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TOPOLOGY OF SMOOTH MANIFOLDS

C. T. C. WALL

Differential topology, like differential geometry, is the study of smooth
(or " differential ") manifolds. There are several versions of the definition:
the basic requirement for Mm to be a smooth manifold of dimension m
is the existence of local coordinate systems, i.e. imbeddings <£a : J7a->Rm

(where Rm denotes Euclidean space of dimension m and <f>a(Ua) is open)
of (open) subsets Ua of M which, together, cover M; and in Uar\Ufi,
where two coordinate systems overlap, each set of coordinates must be
smooth (i.e. infinitely differentiable) functions of the other set. If M
and N are smooth manifolds, a map f:M->-N is called smooth if its
expressions by local coordinate systems in M and N are smooth at each
point. Hence in particular we have the notion of smooth imbedding.
If f:M->N and g:N^-M are smooth and inverse to each other, they
are called diffeomorphisms: M and N are then to be regarded as different
copies of the same manifold. If/ and g are merely continuous and inverse
to each other, we call them homeomorphisms. Thus homeomorphism
is a cruder means of classification than diffeomorphism.

The notion of smooth manifold, due essentially to Poincare", and
codified by Veblen and Whitehead [1], gained in concreteness from the
theorem of Whitney [1], that every smooth manifold Mm can be imbedded
smoothly in Rr, which is itself of course a smooth manifold, provided that
r > 2 r a + l . Thus M can be regarded as a submanifold of Rr: locally
it will be defined by the vanishing of (r—m) smooth functions with linearly
independent differentials, and we will be able to choose m of the coordinates
of Rr as local coordinates in M (though of course the same choice will
not in general do throughout M). An important example is the unit
sphere Sr~x in Rr. We shall denote the disc bounded by S^1 as Dr. This
is an example of the more general notion of manifold with boundary,
defined as above, but replacing Rm by a closed half-space. We shall
use dM to denote the boundary of the manifold M, and write

Whitney's theorem is the first of the theorems of " general position "
it states that imbeddings are dense in the space of all maps

suitably topologised, provided M is compact. Along the same lines,
we may note that the same holds if Rr is replaced by any r-manifold,
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and that if m>(/p-\-q), a map f:Pp->Mm will " in general" avoid a
g-dimensional submanifold Qq of Mm. These results are all contained
in Thorn's transversality theorem [1] which is, however, too technical
to state here.

We leave here the topic of imbeddings (and the related one of
immersions—maps which are locally imbeddings) and refer the reader to
a recent survey article by Smale [1] and to the papers of Haeniger [1] [2],
Haefliger and Hirsch [1] [2] and Hirsch [1] for a fairly complete general
theory and for further references.

Suppose Mm a submanifold of Vv. Then a neighbourhood N of M
in V is called a tubular neighbourhood if there is a smooth retraction
r:N-*M with the property that each xeM has a neighbourhood U such
that r\r~1(U) is equivalent to the projection map of a product,
£)v-m xU-+U. We need also the condition that in a change of coordinates,
Dv-mx(U1^U2)^r-1(U1r^U2)-+Dv-mx(U1riU2), the disc over each
xeUxr\U2 is mapped to itself by an orthogonal map. For example,
if V is Euclidean space and M is compact, we can take N as the set of points
within a small distance e of M, and r as projection on the nearest point
of M: for a;elf, r~1(a;) is then a disc of radius e with centre x and
perpendicular to M at x.

Existence and essential uniqueness of tubular neighbourhoods are
proved in all introductions to the subject (e.g. Lang [1]). We have defined
a kind of fibre bundle, using vectors normal to M in V (the " normal
bundle " of M in V); analogously (without an imbedding) we can assemble
tangent vectors of M into the " tangent bundle " of M. For more general
discussion of bundles see Steenrod [1]; for associated bundles, such as
the tensor bundles which are the key object of study in differential geometry,
see Nomizu [1].

One of the ultimate aims of differential topology is the classification
up to diffeomorphism of all smooth manifolds, and while the negative
solution of the isomorphism problem for groups shows that this is
algorithmically impossible (in dimensions ^ 4), we can perform it with
certain restrictions. The technique is to reduce the problem first to a
problem in homotopy theory and then to a problem in algebra. We
remind the reader that a continuous map F: X X I->Y (where / denotes
the unit interval [0, 1]) is called a homotopy between the maps/o,/!: X-> Y,
where ft(x) = F(x, t). Also if / : X^> Y and g: Y^-X are such that the
compositions fog, gof are homotopic to the identity maps of Y and X
respectively, they are called homotopy equivalences between X and Y.
The relation of homotopy equivalence is coarser again than that of homeo-
morphism; correspondingly, there are more algebraic techniques available
to solve the equivalence problem (and others)—they form the subject
matter of algebraic topology.
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Handles
A basic requisite for classification is a reasonably intrinsic and effective

way to describe manifolds; this is provided by a handle presentation.
Let Mm be a manifold with boundary dM, and

a smooth imbedding. Take M and Dr x Dm~r, glue them together along
Sr~1xDm~r (part of the boundary of each). Local coordinate systems
in the two can be pieced together to give local coordinate systems which
make the result a smooth manifold with boundary (this needs some
ingenuity near the "corner" #r~1x$m~r"~1). The result is said to be
obtained from M by attaching an r-handle: we write it as M<jfh

r, or
as

The construction may be iterated indefinitely to attach many handles
of all dimensions (from 0 to m) to M: this gives a handle decomposition
of the result, based on M. Observe what happens to the boundary of M
when we attach a handle to M : /(#r-1 X Dm~r) is removed, and Dr x Sm-r-x

takes its place. This kind of change is called a spherical modification
(Wallace [1]).

There are at least three ways to view the above process: a handle
decomposition is a means of describing a given manifold; attaching
handles is a means of constructing new manifolds; performing spherical
modifications is a means of constructing new manifolds. This con-
struction is the modern form of " scissors and paste " topology: it yields
powerful methods. We also note that attaching a handle corresponds
to a process (attaching a cell) already very familiar in homotopy theory.

Every manifold has a handle decomposition (Smale [2], Wallace [1]).
In fact suppose the boundary of M expressed as the disjoint union of
unbounded (possibly empty) submanifolds d_M, d+M. (In this case,
M is called a cobordism between d_M, d+M which are then
cobordant.) Take a real-valued function <f>, with a minimum along
9_ M and maximum along d+ M, and apply the general position technique.
Then d<f> is zero only at isolated points, the critical points of <f>, at each of
which there is a local coordinate system in which cf> has the form

4>(xlt ..., xj = c—Xj2-... — x

(Morse [1]); moreover, the values (c) of (j> at the critical points are all
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distinct. The integer A, the " index " of the singularity, is well-determined.
Morse applied this, together with the idea of studying the subsets
Ma = {PeM:<f>{P) ^ « } a s a increases, to obtain information about the
homology groups of M; he also applied it to function spaces, with important
consequences for the calculus of variations. Next it was noticed (Thorn
[2]) that information was obtained about the homotopy type of M;
an important application of this (Bott [1]) is the so-called Bott periodicity
theorem.

It was left to Smale [2] [3] to observe that this is relevant for diffeomor-
phism problems too. For example if M is compact and unbounded,
and the above is the only singularity with c— e ^.<f> ^c-\-e, then
Mc+e = M°~6}uhK. For the case above we deduce that if a<b are both
non-critical values, then Ma is obtained from Mb by adding a sequence
of handles. Thus M always has a handle decomposition based on d_ M.
I t follows also that d+ M can be obtained from d_ M by a series of spherical
modifications, so two manifolds are cobordant if and only if we can proceed
from one to the other by a series of spherical modifications.

The little book by Milnor [1] is an excellent reference for this result,
and for some of the main applications of Morse theory. In fact the
systematic use of functions instead of handles (c/. Cerf [3]) avoids the
necessity of discussing corners (technically, corners are a major nuisance),
but handles are probably more perspicuous.

Smale theory

The first results on classification (up to diffeomorphism, given certain
assumptions about homotopy type) were developed by Smale [3], [4], [5].
He used a few basic lemmas, the key one giving a means of cancelling
handles. Given Mvhr, as above, we will call the spheres Sr~1xO,
0 x /Sm~r-1 the a-sphere and the 6-sphere of the handle: the handle is
attached along the a-sphere, and the 6-sphere appears in the boundary

of the result. Then in (Myjfh
r)vgh

s, the a-sphere of hs and the 6-sphere
of hr both lie in d{M^>fh

r). If s < r , they are, if in general position,
disjoint, and it can then be seen that the order of attaching the two handles
can be interchanged. Thus in a handle decomposition, we can always
suppose the handles arranged in order of increasing dimension (Smale
expresses this with "n i ce" functions). If s = r + l , the spheres will
generally intersect transversely in a finite number of points. The key
lemma (Smale [5]) states that if they intersect transversly in a single
point, then (M KJ fh

r)^> gh
r+1 is diffeomorphic to M: the handles may

be cancelled. Under appropriate hypotheses, this can be strengthened:
if everything is simply-connected, and we make certain algebraic assump-
tions, arguments of Whitney [2] can be used to manoeuvre the spheres
to meet transversely in only one point provided 2 ̂ r <m—3 and ra ̂  6.
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There are special arguments for the other values of r if m ^ 5 (but none
tfr = 2,m = 5).

This leads to the ^-cobordism theorem (Smale [5]). A cobordism W
is an ft-cobordism if each inclusion d_W<=^W, d+W<^W is a homotopy
equivalence. If, in addition, W is compact, simply-connected, and of
dimension > 6, we can apply our techniques to get rid of all the handles,
so W is diffeomorphic to d_Wx I (and also d_W to d+W).

From this, Smale deduces several important consequences. For
example suppose Mm a submanifold without boundary of the compact
manifold Ww, that M <= W is a homotopy equivalence, that W and dW
are simply-connected, and that w ̂  6, w—m ̂  3. Then if T is a tubular
neighbourhood of M in W, W—Int T turns out to be an /^-cobordism;
it follows that W is also a tubular neighbourhood of M. In particular,
take M a point: then a compact contractible manifold Ww(iv ̂  6), with
simply-connected boundary, is diffeomorphic to the disc Dw. (W is called
contractible if it has the homotopy type of a point; equivalently, if the
identity map W->W is homotopic to a map which sends the whole of
W to a point). From this follows the Poincare conjecture: if Hw(w ^ 6)
is a smooth manifold, homotopy equivalent to the sphere Sw, we delete
the interior of an imbedded disc Dw, then the complement is contractible
with boundary S™'1, hence a disc, so 2™ can be obtained by attaching
two copies of Dw along the boundary. In particular, Hw is homeomorphic
to Sw (NOT in general diffeomorphic). The same holds for w = 5: we
can then show (using surgery: see below) that S5 bounds a contractible
6-manifold, so it is even diffeomorphic to #5. The Poincare conjecture
was also proved, by the same method, in Wallace [2].

As the Poincare conjecture is trivial for w ̂  2, only the cases w = 3,
w = 4 are outstanding. These are equivalent to validity of the cor-
responding cases of the ^-cobordism theorem. The case w = 5 of the
^-cobordism theorem would be more general; here it has been shown
(Barden, unpublished) that if there exists a diffeomorphism d_W->d+W
in the preferred homotopy class, it extends to a diffeomorphism of
d_WxI onto W. However, it would be more useful to have the diffeo-
morphism of d_W on d+W in the conclusion of the theorem. The proof
of this case of the theorem breaks down because of the absence of a
technique for separating imbedded 2-spheres in 4-manifolds. A counter-
example to the most obvious conjecture may be found in Kervaire and
Milnor [1]; for a discussion of known facts about simply-connected
4-manifolds, see Wall [1], [2].

Extensions and applications of Smale theory
Another theorem obtained by Smale [5] is the existence, on a simply-

connected manifold of dimension > 6 with simply-connected boundary
components, of handle decompositions with the smallest possible number



6 C. T. C. WALL

of handles necessary to give the correct homology groups. These
decompositions provide an extremely effective tool for classifying manifolds,
especially when the dimensions of the handles are all near half the dimension
of the manifold. Classifications may be found in Smale [6], Wall [3], [4],
Tamura [1], [2], [3]. Also, using surgery, the above theorem has been
extended to simply-connected closed 5-manifolds, and a complete classifi-
cation obtained (Barden [1]).

Simple-connectivity is not essential in the above. In particular,
the ^-cobordism theorem continues to hold if we now insist that the
inclusion d_W<^W be a simple homotopy equivalence in the sense of
Whitehead [1]: this result is due to Mazur [1], [2]. Mazur's work is full
of mistakes, but proofs have also been found by Barden [2] and Stallings.
The existence of handle decompositions with few handles is replaced by the
more complicated " non-stable neighbourhood theorem" (Mazur [2])
and its relative version (Mazur [3]: beware that the hypotheses given
in this paper are inadequate).

From the functional point of view, the ^-cobordism theorem appears
as follows. Let W be an /&-cobordism, / : W->[0, 1] a general map with
f(d_W)=0, f(B+W) = l. Then we can first arrange the singularities
of/in order (make/ " nice "), then cancel them, so that after a homotopy
/ ends without singularities. There are two generalisations of this. Using
paths in the function space, and deforming them into singularity-free
paths, Cerf [3] has shown that if F is a diffeomorphism of Mm X / , leaving
each end invariant, then there is a diffeomorphism of Mm X / , agreeing
with F on the ends, and preserving the /-coordinate (" concordance
implies diffeotopy " ) ; at least, if M is a sphere of dimension > 8. This
had been conjectured by Smale, and relates to some problems in Wall [4],

Secondly, we can replace / by another 1-manifold: S1, R, or R+.
Results have been obtained in these cases by using a special kind of surgery
to reduce to the ft-cobordism theorem. An open manifold Ww is called
simply-comiected at infinity if every compact subset is contained in a
compact subset whose complement is simply-connected. Suppose also
that w ^ 6, and that the homology groups of W are finitely generated.
Then there is a proper smooth function on W with only a finite number of
critical points, and W is diffeomorphic to the interior of a unique compact
manifold. Also, the A-cobordism theorem holds for such W, if we assume
simple connectivity. These results are due to Browder, Levine and Livesay
[1]. We also have the result (Browder [2]) that if Ww is the product
of R and a simply-connected topological manifold M, then it is diffeo-
morphic to the product of R and a unique smooth manifold N, /&-cobordant
to M. Browder and Levine have also shown that if Ww is a closed manifold
with all n^W) finitely generated abelian groups, w ^ 6 , and / : W-+S1

induces an isomorphism TTI{W)->TT1{S1) = Z, then / can be deformed to a
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function with no critical points, i.e. the projection map of a fibre bundle.
The same holds for any compact W, if we are given tha t / | dW is already
the projection of a fibre bundle.

Cobordism theory

We define above the terms " cobordism " and " cobordant ". It is
easy to see that being cobordant is an equivalence relation, and it is clearly
quite a crude relation. There are many variants on this relation, which the
following examples illustrate.

(i) A manifold Mm c Rm+r is said to be framed if we have an isomorphism
of a tubular neighbourhood with the product Mm X Dr. Two such framed
manifolds are cobordant (in the " framed " sense) if there is a framed
submanifold W of Rm + rx[0, 1] with d_W = M0

mx0, d+W = Mx
mx\,

provided with the given framings.

(ii) A manifold and submanifold Mm c Vv is called a pair. Two such
pairs are cobordant if there is a pair Nn+1 <= Wv+1 with d_W=V0,
d+W=Vv d_N{=N^d_W) = M0, d+N{=Nr^d+W) = Mx.

(iii) A manifold Mm and a m&$ f:Mm^>X are the objects: two such
objects are equivalent (" bordant ") if there is a manifold Nm+1 and
map F-.N^X, with d_N = M0, /0 = F\M0 and d+N = Ml3 fx = F\MX.

It turns out to be essential for the nontriviality of these relations that
all the manifolds concerned should be compact: otherwise, for example,
M is the boundary of M x [0, oo). Also, taking the disjoint union of two
manifolds is an addition relation compatible with cobordism, and leads
in all cases above (and most others which arise in practice) to the structure
of an abelian group on the set of cobordism classes.

Consider example (i). It is immaterial whether we consider Rm+r

or Sm+r (stereographic projection shows RTO+r^#m+r—point). We have
an imbedding/:MmxDr-+8m+r, with image N, say. Define a map of N
by first using/"1 :N^>MmxDr, then projecting on Dr, and finally identi-
fying Sr~1 = dDr to a point (oo). The resulting space is homeomorphic
to Sr. Since the frontier of N is mapped to oo, we can extend to a continu-
ous map of 8m+r by mapping the complement of N to oo. We have thus
constructed a continuous map Sm+r->Sr. This is called the Pontrjagin-
Thom construction, after its use in Pontrjagin [1], Thorn [3].

It is possible to reverse the procedure by putting an arbitrary map
Sm+r->8r in " general position with respect to a point of # r " , and defining
Mm as the inverse image of that point. Closer analysis shows that cobordism
of framed manifolds corresponds to homotopy of maps, and hence that
the construction defines an isomorphism of the group of framed cobordism
classes of manifolds Mm<^KmH', and the group of homotopy classes of
maps $m+r -> Sr, usually denoted 7rm+r (8

r). This result is due to Pontrj agin
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[1], and it was originally intended to apply knowledge of smooth manifolds
to homotopy theory (though recently, traffic has been mostly—but not
all—in the opposite direction).

Thorn's great paper [3] provided a comprehensive generalisation,
which makes it possible to reduce most of the interesting problems on
cobordism to homotopy theory, and settled completely the equivalence
problem for unrestricted cobordism (by doing the homotopy theory).

To describe the generalisation, we need some facts from fibre bundle
theory. We first give the definitions.

A map n:E->B is a " fibre map with fibre F " if every point in B
has a neighbourhood Ua, and a homeomorphism ha:UgLxF-*TT~1(Ua),
such that 7rha(b,f) = b. Suppose © a topological group which acts (on
the right) as a group of homeomorphisms of F. Then we have a cc fibre
bundle " if for every pair (a, /?) of indices above, there is a map
9afi: Uar\U0-+(& such that for beUar\Up, feF we have

We call E the total space, B the base, rr the projection, and @ the group
of the bundle.

The bundles described on p. 2 have fibre the disc Dv~m, and group the
orthogonal group in (v—m) dimensional space, Ov_m\ the definition there
is modified by requiring all maps in the definition to be smooth. This
modification does not affect the bundle theory.

If 7T:E->B is the projection of a fibre bundle, and f:B'->B any
continuous map, we define a space E' and map TT' :E' -+ B' by

E' = {(e, x): eeE, xeB', -n-(e) =/(«)}

and n (e, x) = x. I t is not difficult to check that this is the projection
of another fibre bundle: it is said to be induced by / from the former
bundle. We also have an induced map g:E'->E of the total spaces
defined by g(e, x) = e. Then Trg(e, x) = 7r(e) =f(x) =/7r'(e, x).

For any topological group @, there is a " classifying space " B®, and
for any space F on which © acts, a fibre bundle with projection n^ : E® -» B®,
fibre F and group @. Moreover, if TT : E^- B is the projection of any other
bundle with fibre F and group @, (and B is paracompact), there exists
a classifying map f:B-*B®, unique up to homotopy, such that n is
(equivalent to) the map induced from n^ by/ .

This concludes the necessary facts from bundle theory, for which we
refer the reader to Steenrod [1] (though the theory of classifying spaces
has been considerably improved since that book was written; see Dold [1]
andMilnor [11]).

Let © be a topological group, @ -> 0r a homomorphism, and suppose
the normal bundle of an imbedding Mm <= Rm+r provided with the structure
of a bundle with group ©. Then we have a classifying map f:M->B®,
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and an induced map of total spaces g: N^E®, where N is a tubular
neighbourhood of M. Now the boundary spheres of fibres form other
bundles with total spaces JSf, i£© (say), and g{J^)c&^.

Define the Thorn space T<$> as E&/E®, i.e. as E® with the subspace $©
identified to a point oo. Then g induces a map N->T<& which sends ft
to oo; as before, we can extend by mapping the rest of Sm+r to oo, and
so obtain an element of Trm+r{T<&). Thorn showed in [3] that 7rm+r(T©)
was isomorphic to the group of cobordism classes of closed m-manifolds
in Km+r with a normal bundle with group @; our first example was the
case © = {1} of this.

For unrestricted cobordism we use Whitney's result that Mm has an
essentially unique imbedding in Rm+r if r >ra. The normal bundle auto-
matically has group Or. Hence the cobordism group d\m of closed
m-manifolds is isomorphic to 7rm+r(TOf) if f> m. If we consider oriented
M, the normal bundle is also oriented and has group SOr, so we must
compute 7rm+r{TS0r).

We now indicate how this idea also allows us to reduce problems (ii)
and (iii) to homotopy theory. In case (ii), ohe exposition is again simplified
if we suppose Vv framed in Mm and Mm framed in Rm+r. Then pairs
(M1} Fx) and (M2, F2) are framed cobordant as pairs if and only if M1

and if2; also V1 and F2 are framed cobordant. For if W is a framed
cobordism of V1 to F2, glue W X Dm~v to Mx x / and M2xl; the boundary
of the result consists of i f l5 M2, and another piece which (our assumptions
imply) bounds a framed manifold.

M,

-w-

More generally, if the normal bundle of Mm in Rm+r is to have group @,
and that of Vv in Mm to have group H, then having a cobordism of pairs
(Mv F J and (M2, F2) is equivalent to having separate cobordisms of
Mx and M2 (with group ©) and of Vx and F2 (in Rm+r, with group @ xH).
This is due to Wall [10].

Definition (iii) is due to Atiyah [1]; and the associated theory may be
found there and in the book by Conner and Floyd [1]. The reason for
the name is that bordism groups of X, denoted ^\m(X), have the same
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formal properties as homology groups, and there is a dual set of " co-
bordism " groups, 9tm(X).

Suppose that we are considering a closed manifold JfmcRm + r , with
normal bundle with group ©, and a map <f>:M-*X. The classifying map
of the bundle/: M-*B$> is, as before, covered by a map g: N->E<$ with
g{N)<^l£<&. So we have gx<f>7T:N^E<&xX with {gx<f>7T){N)^£<sxX;
now, as before, the Thorn construction gives a map Sm+r^E® x X/]]]® x X.
If we write T©+ for the disjoint union of T© and a point, and A for the
ordinary " smash " product of homotopy theory, the last space is no
other that T® + Al , and Thorn's theorem identifies our group with

In particular, the bordism groups are given by %n{X) ^Trm+r(T or
+ A X)

(for r > m). One can now define the cobordism group 91m(Z) as the set
[Sm+rX: Tor] of homotopy classes of maps of the (m+r)-th suspension
of X to To, (for r > m). These are a typical example of the generalised
homology and cohomology theories which have received much attention
recently (see e.g. G. W. Whitehead [1]).

Computations of cobordism groups

For our first example of framed cobordism, we had to compute
homotopy groups of spheres, TTm+r(S

r). There is no simple answer here;
we refer the reader to Toda [1] for computations with m < 20.

More interesting is the case of unrestricted cobordism (Thorn [3]).
To describe the results in this case, we must assume some familiarity with
homology theory. The Hurewicz map

TTm+r(To,)-*Hm+r(TOr; Z2) (r>m)

is a monomorphism. An easy argument shows that this is equivalent to
saying that the cobordism class of a manifold Mm is determined by the
homomorphism

f*:H™(BOr; Z2)^H™(M; Z2)->Z2.

Now H*(Bor) Z2) is a polynomial algebra with generators w1...,wr

{wi in dimension i) called Stiefel-Whitney classes. Monomials in these of
dimension m form a base of Hm (Bor; Z2); the values of/* on these
basis elements are called Stiefel-Whitney numbers of M. These determine
the cobordism class of M, but are not independent.

The set of cobordism groups in all dimensions, 91 = {0lm}, is a graded
ring. Thorn also found the structure of 91: it is a polynomial ring modulo 2
with one generator in each dimension not of the form 23'— 1. A simplified
proof of all this is in Liulevicius [1].

If we consider oriented cobordism groups Qm, and so replace Or by
SOr, it is still true that the Hurewicz map

Z) (r>m)
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is a monomorphism, and hence that oriented cobordism class of M is
determined by a characteristic set of numbers; this time, as well as
Stiefel-Whitney numbers we need Pontrjagin numbers, which are integers
(but analogously defined). Modulo elements of finite order, this is due
to Thorn [3]; it was shown by Milnor [3] that the groups Q.m contain no
elements of odd order, and that modulo torsion elements we have a poly-
nomial ring with one generator in each dimension ik. The final deter-
mination of the Q.m (including multiplicative structure) was made in
Wall [11]. In addition to homotopy theory, this last paper used certain
exact sequences of which the main one is

Qvi ̂  Sftm LlS- Q,™-1091m"2 -^-3- ft7""1 -> Dl7'1"1.

Simplified proofs of this were given by Atiyah [1] and Wall [5]. Here, r
forgets orientation; d and d are defined geometrically, (and come from
an earlier paper by Rohlin).

In the case when © is the unitary group Ur (and 2r > m) the Hurewicz
homomorphism is again (1-1); cobordism class is determined by
characteristic numbers (called Chern numbers), and the cobordism ring
is a polynomial ring over the integers with a generator in each even
dimension. These results are due to Milnor [3].

The special unitary group SUr is at present being studied: its cobordism
groups are related to those of Ur by an exact sequence like the one above,
but where d and d lower dimensions by 2 and 4 respectively, and " 2 "
is replaced by composition with a Hopf map which raises dimension by
one and has order 2. (This is due, simultaneously, to Conner and Floyd
[2] and to Lashof and Rothenberg—unpublished). It follows easily
that all the torsion is of order 2. See also Conner and Floyd [3].

The symplectic and spinor groups are also of interest, but seem to be a
good deal more complicated. The other groups whose cobordism groups
are known have the form Or X © (or SOr or Ur); but cobordism groups for
this are (by a result above) isomorphic to unoriented bordism groups
of JT®, hence also (by the so-called Thorn isomorphism) to the unoriented
bordism groups of JB®. They were computed (with some restrictions
on © in the S0r and Ur cases) by Wall [10].

Unoriented bordism groups are easy to compute, since there is an
isomorphism W%{X)'z:i>)\<g)Hl¥(X; Z2) (natural in the technical sense
only) for any X. This follows easily from Thorn [3]. Conner and Floyd [1]
give some computations in the oriented case, when X is a K(Zp, 1); they
have since given analogous computations in the unitary case (notes,
Seattle, 1963). They also give methods of computation depending on
general properties of homology theories. Conner and Floyd apply their
results to equivariant cobordism groups and to difFerentiable periodic
maps, which are outside the scope of this survey; however, we refer to
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Conner [1] for a useful exact sequence for computing equivariant cobordism
groups.

A good expository account of Thorn theory is given by Milnor [2].

Homotopy spheres
One of the most germinal papers in differential topology was Milnor [4],

in which smooth manifolds are constructed which are homeomorphic
but not diffeomorphic to S7. Further papers (Milnor [5], Shimada [1],
Tamura [4]) generalised this to other dimensions. This raises the problem
of a complete diffeomorphism classification.

Two groups are of interest. If we wish to classify smooth manifolds
obtained by glueing together a pair of discs Dn, we must study the abelian
group Tn, quotient of the group of diffeomorphisms of S71'1 by the sub-
group of those which extend to Dn (see Milnor [6] for a discussion). It is
easier to compute the group 0n, whose elements are ft-cobordism classes
of homotopy w-spheres (i.e. smooth manifolds homotopy equivalent
to Sn), and with addition defined by the so-called connected sum of two
manifolds—let / l5 /2 imbed ?i-discs in the manifolds, delete the interiors
of the discs, and glue the boundaries by/2 o/j-1.

Smale theory gives a natural isomorphism Tn £ 071 for n > 6; also
(using the computation 0 5 = 0) for n = 5. It is elementary that both
groups vanish for n ^ 2; several proofs that F3 = 0 are known, and
Cerf [2] has shown T4 = 0. As 04 = 0, only 0 3 is in limbo: the Poincare'
conjecture, that every homotopy 3-sphere is homeomorphic to S3, would
imply 0 3 = 0.

The group Qn is computed using the method of surgery, initiated in
1959 in mimeographed notes by Milnor, and published in Milnor [7] and
Kervaire and Milnor [2], denoted henceforth by [KM]. The computation
is in three stages. Let Sn be a homotopy n-sphere: imbed it in Euclidean
space—or a sphere—of large dimension, say in Sn+N. Can it be
framed? The answer turns out to be always yes (using recent results
of J. F. Adams). Does it bound a framed manifold in Dn+N+1 ? Cobordism
theory shows that there is an obstruction to this, which lies in 7rn+N(SN).
This will vary if we change the framing; we can change it by rotating the
frame at each point according to some map Sn->80N, and the obstruction
changes by some element of the image of a homomorphism

Jn:iTn(SON)->Trn+N(S").

Thus the answer to our second question depends on our computing some
element of the cokernel of Jn. (The group TT^SON), and the behaviour
of Jn are known for all n; vn+N(SN) and hence Coker Jn are always finite,
and computations are now available for n ^ 20. See Toda [1].) Finally
we ask (a) which elements of Coker Jn are represented by homotopy
n-spheres, and (b) if En bounds a framed manifold, whether it bounds a
contractible manifold (and so determines 0e0 n ) .
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In each case we have a framed manifold, and want a simpler one.
The idea of surgery is to take a manifold and by successive spherical
modifications, carefully chosen, to make it simpler in some sense. Here
we wish to kill the homotopy groups, and to ensure that any map of a
sphere 8* into a manifold Mm can be extended to a map of Di+1. If
m > 2i, any map / : 8i->Mm can be made an imbedding, by putting it in
general position. One also shows that if Mm is framed in Sm+N, /(#*)
is framed in M, so we have an imbedding Sl X Dm~i^-Mm and can perform
a spherical modification. This has the effect, if m > 2i-fl, of killing the
homotopy class of maps Si^Mm that we started from. I t is shown in
Milnor [7] that by a judiciously chosen sequence of such modifications,
any framed Mm, with m = 2k or 2&+1, can be made (/c—1)-connected
(i.e. so that any subcomplex of dimension < (k—1) can be pulled to a point
in Mm). If we could make M ^-connected, the Poincare' duality theorem
shows that we have attained our objective: for (a) M is a homotopy
sphere, for (b) M is contractible.

However, the last step is more difficult. For m odd, it can always be
accomplished (Wall [6], [KM])—the proofs for m = l , 3 are unrelated
to the case ra > 5. If m = 4fc, there is an integer obstruction a(M) called
the signature of M, which is divisible by 8 for framed manifolds; if
m = 4&+2, there is a somewhat mysterious mod 2 obstruction <&{M),
which arises as the Arf invariant of a certain quadratic form mod 2 (again
see [KM]): except when m = 4, the vanishing of the obstruction is
sufficient to allow us to complete the surgery.

This gives a fairly good answer to (a) and (b) above; to complete it,
we note that o(M) vanishes for a closed framed manifold, and that if
E4A:~1 bounds a framed manifold M^k, £ only determines a(M) up to
adding some multiple of a certain integer ik(M), also explicitly known.
In particular, all the Qn are finite, except possibly 03.

There is a neater way, found by Kervaire, to express these results
(intended to be published as a sequel to [KM]). Define two further
cobordism groups; An by closed manifolds, framed except at a point,
and Pn by framed manifolds with homotopy sphere boundaries. There
are homomorphisms Qn->An (pick a framing on the contractible comple-
ment of a point), An->Pn (remove a neighbourhood of the bad point)
and Pn-^.Qn~1 (take the boundary). A simple geometrical argument
shows the sequence

... Pn+1 -> 0 n -> An -> Pn -> 071-1...

to be exact. Although our surgery was described for Q11, a re-analysis
(via handles instead of spherical modifications) shows that they compute
P^as :

pw = 0 (nodd), ^ Z 2 (7i = 4&+2), = Z (w = 4
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The group A11 lies in another exact sequence

so is known from homotopy theory; the map An^-Pn is known when
n = ik (so both are infinite). A key problem is the computation of the
map An-^Pn^Z2 when n = 4fc+2; it is nonzero for n = 2, 6, 14 [KM]
and zero for n= 10 (Kervaire [1]) and 18 (Kervaire, unpublished). An
approach to this has been made by Novikov [3] and Brown and Peterson [1];
this has now led to a proof (Brown and Peterson, unpublished) that the
map is zero when n = 8k-{-2 > 2.

Knots

A more recent application of surgery is to the classification of smooth
knots of spheres in spheres. Analogous to 0n, consider the set Qd

n of
homotopy n-spheres in Sn+d, modulo /&-cobordisni (of pairs). This again
has a group structure. If d ^ 3, n ^ 5, ̂ -cobordant pairs are diffeomorphic,
by a further result of Smale [5]: this is definitely false for d = 2. The
condition n ^ 5, however, is unnecessary if the Poincare conjecture holds
in dimensions 3 and 4. Let Pd

n+1 be the cobordism group defined by
framed manifolds in Sn+d with boundary a homotopy n-sphere. Let
®d be the space of maps of S^1 to itself which are homotopic to the identity;
this has as a subspace the rotations, SOd. Then there is an exact sequence

proved by similar, but more complicated geometric methods. Now it
turns out that to compute Pd

n for d ̂  2 we can proceed as for Pn, but
do the surgeries inside the sphere Sn+d, and so Pd

n<^Pn. In principle
this solves the knot problem for d > 2 (if n ^ 5). For d ̂  3, these results
are due to Levine [1], (Levine's argument is presented only for n ^ 5,
but is easy to improve), and for d = 2 to Kervaire. (Kervaire's arguments
work only if n is even.). Observe that if d = 1, the 2 n separates Sn+1 into
two contractible manifolds, hence if n ^ 5 it is unknotted, and in any case
0J71 vanishes. Before the paper of Levine [1], some information had been
obtained by Hsiang, Levine and Szczarba [1] for the case 2d>n-\-\ and
by Haefliger [3] for 2d = n+Z. It follows from the exact sequences that
Qa

n is finite except when n = ik—1, d < 2&+1, which (if k =£ 1) is the
sum of an infinite cyclic and a finite group; possibly 0d

3 (d ̂  4), which
is infinite if 0 3 is; and 02

2fc+1, which is not finitely generated (Fox and
Milnor [1 ]—the proof uses Alexander polynomials—if k = 0; for k — 0,
this is due to Kervaire).

If d = 2, the failure of the A-cobordism theorem means that 02
W no

longer gives a complete classification. For example, we have the following
theorem (Wall [7]): Let Lr be any cell-complex such that a 2-cell can be
attached to make it contractible, n > 2r—3, n > 3. Then there is a smooth
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knotted w-sphere in Sn+2 with complement C, which has the same homotopy
type as L " up to dimension n—r+1 ". From this can be deduced the
result (due to Kervaire) that the class of groups @ = ^(C), where C is the
complement of some imbedding of Sn in Sn+2, is independent of n if n ^ 3.
Such @ are characterized by being finitely presented, satisfying H^®) = Z,
H2(®) = 0, and having an element whose conjugates generate the group.

These show the variety of knots when d = 2. In the opposite direction
we have the following result of Levine. Let n ^ 4, K be a
knotted w-sphere in Sn+2, with complement C such that all TT^C) are
finitely generated abelian groups (in particular ^ (CJ^Z) . Then G is a
smooth fibre bundle over a circle, such that the closure in Sn+2 of each fibre
is a submanifold with boundary K. In particular if C is homotopy equiva-
lent to a circle, K is unknotted. (Levine [2]). This is an extension of an
analogous result when n=l, due to Neuwirth [1] and Stallings [1].

Finally, there is a general construction of spinning, due in origin to
Artin, and generalised recently by Zeeman [1] to twist-spinning (in a
somewhat different setting). A comprehensive recent generalisation
of this is due to Hsiang and Sanderson [1]; they have a formulation which,
on A-cobordism classes, yields a map

cf>: 0d« X 7re(<Sf0n) X 7re(S0d) -> 0/+* :

when d = 2, the construction applies to actual knots, not merely equivalence
classes. The map <f> seems to generalise pairings found by Milnor [5], [8],
Munkres [1] and Novikov [1] and used (inter alia) to study homotopy
groups of diffeomorphisms of spheres.

Diffeomorphism classifications

We have already mentioned, as applications of Smale theory, numerous
classifications which have been performed under strict assumptions on
homotopy type. A more general approach is due to Novikov [2]. Let
Mm be a smooth, compact, simply-connected manifold without boundary.
We seek to classify up to diffeomorphism other such manifolds, of the
same homotopy type as M. First note that if K^m-\-\, there is an
essentially unique imbedding of Mm in Rm+#: the normal bundle of this
is our first diffeomorphism invariant of M-. Let Nm+K be a corresponding
tubular neighbourhood, JV" its boundary, T obtained from N by identifying
JSf to a point. Then T is also obtained from Rwl+#—or let us say, Sm+K—
by identifying also the complement of N to a point. The corresponding
map Sn+K^T defines a homotopy class of degree 1 in 7rm+E(T); this
(or rather, its equivalence class under bundle automorphisms of N) is the
second diffeomorphism invariant.

There remain two problems, first to see which invariants correspond
to smooth manifolds and second to see when two manifolds can have the
same invariants: these are treated similarly, so we discuss the first.
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Given a map Sm+K->T of degree 1, we put it in "general position";
then the inverse image of M is a smooth submanifold Vm of Rm+K. Now
proceed (as with homotopy spheres) to do surgery, only instead of killing
the homotopy groups of V, we kill the relative homotopy groups of the
map V->M, so as to make the map a homotopy equivalence. It turns
out that the same arguments apply, with the result, first that if m ^ 6,
we can obtain a homotopy equivalence, provided m is odd, or m = ik
and the signature satisfies a certain condition, ov m = ik-\-2 and a mod 2
condition (related to the Arf invariant) is satisfied. Next, if m ^ 5, the
resulting manifold is unique up to connected sum with a homotopy sphere
Sm which bounds a framed manifold (the proof of this uses the /i-cobordism
theorem).

The idea was extended by Browder [1] to the case where M is not
even a smooth manifold, but just a C.W. complex satisfying Poincare*
duality—given a bundle N, defining a " Thorn space " T, and a homotopy
class of degree 1 in 7Tm+K(T), the above results remain valid. In particular,
if m ^ 2 (mod 4), we obtain a necessary and sufficient condition for a
C.W. complex which is simply connected to have the homotopy type of
a smooth manifold. Combining this with an earlier result, Browder
deduces that if M is a finite simply-connected C.W. complex which has
a continuous multiplication with 2-sided unit, then (subject to reservations
when m = 2 (mod 4)) M has the homotopy type of a closed framed smooth
manifold.

Extensions have been obtained by Wall [8] and Golo [1], by showing
that the results can be extended to manifolds with boundary; indeed,
if both manifold and boundary are connected and simply-connected,
a stronger result is obtained: surgery is always possible, and the resulting
manifold is always unique, under suitable dimensional restrictions (slightly
different for the two results)—which need only be of the form m ^ 6,
2K >ra- |- l . A further paper of Wall [7] investigates the non simply-
connected case: here surgery in the middle dimension is held up by
formidable algebraic problems, which are only (as yet) tackled when the
fundamental group is cyclic of prime order. This can be applied to the
problem of diffeomorphism classification of smooth manifolds homotopy
equivalent to real projective space Pn: here some nontrivial examples are
given by Hirsch and Milnor [1]; the results of Wall [7], with those of
another unpublished paper of W. Browder and G. R. Livesay, prove the
number of classes finite if n ^ 5.

Other topics

Our selection of subjects for discussion was made for homogeneity
of method. This leads to certain omissions, of which we have already
mentioned immersions and imbeddings, and differentiable periodic maps
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We have also omitted most results on 2- and 3-manifolds, which are usually
obtained by rather special techniques: I do not know any good survey
articles on the subject since Papakyriakopoulos [1]: see also the book
containing Stallings [1]. The study of singularities of differentiable
mappings is in a state of flux at present, being dominated by unpublished
results of Thorn and a recent theorem of Malgrange (Cartan seminar
notes, 1962/63), so is not ripe for survey. However, the theory of smooth-
ings of combinatorial manifolds, starting in 1958, has reached fairly
definitive results (not quite yet published): however, most of the diffi-
culties here arise from the combinatorial manifolds, and the theory is
not directly relevant to the study of smooth manifolds per se (though one
good application is given by Hirsch and Milnor [1], and no doubt there
will be others). Good preliminary reading for this is a little book by
Munkres [2].

The following are introductory accounts of differential topology.
A book by Lang [1] gives only the most elementary geometry, but that in
a highly abstract setting. A long paper by Cerf [1] contains many
foundational results about spaces of smooth maps between smooth mani-
folds. We have already mentioned Milnor [1] and Munkres [2]. There
are also duplicated lecture notes by Milnor [9], [10] and Wall [9]: it was
the former of these which first introduced the term " differential topology ".

References

M. F. Atiyah
1. " Bordism and cobordism ", Proc. Cambridge Phil. Soc, 57 (1961), 200-208.

D. Barden
1. Simply-connected 5-manifolds (Notes, Cambridge University, 1964).
2. The structure of manifolds (Notes, Cambridge University, 1964).

R. Bott
1. " The stable homotopy of the classical groups ", Annals of Math., 70 (1959), 313-337.

W. Browder
1. "Homotopy type of differentiable manifolds", Notes, Colloquium on Algebraic

Topology Aarhus, 1962, 42-46.
2. Structures on M x R , (Notes, Cambridge University, 1964).

W. Browder, J. Levine and G. R. Livesay
1. Finding a boundary for an open manifold (Notes, Cambridge University, 1964).

E. H. Brown and F. P. Peterson
1. " Whitohead products and oohomology operations", Quart. J. of Math. (Oxford),

15 (1964), 116-J20.

J. Cerf
1. " Topologie de cortains espaces de plongements ", Bull. Soc. Math. France, 89 (1961),

227-380.
2. " La nullite du groupe T4 ", Seir. H. Cartan, Paris, 1962/63, Nos. 8, 9, 10, 20, 21.
3. " One parameter Smale theory ", (to appear).

P. E. Conner
1. " A bordism theory for actions of an abelian group ", Bull. American Math. Soc, 69

(1963), 244-247.
JOUR. 157 C



18 C. T. C. WALL

P. E. Conner and E. E. Floyd
1. Differentiate periodic maps (Springer: Berlin, 1964).
2. " The SE/-bordism theory ", Bull. American Math. Soc, 70 (1964), 670-675.

3 . " Torsion in S£7-bordism ", (to appear).

A. Dold

1. " Partitions of unity in the theory of fibrations ", Annals of Math., 78 (1963), 223-255.

R. Fox and J. Milnor
1. " Singularities of 2-spheres in 4-space and equivalence of knots", Bull. American

Math. Soc, 63 (1957), 406.
V. L. Golo

1. "Smooth structures on manifolds with boundary" (in Russian) Doklady Akad.

Nauk. S.S.S.R., 157 (1964), 22-25.

A. Haefliger
1. " Plongements differentiables de vari6tes dans variet6s ", Comm. Math. Helvetici,

36 (1961), 47-82.
2. "Plongements differentiables dans le domaine stable", Comm. Math. Helvetici,

37 (1963), 155-176.

3. " Knotted (4fc— 1) spheres in 6&-space ", Annals of Math., 75 (1962), 452-466.

A. Haefliger and M. W. Hirsch
1. " Immersions in the stable range ", Annals of Math., 15 (1962), 231-241.
2. "On the existence and classification of differentiablo embeddings ", Topology, 2

(1963), 129-135.

M. W. Hirsch

1. " Immersions of manifolds ", Trans. American Math. Soc, 93 (1959), 242-276.

M. W. Hirsch and J. Milnor
1. "Some curious involutions of spheres", Bull. American Math. Soc, 70 (1964),

372-377.

W. C. Hsiang, J. Levine and R. H. Szczarba
1. "On the normal bundle of a homotopy sphere embedded in Euclidean space",

(to appear in Topology, 3 (1964) ).
W. C. Hsiang and B. J. Sanderson.

1. " Twist-spinning spheres in spheres ", (to appear).

M. A. Kervaire
1. " A manifold which does not admit any differentiable structure", Comm. Math.

Helvetici, 34 (1960), 257-270.

M. A. Kervaire and J. W. Milnor
1. "On 2-spheres in 4-manifolds ", Proc Nat. Acad. Sci. U.S.A., 47 (1961), 1651-1657.
2. " Groups of homotopy spheres (I) ", Annals of Math., 77 (1963), 504-537.

S. Lang
1. Introduction to differentiable manifolds (Interscience: New York, 1962).

J. Levine
1. A classification of differentiable knots (Notes, Cambridge University, 1964).
2. " Unknotting homology spheres in codimension 2 " (to appear in Topology).

A. Liulevicius
1. " A proof of Thorn's theorem ", Comm. Math. Helvetici, 37 (1962), 121-131.

B. Mazur
1. " Simple neighbourhoods ", Bull. American Math. Soc, 68 (1962), 87-92.
2. "Differential topology from the point of view of simple homotopy theory", Publ.

Math. I.H.E.S. No. 15 (1963). Errata in ibid., No. 22 (1964) 81-91.
3 . " Relative neighbourhoods and the theorems of Smale ", Annals of Math., 77 (1963),

232-249.
J. Milnor

1. Morse theory, Ann. of Math. Studies, No. 51 (Princeton, 1963).
2. Lectures on characteristic classes (Princeton University, 1957).



TOPOLOGY OF SMOOTH MANIFOLDS ii)

3. " On tlie cobordism ring Q* and a complex analogue ", American J. of Math., S2
(1960), 505-521.

4. " On manifolds homeomorphic to the 7-sphere ", Annals of Math., 64 (1956), 399-405.
5. " Differentiable structures on spheres ", American J. of Math., 81 (1959), 962-972.
6. " Sommes do varietes differentiables et structures differentiables de spheres ",

Bull. Soc. Math. France, 87 (1959), 439-444.
7. " A procedure for killing the hornotopy groups of differentiable manifolds ", American

Math. Soc. Symp. in Pure Math. Ill (1961), 39-55.
8. " Diffeomorphisms of a sphere ", (to appear).
9. Differential topology (Lecture notes, Princeton, 1958).

10. Differential structures (Lecture notes, Princeton, 1961).
11. " Construction of universal bundles (II) ", Annals of Math., 63 (1956), 430-436.

M. Morse
1. The calculus of variations in the large, American Math. Soc. Coll. Publ. No. 18 (New

York, 1934).

J. R. Munkres
1. " Killing exotic spheres " (to appear).
2. Elementary differential topology, Ann. of Math. Studies No. 54 (Princeton, 1963).

L. Neuwirth
1. " The algebraic determination of the genus of a knot ", American J. of Math., 82

(1960), 791-798.

K. Nomizu
1. " Lie groups and differential geometry ", Ptibl. Math. Soc. Japan, No. 2, 1956.

S. P. Novikov
1. " Homotopy properties of the group of diffeomorphisms of a sphere ", Doklady Akad.

Nauk. S.S.S.R.", 148 (1963), 32-35 = Soviet Math. Doklady, 4 (1963), 27-31.
2. " Diffeomorphisms of simply connected manifolds ", Doklady Akad. Nauk. S.S.S.R.,

143 (1962), 1046-1049 = Soviet Math. Doklady 3 (1962), 540-543.
3. " Some properties of (4fc + 2)-dimensional manifolds ", Doklady Akad. Nauk. S.S.S.R.,

153 (1963), 1005-1008 = Soviet Math. Doklady, 4 (1963), 1768-1772.

C. D. Papakyriakopoulos
1. "The theory of 3-dimensional manifolds since 1950", Proc. Internat. Congr. Math.

Edinburgh (Cambridge, 1960), 433-440.

L. Pontrjagin
1. " Smooth manifolds and their applications in homotopy theory ", American Math.

Soc. translations, Series 2, 11, 1-114.

N. Shimada
1. "Differentiable structures on the 15-sphere, and Pontrjagin classes of certain mani-

folds ", Nagoya Math. J., 12 (1957), 59-69.

S. Smale
1. " A survey of some recent developments in differential topology ", Bull. American

American Math. Soc, 69 (1963), 131-145.
2. " On gradient dynamical systems ", Annals of Math., 74 (1961), 199-206.
3. " Generalized Poincare's conjecture in dimensions greater than 4 ", Annals of Math.,

14: (1961), 391-406.
4. " Differentiable and combinatorial structures on manifolds ", Annals of Math.,

74 (1961), 498-502.
5. " On the structure of manifolds ", American J. of Math., 84 (1962), 397-399.
6. " On the structure of 5-manifolds ", Annals of Math., 75 (1962), 38-46.

J. Stallings
1. " On fibering certain 3-manifolds ", Topology of Z-manifolds and related topics, Ed.

M. K. Fort Jr. (Prentice-Hall, 1962), 95-100.
N. E. Steenrod

1. The topology of fibre bundles (Princeton, 1951).



20 TOPOLOGY OP SMOOTH MANIFOLDS

I. Tamura
1. " Differentiate 7-manifolds with a certain homotopy type ", J. Math. Soc. Japan,

14 (1962), 292-299.
2. " Classification des varietes differentiables, (n— l)-connexes, sans torsion, de dimension

(2n+l) ", Sem H. Cartan, Paris, 1962/63, No. 16-19.
3. On the classification of sufficiently connected manifolds (Notes, Cambridge University,

1964).
4. " Homeomorphy classification of total spaces of sphere bundles over spheres ",

J. Math. Soc. Japan, 10 (1958), 29-43.

R. Thorn
1. "Un lemme sur les applications differentiables ", Bol. Soc. Mat. Mex., 1 (1956), 59-71.
2. " Sur une partition en cellules associee a une fonction sur une vari6te", C. R. Acad.

Sci. Paris, 228 (1949), 973-975.
3. " Quelques proprietes globales des vari6tes differentiables", Comm. Math. Helvetici,

28 (1954), 17-86.
H. Toda

1. Composition methods in homotopy groups of spheres, Ann. of Math. Studies No. 49
(Princeton, 1962).

0. Veblen and J. H. C. Whitehead
I. Foundations of differential geometry (Cambridge, 1932).

C. T. C. Wall
1. " Diffeomorphisms of 4-manifolds ", Journal London Math. Soc, 39 (1964), 131-140.
2. " On simply-connected 4-manifolds ", Journal London Math. Soc, 39 (1964), 141-149.
3. "Classification of (n—l)-connected 2?i-manifolds ", Annals of Math., 75 (1962),

163-189.
4. "Classification problems in differential topology, (I), (II) ...", Topology, 2 (1963),

253-261, . . . .
5. " Cobordism exact sequences for differential and combinatorial manifolds ", Annals

of Math., 77 (1963), 1-15.
6. "Killing the middle homotopy group of odd dimensional manifolds", Trans.

American Math. Soc, 103 (1962), 421-433.
7. Surgery of non simply-connected manifolds (Notes, Cambridge University, 1964).
8. An extension of results of Novikov and Browder (Notes, Cambridge University, 1964).
9. Differential topology (0), (J), (II), (IV) (Lecture notes, Cambridge, 1962, 1964).

10. " Cobordism of pairs ", Gomin. Math. Helvetici, 35 (1961), 136-145.
I I . " Determination of the cobordism ring ", Annals of Math., 72 (1960), 292-311.

A. H. Wallace
1. " Modifications and cobounding manifolds ", Canadian J. of Math., 12 (1960), 503-528.
2. " Modifications and cobounding manifolds (II) ", J. Math. Mech., 10 (1961), 733-809.

G. W. Whitehead
1. " Generalized homology theories ", Trans. American Math. Soc, 102 (1962), 227-283.

J. H. C. Whitohead
1. " Simple homotopy types ", American J. of Math., 72 (1950), 1-57.

H. Whitney
1. " Differentiate manifolds ", Annals of Math., 37 (.1936), 645-680.
2. "The self-intersections of a smooth n-manifold in 2n-space ", Annals of Math., 45

(1944), 220-246.

E. C. Zeeman
1. " Twisting spun knots, " Trans. American Math. Soc (to appear).

Mathematical Institute,
10 Parks Road,

Oxford.


