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AUTUMN QUARTER 2010

Please provide plenty of details! Pix are definitely kewl (⌣̈).

(1) Define N× N
d
→ R by d(m,n) :=

∣
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(a) Verify that d is a distance function on N.

(b) Is the sequence (n)∞n=1 a Cauchy sequence in (N, d)? Does it converge in (N, d)?

(2) Consider the identity map (X, d1)
id
→ (X, d2) where d1 and d2 are distance functions

on some non-empty set X . Give conditions (both necessary and sufficient, if possible)
that describe when: id is a continuous map, id is an open map, id is a homeomorphism.

(3) Let S
f
→ X be a function from some set S to some set X . Suppose d is a distance

function on X . Define df : S × S → R by df(s, t) := d(f(s), f(t)). Determine
conditions on f that guarantee that df is a distance function on S. (The metric df
is called the pullback of d by f .)

(4) Let P be any set of positive numbers. Prove that there exists a metric space (X, d)
with the property that {d(x, y) | x, y ∈ X} = P ∪ {0}.

(5) List the distinct topologies on the set {a, b}.

(6) List the distinct topologies on the set {a, b, c}.

(7) Let C be a collection of subsets of some set X . Prove that there is a unique smallest
topology on X that contains C; this is called the topology generated by C.

(8) Let {Tα} be a collection of topologies on some non-empty set X .

(a) Prove that
⋂

α Tα is a topology on X . Is
⋃

α Tα a topology on X?

(b) Show that there is a unique smallest topology on X that contains each of the Tα,
and there is a unique largest topology on X that is contained in each Tα.

(c) Suppose X := {a, b, c} and T1 := {X, ∅, {a}, {a, b}}, T2 := {X, ∅, {a}, {b, c}}.
Find the smallest topology on X that contains both T1 and T2, and the largest
topology on X contained in each of T1 and T2.

(9) Let B be a basis for some topology T . Prove that T is the topology generated by B.

(10) Let B be a basis for some topology T on some set X . Prove that for each A ⊂ X ,
the following are equivalent:
(a) A ∈ T .
(b) ∀ a ∈ A , ∃ U ∈ T such that a ∈ U ⊂ A .
(c) A is the union of elements of T .
(d) ∀ a ∈ A , ∃ B ∈ B such that a ∈ B ⊂ A .
(e) A is the union of elements of B .
Formulate a Lemma that gives both (b) ⇐⇒ (c) and (d) ⇐⇒ (e).

Date: January 4, 2011.
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2 TOPOLOGY HOMEWORK PROBLEMS AUTUMN QUARTER 2010

(11) Prove that each of the following collections is a basis for the standard topology on R.
(a) {(a, b) | a, b ∈ R with a < b} .
(b) {(p, q) | p, q ∈ Q with p < q} .
(c) {(r + 1/n, r − 1/n) | r ∈ Q , n ∈ N} .
Notice that the latter two collections are countable!

(12) Demonstrate that {[a, b) | a, b ∈ R with a < b} is a basis for a topology Tlow (called
the lower limit topology) on R. Often we write Rlow to indicate the set R together
with its lower limit topology.

Is the collection {[p, q) | p, q ∈ Q with p < q} a basis for the lower limit topology
on R?

(13) Show that {(r, s) | 0 < r < s < 1} ∪ {[0, r) ∪ (s, 1) | 0 < r < s < 1} is a basis for a
topology on [0, 1). Do you “see” what space we get with this topology?

(14) Let p := (0, 1) ∈ R2 and put X := R ∪ {p}.

(a) Show that {(a, b) | a, b ∈ R with a < b} ∪ {(−r, 0) ∪ {p} ∪ (0, r) | r > 0} is a
basis for a topology on X . (We call X , with this topology, the line with two origins.)

(b) Show that {(a, b) | a, b ∈ R with a < b} ∪ {X \ [−r, r] | r > 0} is a basis for a
topology on X . Do you “see” what space X is with this topology?

(15) Let p := (0, 0, 1) ∈ R3 and put X := R2 ∪ {p}. Show that

{B2(z; r) | z ∈ R2, r > 0}
⋃

{X \ D2(z; r) | z ∈ R2, r > 0}

is a basis for a topology on X . Do you “see” what space X is with this topology?

(16) Let S be a collection of subsets of some set X . Let B be the collection of all sets that
can be expressed as a finite intersection of elements of S; thus B ∈ B if and only if
there are S1, . . . , Sn ∈ S with B = S1 ∩ · · · ∩ Sn.

If B is a basis for some topology T on X , then we call S a subbasis for T . What
conditions on S and/or T ensure that S is a subbasis for T ?

Prove that if a collection S of subsets of some set X is a subbasis for a topology T on
X , then T is the topology generated by S. (Recall (#7).) When does the converse
hold?

(17) Prove that S := {(a,∞) | a ∈ R} ∪ {(−∞, b) | b ∈ R} is a subbasis for the standard
topology on R.

(18) Let H be the collection of all open half-planes in R2 each determined by a horizontal
or vertical line. Prove that H is a subbasis for the standard topology on R2.

(19) Let C := C([0, 1],R) := {[0, 1]
f
→ R | f is continuous}. For each x ∈ [0, 1] and each

open U ⊂ R, put

S(x;U) := {f ∈ C | f(x) ∈ U} .

Prove that S := {S(x;U) | x ∈ [0, 1] , U ⊂ R open} is a subbasis for a topology Tpo

on C; we call Tpo the point-open topology on C([0, 1],R).

Prove that a sequence (fn)
∞
n=1 in C converges to some f ∈ C with respect to the

point-open topology Tpo if and only if (fn)
∞
n=1 converges pointwise to f on [0, 1]. (For

this reason, Tpo is often called the topology of pointwise convergence.)
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What happens if we replace [0, 1] by R? What can you say about convergence in
C(R,R) with respect to its point-open topology?

(20) Let C := C([0, 1],R) := {[0, 1]
f
→ R | f is continuous}. For each compact C ⊂ [0, 1]

and each open U ⊂ R, put

S(C;U) := {f ∈ C | f(C) ∈ U} .

Prove that S := {S(C;U) | C ⊂ [0, 1] compact , U ⊂ R open} is a subbasis for a
topology Tco on C; we call Tco the compact-open topology on C([0, 1],R).

Prove that a sequence (fn)
∞
n=1 in C converges to some f ∈ C with respect to the

compact-open topology Tco if and only if (fn)
∞
n=1 converges uniformly to f on [0, 1].

(For this reason, the compact-open topology Tco, on C([0, 1],R), could be called the
topology of uniform convergence on C([0, 1],R).)

What happens if we replace [0, 1] by R? What can you say about convergence in
C(R,R) with respect to its compact-open topology?

(21) Let (X, d) be a metric space. Prove that X ×X
d
→ R is continuous.

(22) Let X
f
→ Y be a map between topological spaces. Suppose B and S are a basis and

a subbasis (respectively) for the topology on Y . Demonstrate that the following are
equivalent:
(a) f is continuous .
(b) ∀ B ∈ B , f−1(B) is open in X .
(c) ∀ S ∈ S , f−1(S) is open in X .

(23) Consider the identity map (X, T1)
id
→ (X, T2) where T1 and T2 are topologies on some

non-empty set X . Give conditions (both necessary and sufficient, if possible) that
describe when: id is a continuous map, id is an open map, id is a homeomorphism.

Recall that U is a neighborhood of a point x (in some topological space) provided U is
open and x ∈ U . If U happens to belong to an understood basis, we also call it a
basis neighborhood.

We say that a map f is continuous at a point x (in some topological space) provided for each
neighborhood V of f(x) there is a neighborhood U of x such that f(U) ⊂ V . Here
either (or both) of the terms ‘neighborhood’ can be replace by ‘basis neighborhood’.
Right?

(24) Prove that a map X
f
→ Y between topological spaces is continuous if and only if for

each x in X , f is continuous at x.

(25) Let X,Z be topological spaces. Assume A ⊂ X , B ⊂ Y ⊂ Z are each given their

subspace topologies. Let X
f
→ Y be continuous.

(a) Prove that the inclusion map A
j
→֒ X , defined by j(x) := x, is continuous.

(b) Prove that A
f |A
−−→ Y is continuous.

(c) If f(X) ⊂ B, prove that X
f
→ B is continuous.

(c) Prove that X
f
→ Z is continuous.
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Thus restricting the domain or restricting the target or expanding the target does
not destroy continuity!

(26) Let X
f
→ Y be a map between two sets. Suppose that Y is a topological space. Find

the smallest (i.e., coarsest) topology on X that makes f a continuous map.
(Hint: What sets must be open?)

A map X
f
→ Y is called an embedding if X

f
→ f(X) is a homeomorphism.

(27) Define S1 × R
f
→ R2 by f(z, r) := er z. Prove that f is an embedding. What is

f(S1 × R)?

Construct a similar embedding Sn ×R → Rn+1, and determine the image of Sn ×R.

(28) Define D2 F
→ R3 by

(x, y, z) := F (r cos θ, r sin θ) := (k(r) cos θ, k(r) sin θ, h(r))

where, for 0 ≤ r ≤ 1,

h(r) := 2r − 1 and k(r) :=
√

1− h(r)2 .

(a) Explain why F maps the circle S1(0; r) to a circle in R3 at ‘height’ h(r).
(b) Prove that F is continuous and determine F (D2).
(c) Is F : D2 → R3 an embedding?
(d) Is F : B2 → R3 an embedding?

(29) In each of the following lists, determine which spaces are homeomorphic to which;
construct the maps!
(a) (0, 1), (0, 1], [0, 1],R
(b) B2,D2,R2, S2 \ {pt}, S2

+ := {(x, y, z) ∈ S2 | z ≥ 0}

(30) Classify, up to homeomorphisms, the non-empty intervals (open, closed, neither,
finite, or infinite) in R.

(31) Let (X, T ) and (Y,U) be topological spaces. Show that the collection

B := {U × V | U ∈ T , V ∈ U}

is a basis for a topology on X × Y .

This is called the product topology on X × Y . A word of caution is in order here:
this description of the product topology is only valid for finite products. That is, if
(X1, T1), . . . , (Xn, Tn) are topological spaces, then

B := {U1 × · · · × Un | Ui ∈ Ti}

is a basis for the product topology on X1 × · · · × Xn. But this is not the correct
definition for the product topology on an infinite product space.

(32) Let (X, T ) and (Y,U) be topological spaces. Show that the collection

S := {U × Y | U ∈ T }
⋃

{X × V | V ∈ U}

is a subbasis for the product topology on X × Y .

(33) Prove that the usual (metric) topology on R2 := R × R is the same as the product
topology. That is, show that the appropriate identity map is a homeomorphism.
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(34) Prove that a subspace of a Hausdorff space is Hausdorff, and that a product of two
Hausdorff spaces is Hausdorff.

(35) Prove that a topological space X is a Hausdorff space if and only if

∆ := {(x, x) | x ∈ X} is a closed subset of X ×X .

(36) Show that the Continuity Test (part of the Characteristic Property) for Product
Spaces fails if we use the “box topology” instead of the product topology.

(37) Let X be a topological space, Λ a non-empty set, and consider the product space
XΛ. Thus

XΛ =×
λ∈Λ

Xλ where each set Xλ := X .

Consider the map X
f
→ XΛ defined by f(x) := (xλ)λ∈Λ where each xλ := x.

Is f an embedding?

(38) Let {(Xλ, Tλ) | λ ∈ Λ} be a collection of topological spaces. Let×λ∈Λ Xλ

πµ
−→ Xµ

denote the usual projection map. Prove that πµ is a continuous open map.

(39) Let {(Xλ, Tλ) | λ ∈ Λ} be a collection of topological spaces. Suppose×λ∈ΛXλ
f
→ Y

is continuous. Demonstrate that for each µ ∈ Λ and each fixed (aλ) ∈×λ∈Λ Xλ,

the map Xµ

fµ
−→ Y defined by

fµ(x) := f((xλ)) where xµ := x and for λ 6= µ, xλ := aλ

is continuous. Does the converse hold? (This is an Advanced Calculus question!)

(40) Let {(Xλ, Tλ) | λ ∈ Λ} be a collection of topological spaces. Suppose that for each
λ ∈ Λ there is a non-empty subset Aλ ⊂ Xλ. Prove that

int

[

×
λ∈Λ

Aλ

]

⊆×
λ∈Λ

int[Aλ]

and equality may not hold, but always

cl

[

×
λ∈Λ

Aλ

]

=×
λ∈Λ

cl[Aλ] .

What happens if we use the “box topology” on×λ∈Λ Xλ?

(41) Recall that we can view the product set RN as the set of all sequences in R. Let R∞

denote the subset of RN that consists of all sequences that are ‘eventually zero’. Thus
(an)

∞
1 belongs to R∞ precisely when there exists an N ∈ N such that for all n ≥ N ,

an = 0.

Determine the closure of R∞ with respect to each of the product and box topologies
on RN.

(42) Let {(Xλ, Tλ) | λ ∈ Λ} be a collection of topological spaces and {Z
gλ−→ Xλ | λ ∈ Λ}

a collection of continuous maps. Prove that there is a unique continuous map

Z
g
→×

λ∈Λ
Xλ

with the property that for all λ ∈ Λ, gλ = πλ ◦ g (here πλ are the usual projections).
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(43) Let {Zλ
fλ−→ Xλ | λ ∈ Λ} a collection of continuous maps. Prove that there is a

unique continuous map

Z :=×
λ∈Λ

Zλ
f
→×

λ∈Λ
Xλ =: X

with the property that for all λ ∈ Λ, ρλ = πλ ◦ f ; here πλ : X → Xλ and ρλ : Z → Zλ

are the usual projections. We write f :=×λ∈Λ fλ.

Deduce that when each fλ is a homeomorphism, so is f .

(44) Let {(Xλ, Tλ) | λ ∈ Λ} be a collection of topological spaces. Suppose for each λ ∈ Λ,
Zλ is a subspace of Xλ. Prove that

×
λ∈Λ

Zλ is a subspace of ×
λ∈Λ

Xλ .

(45) Prove that for any topological spaces X, Y, Z

X × Y ≈ Y ×X and (X × Y )× Z ≈ X × (Y × Z) .

(46) Use pictures to show that [0, 1]× [0, 1) ≈ (0, 1)× [0, 1).

Thus while×, is “associative” and “commutative”, there is no “cancellation law”.

(47) LetX, Y be the closed annuli with matched and mismatched fins pictured in Figure 1.
Draw sketches that suggest a homeomorphism between X × [0, 1] and Y × [0, 1]. Are
X and Y homeomorphic?

(48) Let W denote the “torus surface” (i.e., the tire tube space in R3) with an open disk
removed (from the surface). Let Z denote the closed unit disk with two smaller open
disks removed. Draw sketches that suggest a homeomorphism between W × [0, 1] and
Z × [0, 1]. Are W and X homeomorphic?

(49) Show that for any two topological spaces X and Y , there exists a space Z such that
X × Z ≈ Y × Z.

(50) Let L be a line in the plane R2. Describe the subspace topologies on L ⊂ Rlow × R
and on L ⊂ Rlow × Rlow. (These are familiar topologies!)

(51) The dictionary order ≺ on R2 is defined by

(x, y) ≺ (x′, y′) ⇐⇒ x < x′ or x = x′ and y < y′ .

X with matched fins Y with mismatched fins

Figure 1. Closed annuli with fins
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This defines a total ordering 4 on R2, and this total ordering induces the so-called
dictionary order topology Tdo on R2. (See Lee, especially problem (2-12) on p.37.)

We write R2
do := (R2, Tdo) to denote the set R2 with its dictionary order topology.

Compare the following topologies on R2:
(a) Tdo

(b) the standard topology
(c) the product topology on Rdisc × R

(d) the topology described in problem (2-5) on p.37 of Lee

(52) The dictionary order on I2 is just the restriction of the dictionary order on R2 to I2,
and so I2 also has a dictionary order topology.

Compare the following topologies on I2:
(a) the standard topology
(b) the dictionary order topology
(c) the subspace topology that I2 inherits as a subset of R2

do

(53) Define an equivalence relation on R by writing x ∼ y if y − x ∈ Q. Prove that R/∼
is an uncountable space with the trivial (i.e., indiscrete) topology.

(54) Define an equivalence relation on R2 by writing (x, y) ∼ (x′, y′) if x′ − x ∈ Z. Prove
that R2/∼ is a surface (i.e., a 2-manifold). What surface is it?

(55) Define an equivalence relation on R2 by writing (x, y) ∼ (x′, y′) if n := x′ − x ∈ Z

and y′ = (−1)ny. Prove that R2/∼ is a surface (i.e., a 2-manifold). What is it?

(56) There are four different ways of describing the 2-dimensional torus T2.
• as the product space T2 := S1 × S1, a subspace of R2 × R2;
• as the tire tube surface TT in R3 obtained by rotating the circle {(x, y, z) ∈
R3 : (y − 2)2 + z2 = 1, x = 0} about the z-axis; or, more simply,

TT := {(x, y, z) : (2−
√

x2 + y2)2 + z2 = 1} ;
• as the quotient space I2/ ∼ where (x, 0) ∼ (x, 1) and (0, y) ∼ (1, y), which is
called the flat torus ;

• as the orbit space R2/Γ where Γ is the group of all horizontal and vertical
translations (x, y) 7→ (x + m, y + n) with m,n ∈ N; equivalently, R2/∼ where
(x+ 1, y) ∼ (x, y) ∼ (x, y + 1).

Demonstrate that these four spaces are homeomorphic.

(57) The Klein bottle KB is the quotient space obtained from the square I2 via the
boundary identifications (0, y) ∼ (1, 1 − y) and (x, 0) ∼ (x, 1). Prove that KB is a
surface.

(58) Let A be a non-degenerate closed annulus in the plane and define an equivalence
relation on A by identifying antipodal points on the outer circle and also identify-
ing antipodal points on the inner circle. Show that the resulting quotient space is
homeomorphic to the Klein bottle KB.

(59) LetM be the quotient space obtained from the cube (−1, 1)×(−1, 1)×[−1, 1] ⊂ R3 by
identifying, for each (x, y) ∈ (−1, 1)2, the points (x, y, 1) and (−x, y,−1). Prove that
M is a 3-manifold. (You may stipulate that M is Hausdorff and second countable.)

(60) The disjoint union X :=
∐

λ∈Λ Xλ of an indexed collection of sets {Xλ | λ ∈ Λ} is
characterized by the following two properties:
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(i) For each λ ∈ Λ, there exist an ‘injection’ Xλ
jλ−→ X .

(ii) For all sets Z and all functions Xλ
hλ−→ Z, there exist a unique function X

h
→ Z

such that for all λ ∈ Λ, hλ = h ◦ jλ. Xλ

hλ
��<

<<

jλ
// X

h����
�

Z

You could/should show that for each x ∈ X , there exists a λ ∈ Λ
and a point xλ ∈ Xλ with jλ(xλ) = x; moreover, if jλ(xλ) = jµ(xµ),
then λ = µ and xλ = xµ.

(a) Check that when the sets Xλ are disjointed (i.e., for all λ, µ ∈ Λ with λ 6= µ,
Xλ ∩Xµ = ∅), we can take X =

⋃

λ Xλ (the usual union) and for jλ we can use the
natural inclusion Xλ →֒

⋃

λ Xλ.

In practice we can always replace each set Xλ with Xλ×{λ} to obtain disjointed sets.
Then X :=

⋃

λ(Xλ × {λ}) serves as the disjoint union
∐

λ Xλ, and the ‘injections’
jλ : Xλ → X can be defined by jλ(x) := (x, λ).

Now let {Xλ | λ ∈ Λ} be a collection of topological spaces. The disjoint union

topology Tdu on X :=
∐

λ Xλ is the largest (i.e., finest) topology on X with the
property that each ‘injection’ jλ : Xλ → X is continuous. Thus (one can prove that)
U ⊂ X is open in X if and only if for all λ ∈ Λ, j−1

λ (U) is open in Xλ. This means
that all of the “topological stuff” occurs in each space Xλ separately.

(b) Check that when the sets Xλ are disjointed, a subset of X is open (i.e., belongs
to Tdu) if and only if its intersection with each Xλ is open in Xλ, and a subset of X
is closed if and only if its intersection with each Xλ is closed in Xλ.

(c) Prove that each ‘injection’ Xλ
jλ−→ X is an embedding. Because of this fact,

typically one identifies Xλ with its image jλ(Xλ) ⊂ X .

(d) Prove the following Continuity Test for the disjoint union topology onX :=
∐

λ Xλ.

Xλ

fλ
��<

<<

jλ
// X

f����
�

Z

For every topological space Z,

X
f
→ Z is continuous ⇐⇒ ∀λ ∈ Λ , Xλ

f◦jλ−−→ Z is continuous .

(e) Prove that the disjoint union topology is the unique topology on X that enjoys
the property given in part (c).

(61) For each n ∈ N, let Xn := (0, 1). Check that R \ Z ≈
∐

n∈N

Xn. (This is not R/Z!)

(62) For each of the following sets Xn, describe a set E ⊂ R2 such that E ≈
∐

n∈N

Xn.
Xn := I or S1 or B2 or I2 or R .

(63) For each n ∈ N, let Hn be the hyperbola in R2 described by xy = 1/n. Let A be the
union of the two coordinate axes in R2. Determine whether or not A

⊔∐

n Hn and
A ∪

⋃

nHn ⊂ R2 are homeomorphic. (Hint: Argue that any homeomorphism would
have to map A to A and thus map

∐

n Hn to
⋃

n Hn, but . . . .)

Describe a set E ⊂ R2 such that E ≈ A
⊔∐

n∈N

Hn.

(64) Let {Xλ | λ ∈ Λ} be a collection of topological spaces. Select points aλ ∈ Xλ and
put A = {aλ | λ ∈ Λ}. The wedge of the spaces Xλ (with respect to the points aλ)
is defined by

∨

λ∈Λ

Xλ := X/A = X/∼ where X :=
∐

λ∈Λ

Xλ
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and aλ ∼ aµ for all λ, µ ∈ Λ. Thus a set in
∨

λ Xλ is open (or closed) if and only if
its intersection with each Xλ is open (or closed, resp.) in Xλ.

(a) Consider topological spaces X and Y with distinguished points a ∈ X and b ∈ Y .
Demonstrate that

X ∨ Y ≈ (X × {b}) ∪ ({a} × Y ) ,

where the latter space is regarded as a subspace of X × Y .

(b) Formulate a conjecture regarding X ∨ Y ∨ Z. What about X1 ∨ · · · ∨Xn?

(65) Give a ‘geometric’ description for the following spaces:

R/[0, 1] , R/(0, 1) , R/[0, 1) , R/{0, 1} .

For example, in class we proved that R/[0, 1] ≈ R and we gave a conjecture (but no
proof) that R/{0, 1} ≈ R ∨ S1 ∨ R.

(66) Let Z be a closed subspace of X and suppose Z
ϕ
→ Y is continuous. We construct a

space Y ⊔ϕX , called the adjunction of X to Y via ϕ, by attaching X to Y using
ϕ as follows:

Y ⊔ϕ X is the quotient space (X
⊔

Y )/z ∼ ϕ(z) ;

a more precise description of the equivalence relation is that u ∼ v if either (i) u = v
or (ii) u, v ∈ Z and ϕ(u) = ϕ(v) or (iii) u ∈ Z and v = ϕ(u) ∈ Y .

There are natural maps X
qX−→ Y ⊔ϕ X and Y

qY−→ Y ⊔ϕ X obtained by precomposing

the quotient map (X ⊔ Y )
q
→ (Y ⊔ϕ X) with the natural inclusions X

i
→֒ X ⊔ Y and

Y
j
→֒ X ⊔ Y respectively.

X � s

i %%LL
LL

LL
qX

))

X ⊔ Y
q

// Y ⊔ϕ X

Y
+

�

j
99rrrrrr

qY

55

(a) Prove that the natural map Y
qY−→ Y ⊔ϕ X

is an embedding onto a closed subspace.

(b) Prove that the natural map X \ Z
qX |
−−→ Y ⊔ϕ X

is an embedding onto an open subspace.
Here qX | := qX |X\Z .

(c) Suppose X
f
→ W and Y

g
→ W are continuous maps with f |Z = g◦ϕ. Demonstrate

that there is a unique map Ψ : Y ⊔ϕ X → W with the property that

Ψ ◦ qX = f and Ψ ◦ qY = g .

(67) One of the main objects of interest to algebraic geometers is so-called n-dimensional

projective space which is defined by Pn := Sn/∼ where x∼−x; i.e., we identify
so-called antipodal points x and −x. (Actually, this is real projective space; there
is also a complex projective space. Moreover, algebraic geometers use a somewhat
different, albeit homeomorphic, description of projective space.)

(a) Prove that Pn is homeomorphic to the quotient space Dn/≈ where x ≈ y if x = y
or x, y ∈ ∂Dn = Sn−1 and x = −y (i.e., we identify boundary antipodal points).

(b) Demonstrate that P1 ≈ S1. Do you think that P2 ≈ S2?

(c) Find a space X with the property that X = U ∪ B where U 6= ∅ is open in X
and B is homeomorphic to S1 = ∂D2, via some homeomorphism ϕ, and is such that
the adjunction space D2 ⊔ϕ X is (homeomorphic to) P2.
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(68) Which of the spaces in Figure 2 below are homeomorphic?

Figure 2. Some ‘one-dimensional’ “wire” topological spaces

(69) The natural comb NC, harmonic comb HC, and doubled harmonic comb

DHC are the subspaces of R2 defined by

NC := ([0,∞)× {0}) ∪
∞
⋃

n=0

({n} × [0, 1]) ,

HC := ([0, 1]× {0}) ∪ ({0} × [0, 1]) ∪
∞
⋃

n=1

{1/n} × [0, 1] ,

DHC := ({0} × [−1, 1]) ∪ ([0, 1]× {1}) ∪
∞
⋃

n=1

({1/n} × [0, 1])

∪
∞
⋃

n=1

({−1/n} × [−1, 0]) ∪ ([−1, 0]× {−1}) .

(a) Find two of NC,HC,HC0 := HC \ ({0} × I),DHC that are homeomorphic.

(b) Find two of the spaces NC,HC,HC0,DHC that are not homeomorphic.

(70) The Hawaiian earring and expanding earring are the subspaces of R2 defined
by

HE :=

∞
⋃

1

S1((1/n, 0); 1/n) and EE :=

∞
⋃

1

S1((n, 0);n)

where S1(z; r) is the circle in R2 with center z and radius r.

Which of the following spaces are homeomorphic?

HE , EE , R/Z , I/M , R/{±2n : n ∈ N}

Here M := {0, 1, 1/2, 1/3, 1/4, . . .}.

For each n ∈ N, put Xn := S1 and let an := (1, 0) ∈ S1. Set X :=
∨

n∈N Xn. Which
of the spaces HE,EE,R/Z, I/M are homeomorphic to X?



TOPOLOGY HOMEWORK PROBLEMS AUTUMN QUARTER 2010 11

(71) Let (An) be a sequence (finite or infinite) of connected subspaces of some topological
space X . Suppose that for all n, An ∩ An+1 6= ∅. Prove that

⋃

nAn is connected.

(72) Let {Aλ | λ ∈ Λ} be a family of connected subspaces of some topological space X .
Suppose A is another connected subspace of X and for all λ ∈ Λ, A∩Aλ 6= ∅. Prove
that A ∪

⋃

λ Aλ is connected.

(73) Suppose a connected subspace C of X intersects both A ⊂ X and X \A. Prove that
C meets ∂A.

(74) Prove that any uncountable set, with its countable complement topology (see Lee,
p.36, #(2-3), T3), is a connected space. Characterize its connected and disconnected
subspaces.

(75) Determine the homeomorphism types of connected spaces with exactly three points.

(76) Describe, up to homeomorphisms, the connected spaces that can be constructed from
four compact intervals via identifications among their endpoints.

(77) A topological space is totally disconnected if its only connected subspaces are one-
point sets. Show that every discrete space is totally disconnected. Does the converse
hold?

(78) Prove that any product of totally disconnected spaces is totally disconnected.

(79) Prove that if U is a dense open subset of I = [0, 1], then I \U is totally disconnected.

(80) Let X, Y be connected topological spaces. Suppose A ( X and B ( Y . Prove that
(X × Y ) \ (A×B) is connected.

(81) Let X
p
→ Y be an identification map. Suppose that Y is connected and that for all

y ∈ Y , p−1(y) is also connected. Prove that X is connected.

(82) Let S be a connected subspace of a connected space X . Suppose that {A,B} is a
separation of X \ S. Prove that both A ∪ S and B ∪ S are connected.

(83) If S is a connected subspace of a topological space X , are either its interior or
boundary connected? If both the interior and boundary of S are connected, must S
be connected?

(84) Let S1 f
→ R be continuous. Prove that there exists an s ∈ S1 with f(s) = f(−s).

(85) (a) If A is a path connected subspace of X , is Ā path connected?

(b) If f : X → Y is continuous and X is path connected, is f(X) path connected?

(c) Is a product of path connected spaces path connected?

(d) If {Aλ | λ ∈ Λ} is a collection of path connected subspaces of X , and
⋂

λAλ 6= ∅,
is
⋃

λ Aλ path connected?

(86) Show that for any countable set S ⊂ R2, R2 \ S is path connected.

(87) Determine the components of the space (I \M)2 = (I \M)× (I \M) where I := [0, 1]
and M := {1/n | n ∈ N}.
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(88) What are the components and path components of Rlow? Describe all continuous
maps f : R → Rlow.

A topological space X is said to be locally connected at x (a point of X) provided for
each neighborhood U of x there exists a connected neighborhood V of x with V ⊂ U .
A space X is locally connected if it is locally connected at each of its points.

A topological space X is said to be locally path connected at x (a point of X) provided
for each neighborhood U of x there exists a path connected neighborhood V of x with
V ⊂ U . A space X is locally path connected if it is locally path connected at each
of its points.

(89) The harmonic rake HR and natural rake NR subspaces of R2 are pictured below
and defined by

HR := ({0} × [0, 1]) ∪
∞
⋃

n=1

([c, an]) and NR := ({0} × [0, 1]) ∪
∞
⋃

n=1

([c, bn])

where c := (0, 1) and an := (1/n, 0) and bn := (n, 0).

Determine the sets of all points at which HR or NR is locally connected or locally
path connected.

HR

c

(0, 0) a1a2a3
bbbbb

NR
c

(0, 0) b1 b2 b3 b4
b b b b

Figure 3. The Harmonic and Natural Rakes

(90) Is local connectivity preserved by continuous maps? By homeomorphisms?

(91) If S is a locally connected subspace of some space X , is S̄ locally connected?

(92) Find a subset of R2 that is path connected but is not locally connected anywhere.

(93) Prove that for any topological space (X, T ), the following are equivalent:
(a) X is locally connected.
(b) Every component of every open subspace of X is open.
(c) There is a basis for T consisting of connected sets.

Formulate (and prove) a similar result for locally path connected spaces.

(94) Suppose that X is a locally path connected space. Prove that:
(a) Every open connected subspace of X is path connected.
(b) The components and path components of X are exactly the same.
(c) All components of X are both open and closed.

(95) Let S := {(r cos θ, r sin θ) ∈ R2 | r ≥ 0, θ ∈ [0, 2π] ∩ Q} (the set of “polar rays with
rational radian angle”).
(a) Prove that S is a connected subspace of R2. Is it path connected?
(b) Determine the components of the subspace S \ {(0, 0)}.
(c) Is S locally connected?
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(96) Prove that a connected metric space having more than one point is uncountable.

(97) Let X
f
→ Y be a map of topological spaces with Y compact and Hausdorff. Prove

that f is continuous if and only if the graph of f ,

Gf := {(x, f(x)) | x ∈ X}

is a closed subspace of X × Y .

(98) Let A,B be compact subspaces of X, Y respectively. Suppose W is an open set in
X × Y that contains A×B. Prove that there are open sets U ⊂ X and V ⊂ Y such
that A× B ⊂ U × V ⊂ W .

(99) Let X
p
→ Y be a continuous closed surjection. Suppose that Y is compact and that

for each y ∈ Y , p−1(y) ⊂ X is also compact. Prove that X is compact.
(Hint: Show that for any open set U ⊃ p−1(y) there exists an open neighborhood V
of y such that p−1(V ) ⊂ U .)

(100) Let X be a metric space and ∅ 6= A ⊂ X . Recall that the distance from x to A is

dist(x,A) := inf
a∈A

|x− a| .

(a) Prove that dist(x,A) = 0 if and only if x ∈ Ā. Deduce that A is closed if and
only if for all x ∈ X \ A, dist(x,A) > 0.

(b) Show that when A is compact, for each x ∈ X there exists an a ∈ A such that
dist(x,A) = |x− a|.

(c) The ε-neighborhood of A is N(A; ε) := {x ∈ X | dist(x,A) < ε} .

Show that N(A; ε) =
⋃

a∈A

B(a; ε).

(d) Prove that when A is compact, for each open U ⊃ A there exists an ε > 0 such
that U ⊃ N(A; ε).

(e) Do either (b) or (d) hold for closed sets A?

(101) Let X be a metric space and ∅ 6= A,B ⊂ X . Recall that the distance from A to B is

dist(A,B) := inf
a∈A,b∈B

|a− b| .

(a) Prove that when A is compact, B is closed, and A ∩B = ∅, dist(A,B) > 0.
(b) If A and B are closed with A ∩B = ∅, is dist(A,B) > 0?

(102) Let X be a metric space and let H denote the collection of all n on-empty closed
bounded subsets of X . For A,B ∈ H, define

dH(A,B) := inf {ε > 0 | A ⊂ N(B; ε) and B ⊂ N(A; ε)} .

(a) Prove that dH is a distance function on H, so (H, dH) is a metric space.
(b) Show that when X is complete, so is H.
(c) Show that when X is totally bounded, so is H.
(d) Show that when X is compact, so is H.

(103) Investigate the the following claims.
(a) Every compact subspace of a topological space has compact closure.
(b) No compact subspace of a topological space has compact interior.

(104) (a) Is the quotient space R/Z compact?
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(b) Is the quotient space R2/L compact? Here the ‘integer’ lattice
L := (Z× R) ∪ (R× Z)

is identified to a point.

(105) (a) Is the quotient space R/(R \ [0, 1]) compact or Hausdorff?
(b) Is the quotient space R/(R \ (0, 1)) compact or Hausdorff?

(106) Prove that S ⊂ R is compact if and only if every continuous map f : S → R is
bounded and attains a maximum value on S.

(107) Find a Lebesgue number for each of the following coverings.
(a) The cover Ur := {(n− r, n+ r) | n ∈ Z} of R (where r > 0).
(b) The cover Ur := {B2(x; r) | x ∈ Z2} of R2 (where r > 1).
(c) The cover {X \ {x} | x ∈ X} of a compact metric space X .
(d) The cover Ur := {B(x; r) | x ∈ X} of a compact metric space X (where r > 0).
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