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Smooth Manifolds

This book is about smooth manifolds. In the simplest terms, these are
spaces that locally look like some Euclidean space Rn, and on which one
can do calculus. The most familiar examples, aside from Euclidean spaces
themselves, are smooth plane curves such as circles and parabolas, and
smooth surfaces such as spheres, tori, paraboloids, ellipsoids, and hyper-
boloids. Higher-dimensional examples include the set of unit vectors in
Rn+1 (the n-sphere) and graphs of smooth maps between Euclidean spaces.

The simplest examples of manifolds are the topological manifolds, which
are topological spaces with certain properties that encode what we mean
when we say that they “locally look like” Rn. Such spaces are studied
intensively by topologists.

However, many (perhaps most) important applications of manifolds
involve calculus. For example, most applications of manifold theory to
geometry involve the study of such properties as volume and curvature.
Typically, volumes are computed by integration, and curvatures are com-
puted by formulas involving second derivatives, so to extend these ideas
to manifolds would require some means of making sense of differentia-
tion and integration on a manifold. The applications of manifold theory
to classical mechanics involve solving systems of ordinary differential equa-
tions on manifolds, and the applications to general relativity (the theory
of gravitation) involve solving a system of partial differential equations.

The first requirement for transferring the ideas of calculus to manifolds
is some notion of “smoothness.” For the simple examples of manifolds we
described above, all of which are subsets of Euclidean spaces, it is fairly
easy to describe the meaning of smoothness on an intuitive level. For ex-
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Figure 1.1. A homeomorphism from a circle to a square.

ample, we might want to call a curve “smooth” if it has a tangent line that
varies continuously from point to point, and similarly a “smooth surface”
should be one that has a tangent plane that varies continuously from point
to point. But for more sophisticated applications it is an undue restric-
tion to require smooth manifolds to be subsets of some ambient Euclidean
space. The ambient coordinates and the vector space structure of Rn are
superfluous data that often have nothing to do with the problem at hand.
It is a tremendous advantage to be able to work with manifolds as ab-
stract topological spaces, without the excess baggage of such an ambient
space. For example, in general relativity, spacetime is thought of as a 4-
dimensional smooth manifold that carries a certain geometric structure,
called a Lorentz metric, whose curvature results in gravitational phenom-
ena. In such a model there is no physical meaning that can be assigned
to any higher-dimensional ambient space in which the manifold lives, and
including such a space in the model would complicate it needlessly. For
such reasons, we need to think of smooth manifolds as abstract topological
spaces, not necessarily as subsets of larger spaces.

It is not hard to see that there is no way to define a purely topological
property that would serve as a criterion for “smoothness,” because it cannot
be invariant under homeomorphisms. For example, a circle and a square in
the plane are homeomorphic topological spaces (Figure 1.1), but we would
probably all agree that the circle is “smooth,” while the square is not. Thus
topological manifolds will not suffice for our purposes. As a consequence,
we will think of a smooth manifold as a set with two layers of structure:
first a topology, then a smooth structure.

In the first section of this chapter we describe the first of these structures.
A topological manifold is a topological space with three special properties
that express the notion of being locally like Euclidean space. These prop-
erties are shared by Euclidean spaces and by all of the familiar geometric
objects that look locally like Euclidean spaces, such as curves and surfaces.
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We then prove some important topological properties of manifolds that we
will use throughout the book.

In the next section we introduce an additional structure, called a smooth
structure, that can be added to a topological manifold to enable us to make
sense of derivatives.

Following the basic definitions, we introduce a number of examples of
manifolds, so you can have something concrete in mind as you read the
general theory. At the end of the chapter we introduce the concept of a
smooth manifold with boundary, an important generalization of smooth
manifolds that will be important in our study of integration in Chapters
14–16.

Topological Manifolds

In this section we introduce topological manifolds, the most basic type of
manifolds. We assume that the reader is familiar with the basic properties
of topological spaces, as summarized in the Appendix.

SupposeM is a topological space. We say thatM is a topological manifold
of dimension n or a topological n-manifold if it has the following properties:

• M is a Hausdorff space: For every pair of points p, q ∈ M , there are
disjoint open subsets U, V ⊂M such that p ∈ U and q ∈ V .

• M is second countable: There exists a countable basis for the topology
of M .

• M is locally Euclidean of dimension n: Every point of M has a
neighborhood that is homeomorphic to an open subset of Rn.

The locally Euclidean property means, more specifically, that for each
p ∈M , we can find the following:

• an open set U ⊂M containing p;

• an open set Ũ ⊂ Rn; and

• a homeomorphism ϕ : U → Ũ .

� Exercise 1.1. Show that equivalent definitions of locally Euclidean
spaces are obtained if instead of requiring U to be homeomorphic to an
open subset of Rn, we require it to be homeomorphic to an open ball in Rn,
or to Rn itself.

IfM is a topological manifold, we often abbreviate the dimension ofM as
dimM . In informal writing, one sometimes writes “Let Mn be a manifold”
as shorthand for “Let M be a manifold of dimension n.” The superscript
n is not part of the name of the manifold, and is usually not included in
the notation after the first occurrence.
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The basic example of a topological n-manifold is, of course, Rn. It is
Hausdorff because it is a metric space, and it is second countable be-
cause the set of all open balls with rational centers and rational radii is
a countable basis.

Requiring that manifolds share these properties helps to ensure that
manifolds behave in the ways we expect from our experience with Euclidean
spaces. For example, it is easy to verify that in a Hausdorff space, one-point
sets are closed and limits of convergent sequences are unique (see Exercise
A.5 in the Appendix). The motivation for second countability is a bit less
evident, but it will have important consequences throughout the book,
mostly based on the existence of partitions of unity (see Chapter 2).

In practice, both the Hausdorff and second countability properties are
usually easy to check, especially for spaces that are built out of other man-
ifolds, because both properties are inherited by subspaces and products
(Lemmas A.5 and A.8). In particular, it follows easily that any open sub-
set of a topological n-manifold is itself a topological n-manifold (with the
subspace topology, of course).

The way we have defined topological manifolds, the empty set is a topo-
logical n-manifold for every n. For the most part, we will ignore this special
case (sometimes without remembering to say so). But because it is useful
in certain contexts to allow the empty manifold, we have chosen not to
exclude it from the definition.

We should note that some authors choose to omit the Hausdorff property
or second countability or both from the definition of manifolds. However,
most of the interesting results about manifolds do in fact require these
properties, and it is exceedingly rare to encounter a space “in nature” that
would be a manifold except for the failure of one or the other of these
hypotheses. For a couple of simple examples, see Problems 1-1 and 1-2; for
a more involved example (a connected, locally Euclidean, Hausdorff space
that is not second countable), see [Lee00, Problem 4-6].

Coordinate Charts

Let M be a topological n-manifold. A coordinate chart (or just a chart)
on M is a pair (U,ϕ), where U is an open subset of M and ϕ : U → Ũ

is a homeomorphism from U to an open subset Ũ = ϕ(U) ⊂ Rn (Figure
1.2). By definition of a topological manifold, each point p ∈M is contained
in the domain of some chart (U,ϕ). If ϕ(p) = 0, we say that the chart is
centered at p. If (U,ϕ) is any chart whose domain contains p, it is easy to
obtain a new chart centered at p by subtracting the constant vector ϕ(p).

Given a chart (U,ϕ), we call the set U a coordinate domain, or a coor-
dinate neighborhood of each of its points. If in addition ϕ(U) is an open
ball in Rn, then U is called a coordinate ball. The map ϕ is called a (local)
coordinate map, and the component functions (x1, . . . , xn) of ϕ, defined by
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U

Ũϕ

Figure 1.2. A coordinate chart.

ϕ(p) = (x1(p), . . . , xn(p)), are called local coordinates on U . We will some-
times write things like “(U,ϕ) is a chart containing p” as shorthand for
“(U,ϕ) is a chart whose domain U contains p.” If we wish to emphasize
the coordinate functions (x1, . . . , xn) instead of the coordinate map ϕ, we
will sometimes denote the chart by (U, (x1, . . . , xn)) or (U, (xi)).

Examples of Topological Manifolds

Here are some simple examples of topological manifolds.

Example 1.1 (Graphs of Continuous Functions). Let U ⊂ Rn be an
open set, and let F : U → Rk be a continuous function. The graph of F is
the subset of Rn × Rk defined by

Γ(F ) = {(x, y) ∈ R
n × R

k : x ∈ U and y = F (x)},
with the subspace topology. Let π1 : Rn × Rk → Rn denote the projection
onto the first factor, and let ϕF : Γ(F ) → U be the restriction of π1 to
Γ(F ):

ϕF (x, y) = x, (x, y) ∈ Γ(F ).

Because ϕF is the restriction of a continuous map, it is continuous; and it
is a homeomorphism because it has a continuous inverse given by

(ϕF )−1(x) = (x, F (x)).

Thus Γ(F ) is a topological manifold of dimension n. In fact, Γ(F ) is home-
omorphic to U itself, and (Γ(F ), ϕF ) is a global coordinate chart, called
graph coordinates. The same observation applies to any subset of Rn+k de-
fined by setting any k of the coordinates (not necessarily the last k) equal
to some continuous function of the other n, which are restricted to lie in
an open subset of R

n.
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Figure 1.3. Charts for Sn.

Example 1.2 (Spheres). Let Sn denote the (unit) n-sphere, which is
the set of unit vectors in Rn+1:

S
n =

{
x ∈ R

n+1 : |x| = 1
}
,

with the subspace topology. It is Hausdorff and second countable because
it is a topological subspace of R

n. To show that it is locally Euclidean, for
each index i = 1, . . . , n + 1 let U+

i denote the subset of Sn where the ith
coordinate is positive:

U+
i =

{(
x1, . . . , xn+1

) ∈ S
n : xi > 0

}
.

(See Figure 1.3.) Similarly, U−
i is the set where xi < 0.

Let Bn = {x ∈ Rn : |x| < 1} denote the open unit ball in Rn, and let
f : Bn → R be the continuous function

f(u) =
√

1 − |u|2.
Then for each i = 1, . . . , n+1, it is easy to check that U+

i ∩Sn is the graph
of the function

xi = f
(
x1, . . . , x̂i, . . . , xn+1

)
,

where the hat over xi indicates that xi is omitted. Similarly, U−
i ∩ S

n is
the graph of

xi = −f
(
x1, . . . , x̂i, . . . , xn+1

)
.
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Figure 1.4. A chart for RPn.

Thus each set U±
i ∩ Sn is locally Euclidean of dimension n, and the maps

ϕ±
i : U±

i ∩ Sn → Bn given by

ϕ±
i

(
x1, . . . , xn+1

)
=

(
x1, . . . , x̂i, . . . , xn+1

)
are graph coordinates for Sn. Since every point in Sn is in the domain of
at least one of these 2n+ 2 charts, Sn is a topological n-manifold.

Example 1.3 (Projective Spaces). The n-dimensional real projective
space, denoted by RPn (or sometimes just Pn), is defined as the set of
1-dimensional linear subspaces of Rn+1. We give it the quotient topology
determined by the natural map π : Rn+1 r {0} → RPn sending each point
x ∈ R

n+1
r{0} to the subspace spanned by x. For any point x ∈ R

n+1
r{0},

let [x] = π(x) denote the equivalence class of x in RPn.
For each i = 1, . . . , n+ 1, let Ũi ⊂ Rn+1 r {0} be the set where xi 6= 0,

and let Ui = π(Ũi) ⊂ RPn. Since Ũi is a saturated open set, Ui is open
and π|eUi

: Ũi → Ui is a quotient map (see Lemma A.10). Define a map
ϕi : Ui → Rn by

ϕi

[
x1, . . . , xn+1

]
=

(
x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn+1

xi

)
.

This map is well-defined because its value is unchanged by multiplying x
by a nonzero constant. Because ϕi ◦ π is continuous, ϕi is continuous by
the characteristic property of quotient maps (Lemma A.10). In fact, ϕi is
a homeomorphism, because its inverse is given by

ϕ−1
i

(
u1, . . . , un

)
=

[
u1, . . . , ui−1, 1, ui, . . . , un

]
,

as you can easily check. Geometrically, if we identify Rn in the obvious way
with the affine subspace where xi = 1, then ϕi[x] can be interpreted as the
point where the line [x] intersects this subspace (Figure 1.4). Because the
sets Ui cover RPn, this shows that RPn is locally Euclidean of dimension
n. The Hausdorff and second countability properties are left as exercises.
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� Exercise 1.2. Show that RPn is Hausdorff and second countable, and is
therefore a topological n-manifold.

� Exercise 1.3. Show that RPn is compact. [Hint: Show that the
restriction of π to Sn is surjective.]

Example 1.4 (Product Manifolds). Suppose M1, . . . ,Mk are topo-
logical manifolds of dimensions n1, . . . , nk, respectively. We will show that
the product space M1 × · · · ×Mk is a topological manifold of dimension
n1+ · · ·+nk. It is Hausdorff and second countable by Lemmas A.5 and A.8,
so only the locally Euclidean property needs to be checked. Given any point
(p1, . . . , pk) ∈M1 × · · · ×Mk, we can choose a coordinate chart (Ui, ϕi) for
each Mi with pi ∈ Ui. The product map

ϕ1 × · · · × ϕk : U1 × · · · × Uk → R
n1+···+nk

is a homeomorphism onto its image, which is an open subset of Rn1+···+nk .
Thus M1 × · · · ×Mk is a topological manifold of dimension n1 + · · · + nk,
with charts of the form (U1 × · · · × Uk, ϕ1 × · · · × ϕk).

Example 1.5 (Tori). For any positive integer n, the n-torus is the prod-
uct space Tn = S1×· · ·×S1. By the discussion above, it is an n-dimensional
topological manifold. (The 2-torus is usually called simply “the torus.”)

Topological Properties of Manifolds

As topological spaces go, manifolds are quite special, because they share
so many important properties with Euclidean spaces. In this section we
discuss a few such properties that will be of use to us throughout the book.

The first property we need is that every manifold has a particularly well
behaved basis for its topology. If X is a topological space, a subset K ⊂ X
is said to be precompact (or relatively compact) in X if its closure in X is
compact.

Lemma 1.6. Every topological manifold has a countable basis of
precompact coordinate balls.

Proof. Let M be a topological n-manifold. First we will prove the lemma
in the special case in which M can be covered by a single chart. Suppose
ϕ : M → Ũ ⊂ Rn is a global coordinate map, and let B be the collection of
all open balls Br(x) ⊂ Rn such that r is rational, x has rational coordinates,
and Br(x) ⊂ Ũ . Each such ball is precompact in Ũ , and it is easy to
check that B is a countable basis for the topology of Ũ . Because ϕ is a
homeomorphism, it follows that the collection of sets of the form ϕ−1(B) for
B ∈ B is a countable basis for the topology of M , consisting of precompact
coordinate balls, with the restrictions of ϕ as coordinate maps.
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Now let M be an arbitrary n-manifold. By definition, every point of M
is in the domain of a chart. Because every open cover of a second countable
space has a countable subcover (Lemma A.4), M is covered by countably
many charts {(Ui, ϕi)}. By the argument in the preceding paragraph, each
coordinate domain Ui has a countable basis of precompact coordinate balls,
and the union of all these countable bases is a countable basis for the
topology of M . If V ⊂ Ui is one of these precompact balls, then the closure
of V in Ui is compact, hence closed in M . It follows that the closure of V
in M the same as its closure in Ui, so V is precompact in M as well.

A topological space M is said to be locally compact if every point has a
neighborhood contained in a compact subset of M . If M is Hausdorff, this
is equivalent to the requirement that M have a basis of precompact open
sets (see [Lee00, Proposition 4.27]). The following corollary is immediate.

Corollary 1.7. Every topological manifold is locally compact.

Connectivity

The existence of a basis of coordinate balls has important consequences for
the connectivity properties of manifolds. Recall that a topological space X
is said to be

• connected if there do not exist two disjoint, nonempty, open subsets
of X whose union is X ;

• path connected if every pair of points in X can be joined by a path
in X ; and

• locally path connected if X has a basis of path connected open sets.

(See the Appendix, pages 550–552, for a review of these concepts.) The fol-
lowing proposition shows that connectivity and path connectivity coincide
for manifolds.

Proposition 1.8. Let M be a topological manifold.

(a) M is locally path connected.

(b) M is connected if and only if it is path connected.

(c) The components of M are the same as its path components.

(d) M has at most countably many components, each of which is an open
subset of M and a connected topological manifold.

Proof. Since every coordinate ball is path connected, part (a) follows from
the fact that M has a basis of coordinate balls (Lemma 1.6). Parts (b) and
(c) are immediate consequences of (a) (see Lemma A.16). To prove (d),
note that each component is open in M by Lemma A.16, so the collection
of components is an open cover of M . Because M is second countable, this
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cover must have a countable subcover. But since the components are all
disjoint, the cover must have been countable to begin with, which is to say
that M has only countably many components.

Fundamental Groups of Manifolds

The following result about fundamental groups of manifolds will be impor-
tant in our study of covering manifolds in Chapters 2 and 9. For a brief
review of the fundamental group, see the Appendix, pages 553–555.

Proposition 1.9. The fundamental group of any topological manifold is
countable.

Proof. LetM be a topological manifold. By Lemma 1.6, there is a countable
collection B of coordinate balls coveringM . For any pair of coordinate balls
B,B′ ∈ B, the intersection B∩B′ has at most countably many components,
each of which is path connected. Let X be a countable set containing one
point from each component of B∩B′ for eachB,B′ ∈ B (including B = B′).
For each B ∈ B and each x, x′ ∈ X such that x, x′ ∈ B, let pB

x,x′ be some
path from x to x′ in B.

Since the fundamental groups based at any two points in the same com-
ponent of M are isomorphic, and X contains at least one point in each
component of M , we may as well choose a point q ∈ X as base point. De-
fine a special loop to be a loop based at q that is equal to a finite product
of paths of the form pB

x,x′. Clearly, the set of special loops is countable, and
each special loop determines an element of π1(M, q). To show that π1(M, q)
is countable, therefore, it suffices to show that every element of π1(M, q) is
represented by a special loop.

Suppose f : [0, 1] → M is any loop based at q. The collection of compo-
nents of sets of the form f−1(B) as B ranges over B is an open cover of [0, 1],
so by compactness it has a finite subcover. Thus there are finitely many
numbers 0 = a0 < a1 < · · · < ak = 1 such that [ai−1, ai] ⊂ f−1(B) for some
B ⊂ B. For each i, let fi be the restriction of f to the interval [ai−1, ai],
reparametrized so that its domain is [0, 1], and let Bi ∈ B be a coordinate
ball containing the image of fi. For each i, we have f(ai) ∈ Bi ∩ Bi+1,
and there is some xi ∈ X that lies in the same component of Bi ∩Bi+1 as
f(ai). Let gi be a path in Bi ∩ Bi+1 from xi to f(ai) (Figure 1.5), with
the understanding that x0 = xk = q, and g0 and gk are both equal to the
constant path cq based at q. Then, because g−1

i · gi is path homotopic to a
constant path,

f ∼ f1 · · · · · fk

∼ g0 · f1 · g−1
1 · g1 · f2 · g−1

2 · · · · · g−1
k−1 · gk−1 · fk · g−1

k

∼ f̃1 · f̃2 · · · · · f̃n,
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Figure 1.5. The fundamental group of a manifold is countable.

where f̃i = gi−1 · fi · g−1
i . For each i, f̃i is a path in Bi from xi−1 to xi.

Since Bi is simply connected, f̃i is path homotopic to pBi
xi−1,xi

. It follows
that f is path homotopic to a special loop, as claimed.

Smooth Structures

The definition of manifolds that we gave in the preceding section is suffi-
cient for studying topological properties of manifolds, such as compactness,
connectedness, simple connectedness, and the problem of classifying man-
ifolds up to homeomorphism. However, in the entire theory of topological
manifolds there is no mention of calculus. There is a good reason for this:
However we might try to make sense of derivatives of functions on a man-
ifold, such derivatives cannot be invariant under homeomorphisms. For
example, the map ϕ : R2 → R2 given by ϕ(u, v) =

(
u1/3, v1/3

)
is a home-

omorphism, and it is easy to construct differentiable functions f : R2 → R

such that f ◦ϕ is not differentiable at the origin. (The function f(x, y) = x
is one such.)

To make sense of derivatives of real-valued functions, curves, or maps
between manifolds, we will need to introduce a new kind of manifold called
a “smooth manifold.” It will be a topological manifold with some extra
structure in addition to its topology, which will allow us to decide which
functions on the manifold are smooth.

The definition will be based on the calculus of maps between Euclidean
spaces, so let us begin by reviewing some basic terminology about such
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maps. If U and V are open subsets of Euclidean spaces Rn and Rm, re-
spectively, a function F : U → V is said to be smooth (or C∞, or infinitely
differentiable) if each of its component functions has continuous partial
derivatives of all orders. If in addition F is bijective and has a smooth in-
verse map, it is called a diffeomorphism. A diffeomorphism is, in particular,
a homeomorphism. A review of some of the most important properties of
smooth maps is given in the Appendix. (You should be aware that some
authors use the word “smooth” in somewhat different senses, for example
to mean continuously differentiable or merely differentiable. On the other
hand, some use the word “differentiable” to mean what we call “smooth.”
Throughout this book, “smooth” will for us be synonymous with C∞.)

To see what additional structure on a topological manifold might be
appropriate for discerning which maps are smooth, consider an arbitrary
topological n-manifoldM . Each point in M is in the domain of a coordinate
map ϕ : U → Ũ ⊂ Rn. A plausible definition of a smooth function on M
would be to say that f : M → R is smooth if and only if the composite
function f ◦ ϕ−1 : Ũ → R is smooth in the sense of ordinary calculus.
But this will make sense only if this property is independent of the choice
of coordinate chart. To guarantee this independence, we will restrict our
attention to “smooth charts.” Since smoothness is not a homeomorphism-
invariant property, the way to do this is to consider the collection of all
smooth charts as a new kind of structure on M .

With this motivation in mind, we now describe the details of the
construction.

Let M be a topological n-manifold. If (U,ϕ), (V, ψ) are two charts such
that U ∩ V 6= ∅, the composite map ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is
called the transition map from ϕ to ψ (Figure 1.6). It is a composition
of homeomorphisms, and is therefore itself a homeomorphism. Two charts
(U,ϕ) and (V, ψ) are said to be smoothly compatible if either U ∩ V = ∅

or the transition map ψ ◦ ϕ−1 is a diffeomorphism. (Since ϕ(U ∩ V ) and
ψ(U∩V ) are open subsets of Rn, smoothness of this map is to be interpreted
in the ordinary sense of having continuous partial derivatives of all orders.)

We define an atlas for M to be a collection of charts whose domains cover
M . An atlas A is called a smooth atlas if any two charts in A are smoothly
compatible with each other.

It often happens in practice that we can prove for every pair of coordinate
maps ϕ and ψ in a given atlas that the transition map ψ ◦ ϕ−1 is smooth.
Once we have done this, it is unnecessary to verify directly that ψ ◦ ϕ−1

is a diffeomorphism, because its inverse (ψ ◦ ϕ−1)−1 = ϕ ◦ ψ−1 is one of
the transition maps we have already shown to be smooth. We will use this
observation without further comment when appropriate.

Our plan is to define a “smooth structure” onM by giving a smooth atlas,
and to define a function f : M → R to be smooth if and only if f ◦ ϕ−1 is
smooth in the sense of ordinary calculus for each coordinate chart (U,ϕ)
in the atlas. There is one minor technical problem with this approach: In
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Figure 1.6. A transition map.

general, there will be many possible choices of atlas that give the “same”
smooth structure, in that they all determine the same collection of smooth
functions on M . For example, consider the following pair of atlases on Rn:

A1 = {(Rn, IdRn)}
A2 =

{(
B1(x), IdB1(x)

)
: x ∈ R

n
}
.

Although these are different smooth atlases, clearly a function f : Rn → R

is smooth with respect to either atlas if and only if it is smooth in the sense
of ordinary calculus.

We could choose to define a smooth structure as an equivalence class
of smooth atlases under an appropriate equivalence relation. However, it is
more straightforward to make the following definition: A smooth atlas A on
M is maximal if it is not contained in any strictly larger smooth atlas. This
just means that any chart that is smoothly compatible with every chart in
A is already in A. (Such a smooth atlas is also said to be complete.)

Now we can define the main concept of this chapter. A smooth structure
on a topological n-manifold M is a maximal smooth atlas. A smooth mani-
fold is a pair (M,A), where M is a topological manifold and A is a smooth
structure onM . When the smooth structure is understood, we usually omit
mention of it and just say “M is a smooth manifold.” Smooth structures are
also called differentiable structures or C∞ structures by some authors. We
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will use the term smooth manifold structure to mean a manifold topology
together with a smooth structure.

We emphasize that a smooth structure is an additional piece of data
that must be added to a topological manifold before we are entitled to
talk about a “smooth manifold.” In fact, a given topological manifold may
have many different smooth structures (see Example 1.14 and Problem
1-3). And it should be noted that it is not always possible to find a smooth
structure on a given topological manifold: There exist topological manifolds
that admit no smooth structures at all. (The first example was a compact
10-dimensional manifold found in 1960 by Michel Kervaire [Ker60].)

It is generally not very convenient to define a smooth structure by ex-
plicitly describing a maximal smooth atlas, because such an atlas contains
very many charts. Fortunately, we need only specify some smooth atlas, as
the next lemma shows.

Lemma 1.10. Let M be a topological manifold.

(a) Every smooth atlas for M is contained in a unique maximal smooth
atlas.

(b) Two smooth atlases for M determine the same maximal smooth atlas
if and only if their union is a smooth atlas.

Proof. Let A be a smooth atlas for M , and let A denote the set of all
charts that are smoothly compatible with every chart in A. To show that
A is a smooth atlas, we need to show that any two charts of A are smoothly
compatible with each other, which is to say that for any (U,ϕ), (V, ψ) ∈ A,
ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is smooth.

Let x = ϕ(p) ∈ ϕ(U ∩V ) be arbitrary. Because the domains of the charts
in A cover M , there is some chart (W, θ) ∈ A such that p ∈ W (Figure
1.7). Since every chart in A is smoothly compatible with (W, θ), both of
the maps θ ◦ ϕ−1 and ψ ◦ θ−1 are smooth where they are defined. Since
p ∈ U ∩V ∩W , it follows that ψ ◦ϕ−1 = (ψ ◦θ−1)◦ (θ◦ϕ−1) is smooth on a
neighborhood of x. Thus ψ◦ϕ−1 is smooth in a neighborhood of each point
in ϕ(U ∩ V ). Therefore, A is a smooth atlas. To check that it is maximal,
just note that any chart that is smoothly compatible with every chart in
A must in particular be smoothly compatible with every chart in A, so
it is already in A. This proves the existence of a maximal smooth atlas
containing A. If B is any other maximal smooth atlas containing A, each
of its charts is smoothly compatible with each chart in A, so B ⊂ A. By
maximality of B, B = A.

The proof of (b) is left as an exercise.

� Exercise 1.4. Prove Lemma 1.10(b).
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Figure 1.7. Proof of Lemma 1.10(a).

For example, if a topological manifold M can be covered by a single
chart, the smooth compatibility condition is trivially satisfied, so any such
chart automatically determines a smooth structure on M .

It is worth mentioning that the notion of smooth structure can be gener-
alized in several different ways by changing the compatibility requirement
for charts. For example, if we replace the requirement that charts be
smoothly compatible by the weaker requirement that each transition map
ψ ◦ ϕ−1 (and its inverse) be of class Ck, we obtain the definition of a Ck

structure. Similarly, if we require that each transition map be real-analytic
(i.e., expressible as a convergent power series in a neighborhood of each
point), we obtain the definition of a real-analytic structure, also called a
Cω structure. If M has even dimension n = 2m, we can identify R2m with
C

m and require that the transition maps be complex-analytic; this deter-
mines a complex-analytic structure. A manifold endowed with one of these
structures is called a Ck manifold, real-analytic manifold, or complex man-
ifold, respectively. (Note that a C0 manifold is just a topological manifold.)
We will not treat any of these other kinds of manifolds in this book, but
they play important roles in analysis, so it is useful to know the definitions.
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U Ũ
ϕ

Figure 1.8. A coordinate grid.

Local Coordinate Representations

If M is a smooth manifold, any chart (U,ϕ) contained in the given maximal
smooth atlas will be called a smooth chart, and the corresponding coordi-
nate map ϕ will be called a smooth coordinate map. It is useful also to
introduce the terms smooth coordinate domain or smooth coordinate neigh-
borhood for the domain of a smooth coordinate chart. A smooth coordinate
ball will mean a smooth coordinate domain whose image under a smooth
coordinate map is a ball in Euclidean space.

The next lemma gives a slight improvement on Lemma 1.6 for smooth
manifolds. Its proof is a straightforward adaptation of the proof of that
lemma.

Lemma 1.11. Every smooth manifold has a countable basis of precompact
smooth coordinate balls.

� Exercise 1.5. Prove Lemma 1.11.

Here is how one usually thinks about coordinate charts on a smooth
manifold. Once we choose a smooth chart (U,ϕ) on M , the coordinate
map ϕ : U → Ũ ⊂ Rn can be thought of as giving an identification between
U and Ũ . Using this identification, we can think of U simultaneously as an
open subset of M and (at least temporarily while we work with this chart)
as an open subset of Rn. You can visualize this identification by thinking of
a “grid” drawn on U representing the inverse images of the coordinate lines
under ϕ (Figure 1.8). Under this identification, we can represent a point
p ∈ U by its coordinates (x1, . . . , xn) = ϕ(p), and think of this n-tuple as
being the point p. We will typically express this by saying “(x1, . . . , xn) is
the (local) coordinate representation for p” or “p = (x1, . . . , xn) in local
coordinates.”

Another way to look at it is that by means of our identification U ↔ Ũ ,
we can think of ϕ as the identity map and suppress it from the notation.
This takes a bit of getting used to, but the payoff is a huge simplification
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of the notation in many situations. You just need to remember that the
identification is in general only local, and depends heavily on the choice of
coordinate chart.

For example, if M = R2, let U = {(x, y) : x > 0} ⊂ M be the
open right half-plane, and let ϕ : U → R2 be the polar coordinate map
ϕ(x, y) = (r, θ) =

(√
x2 + y2, tan−1 y/x

)
. We can write a given point

p ∈ U either as p = (x, y) in standard coordinates or as p = (r, θ) in
polar coordinates, where the two coordinate representations are related by
(r, θ) =

(√
x2 + y2, tan−1 y/x

)
and (x, y) = (r cos θ, r sin θ).

Examples of Smooth Manifolds

Before proceeding further with the general theory, let us survey some
examples of smooth manifolds.

Example 1.12 (Zero-Dimensional Manifolds). A zero-dimensional
topological manifold M is just a countable discrete space. For each point
p ∈M , the only neighborhood of p that is homeomorphic to an open subset
of R0 is {p} itself, and there is exactly one coordinate map ϕ : {p} → R0.
Thus the set of all charts on M trivially satisfies the smooth compatibil-
ity condition, and every zero-dimensional manifold has a unique smooth
structure.

Example 1.13 (Euclidean Spaces). Rn is a smooth n-manifold with
the smooth structure determined by the atlas consisting of the single chart
(Rn, IdRn). We call this the standard smooth structure, and the resulting co-
ordinate map standard coordinates. Unless we explicitly specify otherwise,
we will always use this smooth structure on Rn.

Example 1.14 (Another Smooth Structure on the Real Line).
Consider the homeomorphism ψ : R → R given by

ψ(x) = x3. (1.1)

The atlas consisting of the single chart (R, ψ) defines a smooth structure
on R. This chart is not smoothly compatible with the standard smooth
structure, because the transition map IdRn ◦ψ−1(y) = y1/3 is not smooth
at the origin. Therefore, the smooth structure defined on R by ψ is not the
same as the standard one. Using similar ideas, it is not hard to construct
many distinct smooth structures on any given positive-dimensional topo-
logical manifold, as long as it has one smooth structure to begin with (see
Problem 1-3).

Example 1.15 (Finite-Dimensional Vector Spaces). Let V be a
finite-dimensional vector space. Any norm on V determines a topology,
which is independent of the choice of norm (Exercise A.53). With this
topology, V has a natural smooth manifold structure defined as follows. Any
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(ordered) basis (E1, . . . , En) for V defines a basis isomorphism E : Rn → V
by

E(x) =
n∑

i=1

xiEi.

This map is a homeomorphism, so the atlas consisting of the single chart
(V,E−1) defines a smooth structure. To see that this smooth structure
is independent of the choice of basis, let

(
Ẽ1, . . . , Ẽn

)
be any other basis

and let Ẽ(x) =
∑

j x
jẼj be the corresponding isomorphism. There is some

invertible matrix
(
Aj

i

)
such that Ei =

∑
j A

j
i Ẽj for each i. The transition

map between the two charts is then given by Ẽ−1 ◦ E(x) = x̃, where
x̃ =

(
x̃1, . . . , x̃n

)
is determined by

n∑
j=1

x̃jẼj =
n∑

i=1

xiEi =
n∑

i,j=1

xiAj
i Ẽj .

It follows that x̃j =
∑

i A
j
ix

i. Thus the map from x to x̃ is an invertible
linear map and hence a diffeomorphism, so the two charts are smoothly
compatible. This shows that the union of the two charts determined by
any two bases is still a smooth atlas, and thus all bases determine the same
smooth structure. We will call this the standard smooth structure on V .

The Einstein Summation Convention

This is a good place to pause and introduce an important notational con-
vention that we will use throughout the book. Because of the proliferation
of summations such as

∑
i x

iEi in this subject, we will often abbreviate
such a sum by omitting the summation sign, as in

E(x) = xiEi.

We interpret any such expression according to the following rule, called
the Einstein summation convention: If the same index name (such as i
in the expression above) appears exactly twice in any monomial term,
once as an upper index and once as a lower index, that term is under-
stood to be summed over all possible values of that index, generally from
1 to the dimension of the space in question. This simple idea was intro-
duced by Einstein to reduce the complexity of the expressions arising in
the study of smooth manifolds by eliminating the necessity of explicitly
writing summation signs.

Another important aspect of the summation convention is the positions
of the indices. We will always write basis vectors (such as Ei) with lower
indices, and components of a vector with respect to a basis (such as xi) with
upper indices. These index conventions help to ensure that, in summations
that make mathematical sense, any index to be summed over will typically



Examples of Smooth Manifolds 19

appear twice in any given term, once as a lower index and once as an
upper index. Any index that is implicitly summed over is a “dummy index,”
meaning that the value of such an expression is unchanged if a different
name is substituted for each dummy index. For example, xiEi and xjEj

mean exactly the same thing.
Since the coordinates of a point

(
x1, . . . , xn

) ∈ Rn are also its compo-
nents with respect to the standard basis, in order to be consistent with our
convention of writing components of vectors with upper indices, we need
to use upper indices for these coordinates, and we will do so throughout
this book. Although this may seem awkward at first, in combination with
the summation convention it offers enormous advantages when we work
with complicated indexed sums, not the least of which is that expressions
that are not mathematically meaningful often betray themselves quickly
by violating the index convention. (The main exceptions are expressions
involving the Euclidean dot product x · y =

∑
i x

iyi, in which the same
index appears twice in the upper position, and the standard symplectic
form on R2n, which we will define in Chapter 12. We will always explicitly
write summation signs in such expressions.)

More Examples

Now we continue with our examples of smooth manifolds.

Example 1.16 (Matrices). Let M(m× n,R) denote the space of m× n
matrices with real entries. It is a vector space of dimensionmn under matrix
addition and scalar multiplication. Thus M(m × n,R) is a smooth mn-
dimensional manifold. Similarly, the space M(m× n,C) of m× n complex
matrices is a vector space of dimension 2mn over R, and thus a smooth
manifold of dimension 2mn. In the special case m = n (square matrices),
we will abbreviate M(n× n,R) and M(n× n,C) by M(n,R) and M(n,C),
respectively.

Example 1.17 (Open Submanifolds). Let U be any open subset of R
n.

Then U is a topological n-manifold, and the single chart (U, IdU ) defines a
smooth structure on U .

More generally, let M be a smooth n-manifold and let U ⊂ M be any
open subset. Define an atlas on U by

AU = {smooth charts (V, ϕ) for M such that V ⊂ U}.
Any point p ∈ U is contained in the domain of some chart (W,ϕ) for M ; if
we set V = W ∩ U , then (V, ϕ|V ) is a chart in AU whose domain contains
p. Therefore, U is covered by the domains of charts in AU , and it is easy
to verify that this is a smooth atlas for U . Thus any open subset of M
is itself a smooth n-manifold in a natural way. Endowed with this smooth
structure, we call any open subset an open submanifold of M . (We will
define a more general class of submanifolds in Chapter 8.)
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Example 1.18 (The General Linear Group). The general linear group
GL(n,R) is the set of invertible n × n matrices with real entries. It is a
smooth n2-dimensional manifold because it is an open subset of the n2-
dimensional vector space M(n,R), namely the set where the (continuous)
determinant function is nonzero.

Example 1.19 (Matrices of Maximal Rank). The previous exam-
ple has a natural generalization to rectangular matrices of maximal rank.
Suppose m < n, and let Mm(m × n,R) denote the subset of M(m × n,R)
consisting of matrices of rank m. If A is an arbitrary such matrix, the fact
that rankA = m means that A has some nonsingular m × m minor. By
continuity of the determinant function, this same minor has nonzero de-
terminant on some neighborhood of A in M(m× n,R), which implies that
A has a neighborhood contained in Mm(m × n,R). Thus Mm(m × n,R)
is an open subset of M(m × n,R), and therefore is itself a smooth mn-
dimensional manifold. A similar argument shows that Mn(m × n,R) is a
smooth mn-manifold when n < m.

Example 1.20 (Spheres). We showed in Example 1.2 that the n-sphere
Sn ⊂ Rn+1 is a topological n-manifold. Now we put a smooth structure
on Sn as follows. For each i = 1, . . . , n+ 1, let (U±

i , ϕ
±
i ) denote the graph

coordinate charts we constructed in Example 1.2. For any distinct indices
i and j, the transition map ϕ±

i ◦ (ϕ±
j )−1 is easily computed. In the case

i < j, we get

ϕ±
i ◦ (ϕ±

j )−1
(
u1, . . . , un

)
=

(
u1, . . . , ûi, . . . ,±

√
1 − |u|2, . . . , un

)
,

and a similar formula holds when i > j. When i = j, an even simpler
computation gives ϕ±

i ◦ (ϕ±
i )−1 = IdBn . Thus the collection of charts{(

U±
i , ϕ

±
i

)}
is a smooth atlas, and so defines a smooth structure on Sn.

We call this its standard smooth structure.

Example 1.21 (Projective Spaces). The n-dimensional real projective
space RPn is a topological n-manifold by Example 1.3. We will show that
the coordinate charts (Ui, ϕi) constructed in that example are all smoothly
compatible. Assuming for convenience that i > j, it is straightforward to
compute that

ϕj ◦ ϕ−1
i (u1, . . . , un) =

(
u1

uj
, . . . ,

uj−1

uj
,
uj+1

uj
, . . . ,

ui−1

uj
,

1
uj
,
ui

uj
, . . . ,

un

uj

)
,

which is a diffeomorphism from ϕi(Ui ∩ Uj) to ϕj(Ui ∩ Uj).

Example 1.22 (Smooth Product Manifolds). If M1, . . . ,Mk are
smooth manifolds of dimensions n1, . . . , nk, respectively, we showed in Ex-
ample 1.4 that the product space M1×· · ·×Mk is a topological manifold of
dimension n1+· · ·+nk, with charts of the form (U1×· · ·×Uk, ϕ1×· · ·×ϕk).
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Any two such charts are smoothly compatible because, as is easily verified,

(ψ1 × · · · × ψk) ◦ (ϕ1 × · · · × ϕk)−1 = (ψ1 ◦ ϕ−1
1 ) × · · · × (ψk ◦ ϕ−1

k ),

which is a smooth map. This defines a natural smooth manifold structure
on the product, called the product smooth manifold structure. For example,
this yields a smooth manifold structure on the n-torus Tn = S1 × · · · × S1.

In each of the examples we have seen so far, we have constructed a smooth
manifold structure in two stages: We started with a topological space and
checked that it was a topological manifold, and then we specified a smooth
structure. It is often more convenient to combine these two steps into a
single construction, especially if we start with a set that is not already
equipped with a topology. The following lemma provides a shortcut.

Lemma 1.23 (Smooth Manifold Construction Lemma). Let M be
a set, and suppose we are given a collection {Uα} of subsets of M , together
with an injective map ϕα : Uα → Rn for each α, such that the following
properties are satisfied:

(i) For each α, ϕα(Uα) is an open subset of Rn.

(ii) For each α and β, ϕα(Uα ∩ Uβ) and ϕβ(Uα ∩ Uβ) are open in Rn.

(iii) Whenever Uα ∩Uβ 6= ∅, ϕα ◦ϕ−1
β : ϕβ(Uα ∩Uβ) → ϕα(Uα ∩Uβ) is a

diffeomorphism.

(iv) Countably many of the sets Uα cover M .

(v) Whenever p, q are distinct points in M , either there exists some Uα

containing both p and q or there exist disjoint sets Uα, Uβ with p ∈ Uα

and q ∈ Uβ.

Then M has a unique smooth manifold structure such that each (Uα, ϕα)
is a smooth chart.

Proof. We define the topology by taking all sets of the form ϕ−1
α (V ), with

V an open subset of Rn, as a basis. To prove that this is a basis for a
topology, we need to show that for any point p in the intersection of two
basis sets ϕ−1

α (V ) and ϕ−1
β (W ), there is a third basis set containing p and

contained in the intersection. It suffices to show that ϕ−1
α (V ) ∩ ϕ−1

β (W ) is
itself a basis set (Figure 1.9). To see this, observe that (iii) implies that
ϕα ◦ ϕ−1

β (W ) is an open subset of ϕα(Uα ∩ Uβ), and (ii) implies that this
set is also open in Rn. It follows that

ϕ−1
α (V ) ∩ ϕ−1

β (W ) = ϕ−1
α

(
V ∩ ϕα ◦ ϕ−1

β (W )
)

is also a basis set, as claimed.
Each of the maps ϕα is then a homeomorphism (essentially by definition),

so M is locally Euclidean of dimension n. If {Uαi} is a countable collection
of the sets Uα covering M , each of the sets Uαi has a countable basis, and
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Figure 1.9. The smooth manifold construction lemma.

the union of all these is a countable basis for M , so M is second countable,
and the Hausdorff property follows easily from (v). Finally, (iii) guarantees
that the collection {(Uα, ϕα)} is a smooth atlas. It is clear that this topology
and smooth structure are the unique ones satisfying the conclusions of the
lemma.

Example 1.24 (Grassmann Manifolds). Let V be an n-dimensional
real vector space. For any integer 0 ≤ k ≤ n, we let Gk(V ) denote the set
of all k-dimensional linear subspaces of V . We will show that Gk(V ) can be
naturally given the structure of a smooth manifold of dimension k(n− k).
The construction is somewhat more involved than the ones we have done
so far, but the basic idea is just to use linear algebra to construct charts for
Gk(V ), and then apply the smooth manifold construction lemma (Lemma
1.23). Since we will give a more straightforward proof that Gk(V ) is a
smooth manifold in Chapter 9 (Example 9.32), you may wish to skip the
hard part of this construction (the verification that the charts are smoothly
compatible) on first reading.

Let P and Q be any complementary subspaces of V of dimensions k and
(n−k), respectively, so that V decomposes as a direct sum: V = P⊕Q. The
graph of any linear map A : P → Q is a k-dimensional subspace Γ(A) ⊂ V ,
defined by

Γ(A) = {x+Ax : x ∈ P}.
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Figure 1.10. Smooth compatibility of coordinates on Gk(V ).

Any such subspace has the property that its intersection with Q is the zero
subspace. Conversely, any subspace with this property is easily seen to be
the graph of a unique linear map A : P → Q.

Let L(P,Q) denote the vector space of linear maps from P to Q, and
let UQ denote the subset of Gk(V ) consisting of k-dimensional subspaces
whose intersection with Q is trivial. Define a map ψ : L(P,Q) → UQ by

ψ(A) = Γ(A).

The discussion above shows that ψ is a bijection. Let ϕ = ψ−1 : UQ →
L(P,Q). By choosing bases for P and Q, we can identify L(P,Q) with
M((n − k) × k,R) and hence with Rk(n−k), and thus we can think of
(UQ, ϕ) as a coordinate chart. Since the image of each chart is all of L(P,Q),
condition (i) of Lemma 1.23 is clearly satisfied.

Now let (P ′, Q′) be any other such pair of subspaces, and let ψ′, ϕ′ be
the corresponding maps. The set ϕ(UQ ∩ UQ′) ⊂ L(P,Q) consists of all
A ∈ L(P,Q) whose graphs intersect Q′ trivially, which is easily seen to
be an open set, so (ii) holds. We need to show that the transition map
ϕ′ ◦ ϕ−1 = ϕ′ ◦ ψ is smooth on this set. This is the trickiest part of the
argument.

Suppose A ∈ ϕ(UQ ∩ UQ′) ⊂ L(P,Q) is arbitrary, and let S denote the
subspace ψ(A) = Γ(A) ⊂ V . If we put A′ = ϕ′ ◦ ψ(A), then by definition
A′ is the unique linear map from P ′ to Q′ whose graph is equal to S. To
identify this map, let x′ ∈ P ′ be arbitrary, and note that A′x′ is the unique
element of Q′ such that x′ +A′x′ ∈ S, which is to say that

x′ +A′x′ = x+Ax for some x ∈ P . (1.2)

(See Figure 1.10.) There is in fact a unique x ∈ P for which this holds,
characterized by the property that

x+Ax − x′ ∈ Q′.
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If we let IA : P → V denote the map IA(x) = x+Ax and let πP ′ : V → P ′

be the projection onto P ′ with kernel Q′, then x satisfies

0 = πP ′ (x+Ax− x′) = πP ′ ◦ IA(x) − x′.

As long as A stays in the open subset of linear maps whose graphs intersect
Q′ trivially, πP ′ ◦ IA : P → P ′ is invertible, and thus we can solve this last
equation for x to obtain x = (πP ′ ◦ IA)−1(x′). Therefore, A′ is given in
terms of A by

A′x′ = IAx− x′ = IA ◦ (πP ′ ◦ IA)−1(x′) − x′. (1.3)

If we choose bases (E′
i) for P ′ and (F ′

j) for Q′, the columns of the matrix
representation of A′ are the components of A′E′

i. By (1.3), this can be
written

A′E′
i = IA ◦ (πP ′ ◦ IA)−1(E′

i) − E′
i.

The matrix entries of IA clearly depend smoothly on those of A, and thus so
also do those of πP ′ ◦IA. By Cramer’s rule, the components of the inverse of
a matrix are rational functions of the matrix entries, so the expression above
shows that the components of A′E′

i depend smoothly on the components
of A. This proves that ϕ′ ◦ ϕ−1 is a smooth map, so the charts we have
constructed satisfy condition (iii) of Lemma 1.23.

To check the countability condition (iv), we just note that Gk(V ) can in
fact be covered by finitely many of the sets UQ: For example, if (E1, . . . , En)
is any fixed basis for V , any partition of the basis elements into two subsets
containing k and n− k elements determines appropriate subspaces P and
Q, and any subspace S must have trivial intersection with Q for at least
one of these partitions (see Exercise A.34). Thus Gk(V ) is covered by the
finitely many charts determined by all possible partitions of a fixed basis.
Finally, the Hausdorff condition (v) is easily verified by noting that for any
two k-dimensional subspaces P, P ′ ⊂ V , it is possible to find a subspace Q
of dimension n− k whose intersections with both P and P ′ are trivial, and
then P and P ′ are both contained in the domain of the chart determined
by, say, (P,Q).

The smooth manifold Gk(V ) is called the Grassmann manifold of k-
planes in V , or simply a Grassmannian. In the special case V = Rn, the
Grassmannian Gk(Rn) is often denoted by some simpler notation such as
Gk,n or G(k, n). Note that G1(Rn+1) is exactly the n-dimensional projective
space RPn.

Manifolds with Boundary

In many important applications of manifolds, most notably those involv-
ing integration, we will encounter spaces that would be smooth manifolds
except that they have a “boundary” of some sort. Simple examples of such
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Figure 1.11. A manifold with boundary.

spaces include the closed unit ball in Rn and the closed upper hemisphere
in Sn. To accommodate such spaces, we need to generalize our definition
of manifolds.

The model for these spaces will be the closed n-dimensional upper half-
space Hn ⊂ Rn, defined as

H
n =

{(
x1, . . . , xn

) ∈ R
n : xn ≥ 0

}
.

We will use Int Hn and ∂Hn to denote the interior and boundary of Hn,
respectively, as a subset of Rn:

Int H
n =

{(
x1, . . . , xn

) ∈ R
n : xn > 0

}
,

∂H
n =

{(
x1, . . . , xn

) ∈ R
n : xn = 0

}
.

An n-dimensional topological manifold with boundary is a second-
countable Hausdorff space M in which every point has a neighborhood
homeomorphic to a (relatively) open subset of Hn (Figure 1.11). An open
subset U ⊂M together with a homeomorphism ϕ from U to an open sub-
set of H

n will be called a chart, just as in the case of manifolds. When it
is necessary to make the distinction, we will call (U,ϕ) an interior chart if
ϕ(U) ⊂ Int Hn, and a boundary chart if ϕ(U) ∩ ∂Hn 6= ∅.

To see how to define a smooth structure on a manifold with boundary,
recall that a smooth map from an arbitrary subset A ⊂ Rn to Rk is defined
to be a map that admits a smooth extension to an open neighborhood of
each point (see the Appendix, page 587). Thus if U is an open subset of
Hn, a map F : U → Rk is smooth if for each x ∈ U , there exists an open
set V ⊂ R

n and a smooth map F̃ : V → R
k that agrees with F on V ∩ H

n

(Figure 1.12). If F is such a map, the restriction of F to U ∩ Int Hn is
smooth in the usual sense. By continuity, all the partial derivatives of F at
points of U∩∂Hn are determined by their values in IntHn, and therefore in
particular are independent of the choice of extension. It is a fact (which we
will neither prove nor use) that F : U → Rk is smooth in this sense if and
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Figure 1.12. Smoothness of maps on open subsets of Hn.

only if F is continuous, F |U∩Int Hn is smooth, and the partial derivatives of
F |U∩Int Hn of all orders have continuous extensions to all of U .

For example, let B2 ⊂ R2 be the open unit disk, let U = B2 ∩ H2, and
define f : U → R by f(x, y) =

√
1 − x2 − y2. Because f extends smoothly

to all of B2 (by the same formula), f is a smooth function on U . On the
other hand, although g(x, y) =

√
y is continuous on U and smooth in

U ∩ Int H2, it has no smooth extension to any neighborhood of the origin
in R2 because ∂g/∂y → ∞ as y → 0. Thus g is not smooth on U .

Now let M be a topological manifold with boundary. Just as in the
manifold case, a smooth structure for M is defined to be a maximal smooth
atlas—a collection of charts whose domains cover M and whose transition
maps (and their inverses) are smooth in the sense just described. With such
a structure, M is called a smooth manifold with boundary. A point p ∈ M
is called a boundary point if its image under some smooth chart is in ∂Hn,
and an interior point if its image under some smooth chart is in Int Hn.
The boundary of M (the set of all its boundary points) is denoted by ∂M ;
similarly, its interior, the set of all its interior points, is denoted by IntM .
Once we have developed a bit more machinery, you will be able to show
that M is the disjoint union of ∂M and IntM (see Problem 7-7).

Be careful to observe the distinction between these new definitions of the
terms “boundary” and “interior” and their usage to refer to the boundary
and interior of a subset of a topological space. A manifoldM with boundary
may have nonempty boundary in this new sense, irrespective of whether
it has a boundary as a subset of some other topological space. If we need
to emphasize the difference between the two notions of boundary, we will
use the terms topological boundary and manifold boundary as appropriate.
For example, the closed unit disk B2 is a smooth manifold with boundary
(as you will be asked to show in Problem 1-9), whose manifold boundary is
the circle. Its topological boundary as a subspace of R2 happens to be the
circle as well. However, if we think of B2 as a topological space in its own
right, then as a subset of itself, it has empty topological boundary. And if
we think of it as a subset of R3 (considering R2 as a subset of R3 in the
obvious way), its topological boundary is all of B2. Note that Hn is itself
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a smooth manifold with boundary, and its manifold boundary is the same
as its topological boundary as a subset of Rn.

Every smooth n-manifold can be considered as a smooth n-manifold
with boundary in a natural way: By composing with a diffeomorphism
from Rn to Hn such as

(
x1, . . . , xn−1, xn

) 7→ (
x1, . . . , xn−1, exn)

, we can
modify any manifold chart to take its values in Int Hn without affecting
the smooth compatibility condition. On the other hand, if M is a smooth
n-manifold with boundary, any interior point p ∈ IntM is by definition in
the domain of a smooth chart (U,ϕ) such that ϕ(p) ∈ Int Hn. Replacing
U by the (possibly smaller) open set ϕ−1(Int Hn) ⊂ U , we may assume
that (U,ϕ) is an interior chart. Because open sets in Int Hn are also open
in Rn, each interior chart is a chart in the ordinary manifold sense. Thus
IntM is a topological n-manifold, and the set of all smooth interior charts
is easily seen to be a smooth atlas, turning it into a smooth n-manifold.
In particular, a smooth manifold with boundary whose boundary happens
to be empty is a smooth manifold. However, manifolds with boundary are
not manifolds in general.

Even though the term “manifold with boundary” encompasses manifolds
as well, for emphasis we will sometimes use the phrase “manifold without
boundary” when we are talking about manifolds in the original sense, and
“manifold with or without boundary” when we are working in the broader
class that includes both cases. In the literature, you will also encounter the
terms closed manifold to mean a compact manifold without boundary, and
open manifold to mean a noncompact manifold without boundary.

The topological properties of manifolds that we proved earlier in the
chapter have natural extensions to manifolds with boundary. For the record,
we state them here.

Proposition 1.25. Let M be a topological manifold with boundary.

(a) M is locally path connected.

(b) M has at most countably many components, each of which is a
connected topological manifold with boundary.

(c) The fundamental group of M is countable.

� Exercise 1.6. Prove Proposition 1.25.

Many of the results that we will prove about smooth manifolds through-
out the book have natural analogues for manifolds with boundary. We will
mention the most important of these as we go along.



28 1. Smooth Manifolds
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u = σ(x)

Figure 1.13. Stereographic projection.

Problems

1-1. Let X be the set of all points (x, y) ∈ R2 such that y = ±1, and
let M be the quotient of X by the equivalence relation generated by
(x,−1) ∼ (x, 1) for all x 6= 0. Show that M is locally Euclidean and
second countable, but not Hausdorff. (This space is called the line
with two origins.)

1-2. Show that the disjoint union of uncountably many copies of R is
locally Euclidean and Hausdorff, but not second countable.

1-3. Let M be a nonempty topological manifold of dimension n ≥ 1. If M
has a smooth structure, show that it has uncountably many distinct
ones. [Hint: Begin by constructing homeomorphisms from Bn to itself
that are smooth on Bn r {0}.]

1-4. If k is an integer between 0 and min(m,n), show that the set of
m × n matrices whose rank is at least k is an open submanifold of
M(m× n,R). Show that this is not true if “at least k” is replaced by
“equal to k.”

1-5. Let N = (0, . . . , 0, 1) be the “north pole” in Sn ⊂ Rn+1, and let
S = −N be the “south pole.” Define stereographic projection σ : Sn r

{N} → R
n by

σ
(
x1, . . . , xn+1

)
=

(
x1, . . . , xn

)
1 − xn+1

.

Let σ̃(x) = −σ(−x) for x ∈ Sn r {S}.
(a) For any x ∈ Sn r {N}, show that σ(x) is the point where

the line through N and x intersects the linear subspace where
xn+1 = 0, identified with Rn in the obvious way (Figure 1.13).
Similarly, show that σ̃(x) is the point where the line through S
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and x intersects the same subspace. (For this reason, σ̃ is called
stereographic projection from the south pole.)

(b) Show that σ is bijective, and

σ−1
(
u1, . . . , un

)
=

(
2u1, . . . , 2un, |u|2 − 1

)
|u|2 + 1

.

(c) Compute the transition map σ̃ ◦ σ−1 and verify that the atlas
consisting of the two charts (Sn r {N}, σ) and (Sn r {S}, σ̃)
defines a smooth structure on Sn. (The coordinates defined by
σ or σ̃ are called stereographic coordinates.)

(d) Show that this smooth structure is the same as the one defined
in Example 1.20.

1-6. By identifying R2 with C in the usual way, we can think of the unit
circle S1 as a subset of the complex plane. An angle function on a
subset U ⊂ S

1 is a continuous function θ : U → R such that eiθ(p) = p
for all p ∈ U . Show that there exists an angle function θ on an open
subset U ⊂ S1 if and only if U 6= S1. For any such angle function,
show that (U, θ) is a smooth coordinate chart for S1 with its standard
smooth structure.

1-7. Complex projective n-space, denoted by CPn, is the set of 1-
dimensional complex-linear subspaces of Cn+1, with the quotient
topology inherited from the natural projection π : Cn+1 r {0} →
CPn. Show that CPn is a compact 2n-dimensional topological man-
ifold, and show how to give it a smooth structure analogous to
the one we constructed for RP

n. (We identify C
n+1 with R

2n+2 via(
x1 + iy1, . . . , xn+1 + iyn+1

) ↔ (
x1, y1, . . . , xn+1, yn+1

)
.)

1-8. Let k and n be integers such that 0 < k < n, and let P,Q ⊂ Rn

be the subspaces spanned by (e1, . . . , ek) and (ek+1, . . . , en), respec-
tively, where ei is the ith standard basis vector. For any k-dimensional
subspace S ⊂ R

n that has trivial intersection with Q, show that the
coordinate representation ϕ(S) constructed in Example 1.24 is the
unique (n− k) × k matrix B such that S is spanned by the columns
of the matrix

(
Ik

B

)
, where Ik denotes the k × k identity matrix.

1-9. Let M = Bn, the closed unit ball in Rn. Show that M is a topological
manifold with boundary, and that it can be given a natural smooth
structure in which each point in Sn−1 is a boundary point and each
point in Bn is an interior point.


