist(x, A) = 0$ if and only if $x \in A$. Deduce that A is closed if and only if for all $x \in X \setminus A$, dist $(x, A) > 0$.
- (b) Show that when A is compact, for each $x \in X$ there exists an $a \in A$ such that $dist(x, A) = |x - a|.$
- (c) The ε -neighborhood of A is $N(A; \varepsilon) := \{x \in X \mid \text{dist}(x, A) < \varepsilon\}.$ Show that $N(A; \varepsilon) = \int \int B(a; \varepsilon)$. a∈A
- (d) Prove that when A is compact, for each open $U \supset A$ there exists an $\varepsilon > 0$ such that $U \supset \mathsf{N}(A; \varepsilon)$.
- (e) Do either (b) or (d) hold for closed sets A?
- (101) Let X be a metric space and $\emptyset \neq A, B \subset X$. Recall that the *distance from* A to B is

$$
dist(A, B) := \inf_{a \in A, b \in B} |a - b|.
$$

- (a) Prove that when A is compact, B is closed, and $A \cap B = \emptyset$, $dist(A, B) > 0$.
- (b) If A and B are closed with $A \cap B = \emptyset$, is dist $(A, B) > 0$?
- (102) Let X be a metric space and let $\mathcal H$ denote the collection of all n on-empty closed bounded subsets of X. For $A, B \in \mathcal{H}$, define

$$
d_{\mathcal{H}}(A, B) := \inf \{ \varepsilon > 0 \mid A \subset \mathsf{N}(B; \varepsilon) \text{ and } B \subset \mathsf{N}(A; \varepsilon) \} .
$$

- (a) Prove that $d_{\mathcal{H}}$ is a distance function on \mathcal{H} , so $(\mathcal{H}, d_{\mathcal{H}})$ is a metric space.
- (b) Show that when X is complete, so is \mathcal{H} .
- (c) Show that when X is totally bounded, so is \mathcal{H} .
- (d) Show that when X is compact, so is \mathcal{H} .

(103) Investigate the the following claims.

- (a) Every compact subspace of a topological space has compact closure.
- (b) No compact subspace of a topological space has compact interior.
- (104) (a) Is the quotient space \mathbb{R}/\mathbb{Z} compact?

(b) Is the quotient space \mathbb{R}^2/L compact? Here the 'integer' lattice $L := (\mathbb{Z} \times \mathbb{R}) \cup (\mathbb{R} \times \mathbb{Z})$

is identified to a point.

- (105) (a) Is the quotient space $\mathbb{R}/(\mathbb{R}\setminus [0,1])$ compact or Hausdorff? (b) Is the quotient space $\mathbb{R}/(\mathbb{R} \setminus (0,1))$ compact or Hausdorff?
- (106) Prove that $S \subset \mathbb{R}$ is compact if and only if every continuous map $f : S \to \mathbb{R}$ is bounded and attains a maximum value on S.

(107) Find a Lebesgue number for each of the following coverings.

- (a) The cover $\mathcal{U}_r := \{(n-r, n+r) \mid n \in \mathbb{Z}\}\$ of \mathbb{R} (where $r > 0$).
- (b) The cover $\mathcal{U}_r := \{ \mathbb{B}^2(x; r) \mid x \in \mathbb{Z}^2 \}$ of \mathbb{R}^2 (where $r > 1$).
- (c) The cover $\{X \setminus \{x\} \mid x \in X\}$ of a compact metric space X.
- (d) The cover $\mathcal{U}_r := \{ \mathsf{B}(x; r) \mid x \in X \}$ of a compact metric space X (where $r > 0$).

Department of Mathematics, University of Cincinnati, OH 45221 E-mail address: David.Herron@math.UC.edu