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1 Manifolds

A manifold is a space which looks like Rn at small scales (i.e. “locally”), but which may be very different

from this at large scales (i.e. “globally”). In other words, manifolds are made up by gluing pieces of Rn
together to make a more complicated whole. We would like to make this precise.

1.1 Topological manifolds

Definition 1. A real, n-dimensional topological manifold is a Hausdorff, second countable topological space

which is locally homeomorphic to Rn.

Note: “Locally homeomorphic to Rn” simply means that each point p has an open neighbourhood U for

which we can find a homeomorphism ϕ : U −→ V to an open subset V ∈ Rn. Such a homeomorphism ϕ is

called a coordinate chart around p. A collection of charts which cover the manifold, i.e. whose union is the

whole space, is called an atlas.

We now give a bunch of examples of topological manifolds. The simplest is, technically, the empty set.

More simple examples include a countable set of points (with the discrete topology), and Rn itself, but there

are more:

Example 1.1 (Circle). Define the circle S1 = {z ∈ C : |z | = 1}. Then for any fixed point z ∈ S1, write it

as z = e2πic for a unique real number 0 ≤ c < 1, and define the map

νz : t 7→ e2πit . (1)

We note that νz maps the interval Ic = (c − 1
2
, c + 1

2
) to the neighbourhood of z given by S1\{−z}, and it

is a homeomorphism. Then ϕz = νz |−1
Ic

is a local coordinate chart near z .

By taking products of coordinate charts, we obtain charts for the Cartesian product of manifolds. Hence

the Cartesian product is a manifold.

Example 1.2 (n-torus). S1 × · · · × S1 is a topological manifold (of dimension given by the number n of

factors), with charts {ϕz1 × · · · × ϕzn : zi ∈ S1}.
Example 1.3 (open subsets). Any open subset U ⊂ M of a topological manifold is also a topological

manifold, where the charts are simply restrictions ϕ|U of charts ϕ for M.

For example, the real n × n matrices Mat(n,R) form a vector space isomorphic to Rn2
, and contain an

open subset

GL(n,R) = {A ∈ Mat(n,R) : detA 6= 0}, (2)

known as the general linear group, which therefore forms a topological manifold.

Example 1.4 (Spheres). The n-sphere is defined as the subspace of unit vectors in Rn+1:

Sn = {(x0, . . . , xn) ∈ Rn+1 :
X

x2
i = 1}.

Let N = (1, 0, . . . , 0) be the North pole and let S = (−1, 0, . . . , 0) be the South pole in Sn. Then we may

write Sn as the union Sn = UN ∪ US, where UN = Sn\{S} and US = Sn\{N} are equipped with coordinate

charts ϕN , ϕS into Rn, given by the “stereographic projections” from the points S,N respectively

ϕN : (x0, ~x) 7→ (1 + x0)−1~x, (3)

ϕS : (x0, ~x) 7→ (1− x0)−1~x. (4)

We have endowed the sphere Sn with a certain topology, but is it possible for another topological manifold

S̃n to be homotopic to Sn without being homeomorphic to it? The answer is no, and this is known as the

topological Poincaré conjecture, and is usually stated as follows: any homotopy n-sphere is homeomorphic

to the n-sphere. It was proven for n > 4 by Smale, for n = 4 by Freedman, and for n = 3 is equivalent

to the smooth Poincaré conjecture which was proved by Hamilton-Perelman. In dimensions n = 1, 2 it is a

consequence of the (easy) classification of topological 1- and 2-manifolds.
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Example 1.5 (Projective spaces). Let K = R or C. Then KP n is defined to be the space of lines through

{0} in Kn+1, and is called the projective space over K of dimension n.

More precisely, let X = Kn+1\{0} and define an equivalence relation on X via x ∼ y iff ∃λ ∈ K∗ = K\{0}
such that λx = y , i.e. x, y lie on the same line through the origin. Then

KP n = X/ ∼,

and it is equipped with the quotient topology.

The projection map π : X −→ KP n is an open map, since if U ⊂ X is open, then tU is also open

∀t ∈ K∗, implying that ∪t∈K∗tU = π−1(π(U)) is open, implying π(U) is open. This immediately shows, by

the way, that KP n is second countable.

To show KP n is Hausdorff (which we must do, since Hausdorff is preserved by subspaces and products,

but not quotients), we would like to show that the diagonal in KP n × KP n is closed. We show this by

showing that the graph of the equivalence relation is closed in X × X (this, together with the openness of

π, gives us the result). This graph is simply

Γ∼ = {(x, y) ∈ X × X : x ∼ y},

and we notice that Γ∼ is actually the common zero set of the following continuous functions

fi j(x, y) = (xiyj − xjyi) i 6= j.

An atlas for KP n is given by the open sets Ui = π(Ũi), where

Ũi = {(x0, . . . , xn) ∈ X : xi 6= 0},

and these are equipped with charts to Kn given by

ϕi([x0, . . . , xn]) = x−1
i (x0, . . . , xi−1, xi+1, . . . , xn), (5)

which are indeed invertible by (y1, . . . , yn) 7→ (y1, . . . , yi , 1, yi+1, . . . , yn).

Sometimes one finds it useful to simply use the “coordinates” (x0, . . . , xn) for KP n, with the understand-

ing that the xi are well-defined only up to overall rescaling. This is called using “projective coordinates” and

in this case a point in KP n is denoted by [x0 : · · · : xn].

Example 1.6 (Connected sum). Let p ∈ M and q ∈ N be points in topological manifolds and let (U,ϕ) and

(V, ψ) be charts around p, q such that ϕ(p) = 0 and ψ(q) = 0.

Choose ε small enough so that B(0, 2ε) ⊂ ϕ(U) and B(0, 2ε) ⊂ ϕ(V ), and define the map of annuli

φ :B(0, 2ε)\B(0, ε) −→ B(0, 2ε)\B(0, ε) (6)

x 7→ 2ε2

|x |2 x. (7)

This is a homeomorphism of the annulus to itself, exchanging the boundaries. Now we define a new

topological manifold, called the connected sum M]N, as the quotient X/ ∼, where

X = (M\ϕ−1(B(0, ε))) t (N\ψ−1(B(0, ε))),

and we define an identification x ∼ ψ−1φϕ(x) for x ∈ ϕ−1(B(0, 2ε)). If AM and AN are atlases for M,N

respectively, then a new atlas for the connect sum is simply

AM |M\ϕ−1(B(0,ε))
∪ AN |N\ψ−1(B(0,ε))

Two important remarks concerning the connect sum: first, the connect sum of a sphere with itself is

homeomorphic to the same sphere:

Sn]Sn ∼= Sn.

Second, by taking repeated connect sums of T 2 and RP 2, we may obtain all compact 2-dimensional mani-

folds.
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Example 1.7. Let F be a topological space. A fiber bundle with fiber F is a triple (E, p,B), where E,B

are topological spaces called the “total space” and “base”, respectively, and p : E −→ B is a continuous

surjective map called the “projection map”, such that, for each point b ∈ B, there is a neighbourhood U of

b and a homeomorphism

Φ : p−1U −→ U × F,
such that pU ◦ Φ = p, where pU : U × F −→ U is the usual projection. The submanifold p−1(b) ∼= F is

called the “fiber over b”.

When B, F are topological manifolds, then clearly E becomes one as well. We will often encounter such

manifolds.

1.2 Smooth manifolds

Given coordinate charts (Ui , ϕi) and (Uj , ϕj) on a topological manifold, if we compare coordinates on the

intersection Ui j = Ui ∩ Uj , we see that the map

ϕj ◦ ϕ−1
i |ϕi (Ui j ) : ϕi(Ui j) −→ ϕj(Ui j)

is a homeomorphism, simply because it is a composition of homeomorphisms. We can say this another way:

topological manifolds are glued together by homeomorphisms.

This means that we may be able to differentiate a function in one coordinate chart but not in another,

i.e. there is no way to make sense of calculus on topological manifolds. This is why we introduce smooth

manifolds, which is simply a topological manifold where the gluing maps are required to be smooth.

First we recall the notion of a smooth map of finite-dimensional vector spaces.

Remark 1 (Aside on smooth maps of vector spaces). Let U ⊂ V be an open set in a finite-dimensional

vector space, and let f : U −→ W be a function with values in another vector space W . The function f is

said to be differentiable at p ∈ U if there exists a linear map Df (p) : V −→ W such that

lim
||x ||→0

||f (p + x)− f (p)−Df (p)(x)||
||x || = 0.

Here we choose any norm1 || · || on U, V since such norms are all equivalent for finite-dimensional vector

spaces. For infinite-dimensional vector spaces, the topology is highly sensitive to which norm is chosen, but

we will work in finite dimensions.

Given linear coordinates (x1, . . . , xn) on V , and (y1, . . . , ym) on W , we may express f in terms of its

m components fj = yj ◦ f , and then the linear map Df (p) may be written as an m × n matrix, called the

Jacobian matrix of f at p.

Df (p) =

0BB@
∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

1CCA (8)

We say that f is differentiable on U when it is differentiable at all p ∈ U and we say it is continuously

differentiable when

Df : U −→ Hom(V,W )

is continuous. The vector space of continuously differentiable functions on U with values in W is called

C1(U,W ).

The first derivative Df is also a map from U to a vector space (Hom(V,W )), therefore if its derivative

exists, we obtain a map

D2f : U −→ Hom(V,Hom(V,W )),

and so on. The vector space of k times continuously differentiable functions on U with values in W is called

Ck(U,W ). We are most interested in C∞ or “smooth” maps, all of whose derivatives exist; the space of

these is denoted C∞(U,W ), and hence we have

C∞(U,W ) =
\
k

Ck(U,W ).

1A norm on a vector space V is a map | · | : V −→ R such that ||av || = |a|||v || for a ∈ R, ||v || = 0 iff v = 0, and satisfying the

triangle inequality.
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Note: for a C2 function, D2f actually has values in a smaller subspace of V ∗ ⊗ V ∗ ⊗ W , namely in

S2V ∗ ⊗W , since “mixed partials are equal”.

After this aside, we can define a smooth manifold.

Definition 2. A smooth manifold is a topological manifold equipped with an equivalence class of smooth

atlases, explained below.

Definition 3. An atlas A = {Ui , ϕi} for a topological manifold is called smooth when all gluing maps

ϕj ◦ ϕ−1
i |ϕi (Ui j ) : ϕi(Ui j) −→ ϕj(Ui j)

are smooth maps, i.e. lie in C∞(ϕi(Ui j),Rn). Two atlases A,A′ are equivalent if A ∪A′ is itself a smooth

atlas.

Note: Instead of requiring an atlas to be smooth, we could ask for it to be Ck , or real-analytic, or even

holomorphic (this makes sense for a 2n-dimensional topological manifold when we identify R2n ∼= Cn.

We may now verify that all the examples from section 1.1 are actually smooth manifolds:

Example 1.8 (Circle). For Example 1.1, only two charts, e.g. ϕ±1, suffice to define an atlas, and we have

ϕ−1 ◦ ϕ−1
1 =

(
t + 1 − 1

2
< t < 0

t 0 < t < 1
2
,

which is clearly C∞. In fact all the charts ϕz are smoothly compatible. Hence the circle is a smooth manifold.

The Cartesian product of smooth manifolds inherits a natural smooth structure from taking the Carte-

sian product of smooth atlases. Hence the n-torus, for example, equipped with the atlas we described in

Example 1.2, is smooth. Example 1.3 is clearly defining a smooth manifold, since the restriction of a smooth

map to an open set is always smooth.

Example 1.9 (Spheres). The charts for the n-sphere given in Example 1.4 form a smooth atlas, since

ϕN ◦ ϕ−1
S : ~z 7→ 1−x0

1+x0
~z = (1−x0)2

|~x |2 ~z = |~z |−2~z,

which is smooth on Rn\{0}, as required.

Example 1.10 (Projective spaces). The charts for projective spaces given in Example 1.5 form a smooth

atlas, since

ϕ1 ◦ ϕ−1
0 (z1, . . . , zn) = (z−1

1 , z−1
1 z2, . . . , z

−1
1 zn), (9)

which is smooth on Rn\{z1 = 0}, as required, and similarly for all ϕi , ϕj .

The connected sum in Example 1.6 is clearly smooth since φ was chosen to be a smooth map.

1.3 Smooth maps

For topological manifolds M,N of dimension m, n, the natural notion of morphism from M to N is that of a

continuous map. A continuous map with continuous inverse is then a homeomorphism from M to N, which

is the natural notion of equivalence for topological manifolds. Since the composition of continuous maps is

continuous and associative, we obtain a category C0-Man of topological manifolds and continuous maps.

Recall that a category is simply a class of objects C (in our case, topological manifolds) and an associative

class of arrows A (in our case, continuous maps) with source and target maps A
s

((

t

66 C and an identity

arrow for each object, given by a map Id : C −→ A (in our case, the identity map of any manifold to itself).

Conventionally we write the set of arrows {a ∈ A : s(a) = x and t(a) = y} as Hom(x, y). Also note that

the associative composition of arrows mentioned above then becomes a map

Hom(x, y)× Hom(y, z) −→ Hom(x, z).

So, the category C0-Man has objects which are topological manifolds, and Hom(M,N) = C0(M,N) is the

set of continuous maps M −→ N. We now describe the morphisms between smooth manifolds, completing

the definition of the category of smooth manifolds.
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Definition 4. A map f : M −→ N is called smooth when for each chart (U,ϕ) for M and each chart (V, ψ)

for N, the composition ψ ◦ f ◦ ϕ−1 is a smooth map, i.e. ψ ◦ f ◦ ϕ−1 ∈ C∞(ϕ(U),Rn). The set of smooth

maps (i.e. morphisms) from M to N is denoted C∞(M,N). A smooth map with a smooth inverse is called

a diffeomorphism.

If g : L −→ M and f : M −→ N are smooth maps, then so is the composition f ◦ g, since if charts

ϕ,χ,ψ for L,M,N are chosen near p ∈ L, g(p) ∈ M, and (f g)(p) ∈ N, then ψ ◦ (f ◦ g) ◦ϕ−1 = A ◦B, for

A = ψf χ−1 and B = χgϕ−1 both smooth mappings Rn −→ Rn. By the chain rule, A ◦ B is differentiable

at p, with derivative Dp(A ◦ B) = (Dg(p)A)(DpB) (matrix multiplication).

Now we have a new category, which we may call C∞-Man, the category of smooth manifolds and smooth

maps; two manifolds are considered isomorphic when they are diffeomorphic.

Example 1.11. We show that the complex projective line CP 1 is diffeomorphic to the 2-sphere S2. Consider

the maps f+(x0, x1, x2) = [1 + x0 : x1 + ix2] and f−(x0, x1, x2) = [x1 − ix2 : 1 − x0]. Since f± is continuous

on x0 6= ±1, and since f− = f+ on |x0| < 1, the pair (f−, f+) defines a continuous map f : S2 −→ CP 1. To

check smoothness, we compute the compositions

ϕ0 ◦ f+ ◦ ϕ−1
N : (y1, y2) 7→ y1 + iy2, (10)

ϕ1 ◦ f− ◦ ϕ−1
S : (y1, y2) 7→ y1 − iy2, (11)

both of which are obviously smooth maps.

Remark 2 (Exotic smooth structures). The topological Poincaré conjecture, now proven, states that any

topological manifold homotopic to the n-sphere is in fact homeomorphic to it. We have now seen how to

put a differentiable structure on this n-sphere. Remarkably, there are other differentiable structures on the

n-sphere which are not diffeomorphic to the standard one we gave; these are called exotic spheres.

Since the connected sum of spheres is homeomorphic to a sphere, and since the connected sum operation

is well-defined as a smooth manifold, it follows that the connected sum defines a monoid structure on the set

of smooth n-spheres. In fact, Kervaire and Milnor showed that for n 6= 4, the set of (oriented) diffeomorphism

classes of smooth n-spheres forms a finite abelian group under the connected sum operation. This is not

known to be the case in four dimensions. Kervaire and Milnor also compute the order of this group, and

the first dimension where there is more than one smooth sphere is n = 7, in which case they show there are

28 smooth spheres, which we will encounter later on.

The situation for spheres may be contrasted with that for the Euclidean spaces: any differentiable

manifold homeomorphic to Rn for n 6= 4 must be diffeomorphic to it. On the other hand, by results of

Donaldson, Freedman, Taubes, and Kirby, we know that there are uncountably many non-diffeomorphic

smooth structures on the topological manifold R4; these are called fake R4s.

Example 1.12 (Lie groups). A group is a set G with an associative multiplication G × G m // G , an

identity element e ∈ G, and an inversion map ι : G −→ G, usually written ι(g) = g−1.

If we endow G with a topology for which G is a topological manifold and m, ι are continuous maps, then

the resulting structure is called a topological group. If G is a given a smooth structure and m, ι are smooth

maps, the result is a Lie group.

The real line (where m is given by addition), the circle (where m is given by complex multiplication), and

their cartesian products give simple but important examples of Lie groups. We have also seen the general

linear group GL(n,R), which is a Lie group since matrix multiplication and inversion are smooth maps.

Since m : G × G −→ G is a smooth map, we may fix g ∈ G and define smooth maps Lg : G −→ G and

Rg : G −→ G via Lg(h) = gh and Rg(h) = hg. These are called left multiplication and right multiplication.

Note that the group axioms imply that RgLh = LhRg.

1.4 Manifolds with boundary

The concept of manifold with boundary is important for relating manifolds of different dimension. Our

manifolds are defined intrinsically, meaning that they are not defined as subsets of another topological

space; therefore, the notion of boundary will differ from the usual boundary of a subset.

To introduce boundaries in our manifolds, we need to change the local model which they are based on.

For this reason, we introduce the half-space Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}, equip it with the induced

topology from Rn, and model our spaces on this one.
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Definition 5. A topological manifold with boundary M is a second countable Hausdorff topological space

which is locally homeomorphic to Hn. Its boundary ∂M is the (n − 1) manifold consisting of all points

mapped to xn = 0 by a chart, and its interior IntM is the set of points mapped to xn > 0 by some chart.

A smooth structure on such a manifold with boundary is an equivalence class of smooth atlases, where

smoothness is defined below.

Definition 6. Let V,W be finite-dimensional vector spaces, as before. A function f : A −→ W from an

arbitrary subset A ⊂ V is smooth when it admits a smooth extension to an open neighbourhood Up ⊂ W of

every point p ∈ A.

For example, the function f (x, y) = y is smooth on H2 but f (x, y) =
√
y is not, since its derivatives do

not extend to y ≤ 0.

Note the important fact that if M is an n-manifold with boundary, IntM is a usual n-manifold, without

boundary. Also, even more importantly, ∂M is an n − 1-manifold without boundary, i.e. ∂(∂M) = ∅. This

is sometimes phrased as the equation

∂2 = 0.

Example 1.13 (Möbius strip). The mobius strip E is a compact 2-manifold with boundary. As a topological

space it is the quotient of R× [0, 1] by the identification (x, y) ∼ (x+1, 1−y). The map π : [(x, y)] 7→ e2πix

is a continuous surjective map to S1, called a projection map. We may choose charts [(x, y)] 7→ ex+iπy for

x ∈ (x0 − ε, x0 + ε), and for any ε < 1
2

.

Note that ∂E is diffeomorphic to S1. This actually provides us with our first example of a non-trivial

fiber bundle. In this case, E is a bundle of intervals over a circle. It is nontrivial, since the trivial fiber bundle

S1 × [0, 1] has boundary S1 t S1.

1.5 Cobordism

(n+ 1)-Manifolds with boundary provide us with a natural equivalence relation on n-manifolds, called cobor-

dism.

Definition 7. Compact n-manifolds M1,M2 are cobordant when there exists a compact n+ 1-manifold with

boundary N such that ∂N is diffeomorphic to M1 tM2. If N is cobordant to M, then we say that M,N are

in the same cobordism class.

• We use compact manifolds since any manifold M is the boundary of a noncompact manifold with

boundary M × [0, 1).

• The set of cobordism classes of k-dimensional manifolds is called Ωk , and forms an abelian group

under the operation [M1] + [M2] = [M1 tM2]. The additive identity element is 0 = [∅]. Note that ∅
is a manifold of dimension k for all k.

• The direct sum Ω• =
L

k≥0 Ωk then forms a commutative ring called the Cobordism ring, where the

product is

[M1] · [M2] = [M1 ×M2].

Note that while the Cartesian product of manifolds is a manifold, the Cartesian product of two manifolds

with boundary is not a manifold with boundary. On the other hand, the Cartesian product of manifolds

only one of which has boundary, is a manifold with boundary (why?)

Note that the 1-point space [∗] is not null-cobordant, meaning it is not the boundary of a compact 1-

manifold. Compact 0-dimensional manifolds are boundaries only if they consist of an even number of points.

This shows that there are compact manifolds which are not boundaries.

Proposition 1.14. The cobordism ring is 2-torsion, i.e. x + x = 0 ∀x .

Proof. The zero element of the ring is [∅] and the multiplicative unit is [∗], the class of the one-point

manifold. For any manifold M, the manifold with boundary M × [0, 1] has boundary M t M. Hence

[M] + [M] = [∅] = 0, as required.

Example 1.15. The n-sphere Sn is null-cobordant (i.e. cobordant to ∅), since ∂Bn+1(0, 1) ∼= Sn, where

Bn+1(0, 1) denotes the unit ball in Rn+1.
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Example 1.16. Any oriented compact 2-manifold Σg is null-cobordant , since we may embed it in R3 and

the “inside” is a 3-manifold with boundary given by Σg.

We would like to state an amazing theorem of Thom, which is a complete characterization of the

cobordism ring.

Theorem 1.17 (René Thom 1954). The cobordism ring is a (countably generated) polynomial ring over F2

with generators in every dimension n 6= 2k − 1, i.e.

Ω• = F2[x2, x4, x5, x6, x8, . . .].

This theorem implies that there are 3 nonzero cobordism classes in dimension 4, namely x2
2 , x4, and x2

2 +

x4. Can you find 4-manifolds representing these classes? Can you find connected representatives? What is

the abelian group structure on Ω4? In fact, there is a finite set of numbers associated to each manifold,

called the Stiefel-Whitney characteristic numbers, which completely determine whether two manifolds are

cobordant.

1.6 Smooth functions and partitions of unity

The set C∞(M,R) of smooth functions on M inherits much of the structure of R by composition. R is a

ring, having addition + : R × R −→ R and multiplication × : R × R −→ R which are both smooth. As a

result, C∞(M,R) is as well: One way of seeing why is to use the smooth diagonal map ∆ : M −→ M ×M,

i.e. ∆(p) = (p, p).

Then, given functions f , g ∈ C∞(M,R) we have the sum f + g, defined by the composition

M
∆ // M ×M

f×g // R× R
+ // R .

We also have the product f g, defined by the composition

M
∆ // M ×M

f×g // R× R
× // R .

Given a smooth map ϕ : M −→ N of manifolds, we obtain a natural operation ϕ∗ : C∞(N,R) −→ C∞(M,R),

given by f 7→ f ◦ ϕ. This is called the pullback of functions, and defines a homomorphism of rings since

∆ ◦ ϕ = (ϕ× ϕ) ◦ ∆.

The association M 7→ C∞(M,R) and ϕ 7→ ϕ∗ takes objects and arrows of C∞-Man to objects and

arrows of the category of rings, respectively, in such a way which respects identities and composition of

morphisms. Such a map is called a functor. In this case, it has the peculiar property that it switches the

source and target of morphisms. It is therefore a contravariant functor from the category of manifolds to

the category of rings, and is the basis for algebraic geometry, the algebraic representation of geometrical

objects.

It is easy to see from this that any diffeomorphism ϕ : M −→ M defines an automorphism ϕ∗ of

C∞(M,R), but actually all automorphisms are of this form (Why?). Also, if M is a compact manifold, then

an ideal I ⊂ C∞(M,R) is maximal if and only if it is the vanishing ideal {f ∈ C∞(M,R) : f (p) = 0} of a

point p ∈ M (Why? Also, Why must M be compact?).

The key tool for understanding the ring C∞(M,R) is the partition of unity. This will allow us to go from

local to global, i.e. to glue together objects which are defined locally, creating objects with global meaning.

Definition 8. A collection of subsets {Uα} of the topological space M is called locally finite when each point

x ∈ M has a neighbourhood V intersecting only finitely many of the Uα.

Definition 9. A covering {Vα} is a refinement of the covering {Uβ} when each Vα is contained in some Uβ.

Lemma 1.18. Any open covering {Aα} of a topological manifold has a countable, locally finite refinement

{(Ui , ϕi)} by coordinate charts such that ϕi(Ui) = B(0, 3) and {Vi = ϕ−1
i (B(0, 1))} is still a covering of

M. We will call such a cover a regular covering. In particular, any topological manifold is paracompact (i.e.

every open cover has a locally finite refinement)
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Proof. If M is compact, the proof is easy: choosing coordinates around any point x ∈ M, we can translate

and rescale to find a covering of M by a refinement of the type desired, and choose a finite subcover, which

is obviously locally finite.

For a general manifold, we note that by second countability of M, there is a countable basis of coordinate

neighbourhoods and each of these charts is a countable union of open sets Pi with Pi compact. Hence M

has a countable basis {Pi} such that Pi is compact.

Using these, we may define an increasing sequence of compact sets which exhausts M: let K1 = P 1,

and

Ki+1 = P1 ∪ · · · ∪ Pr ,
where r > 1 is the first integer with Ki ⊂ P1 ∪ · · · ∪ Pr .

Now note that M is the union of ring-shaped sets Ki\K◦i−1, each of which is compact. If p ∈ Aα, then

p ∈ Ki+2\K◦i−1 for some i . Now choose a coordinate neighbourhood (Up,α, ϕp,α) with Up,α ⊂ Ki+2\K◦i−1 and

ϕp,α(Up,α) = B(0, 3) and define Vp,α = ϕ−1(B(0, 1)).

Letting p, α vary, these neighbourhoods cover the compact set Ki+1\K◦i without leaving the band

Ki+2\K◦i−1. Choose a finite subcover Vi ,k for each i . Then (Ui ,k , ϕi ,k) is the desired locally finite refine-

ment.

Definition 10. A smooth partition of unity is a collection of smooth non-negative functions {fα : M −→ R}
such that

i) {suppfα = f −1
α (R\{0})} is locally finite,

ii)
P

α fα(x) = 1 ∀x ∈ M, hence the name.

A partition of unity is subordinate to an open cover {Ui} when ∀α, suppfα ⊂ Ui for some i .

Theorem 1.19. Given a regular covering {(Ui , ϕi)} of a manifold, there exists a partition of unity {fi}
subordinate to it with fi > 0 on Vi and suppfi ⊂ ϕ−1

i (B(0, 2)).

Proof. A bump function is a smooth non-negative real-valued function g̃ on Rn with g̃(x) = 1 for ||x || ≤ 1

and g̃(x) = 0 for ||x || ≥ 2. For instance, take

g̃(x) =
h(2− ||x ||)

h(2− ||x ||) + h(||x ||+ 1)
,

for h(t) given by e−1/t for t > 0 and 0 for t < 0.

Having this bump function, we can produce non-negative bump functions on the manifold gi = g̃ ◦ ϕi
which have support suppgi ⊂ ϕ−1

i (B(0, 2)) and take the value +1 on Vi . Finally we define our partition of

unity via

fi =
giP
j gj
, i = 1, 2, . . . .

Corollary 1.20 (Existence of bump functions). Let A ⊂ M be any closed subset of a manifold, and let U

be any open neighbourhood of A. Then there exists a smooth function fU : M −→ R with fU ≡ 1 on A and

suppfU ⊂ U.

Proof. Consider the open cover {U,M\A} of M. Choose a regular subcover (Ui , ϕi) with subordinate

partition of unity fi . Then let fU be the sum of all fi with support contained in U.

One interesting application of partitions of unity is to the extension of any chart ϕi : Ui ⊂ M −→ Rn to

a smooth mapping ϕ : M −→ Rn. If ψ is a bump function supported in Ui , then take

ϕ(x) =

(
0 for x ∈ M\Ui
ψ(x)ϕi(x) for x ∈ Ui

9



2 The tangent functor

The tangent bundle of an n-manifold M is a 2n-manifold, called TM, naturally constructed in terms of

M, which is made up of the disjoint union of all tangent spaces to all points in M. Usually we think of

tangent spaces as subspaces of Euclidean space which approximate a curved subset, but interestingly, the

tangent space does not require an ambient space in order to be defined. In other words, the tangent space

is “intrinsic” to the manifold and does not depend on any embedding.

As a set, it is fairly easy to describe, as simply the disjoint union of all tangent spaces. However we must

explain precisely what we mean by the tangent space TpM to p ∈ M.

Definition 11. Let (U,ϕ), (V, ψ) be coordinate charts around p ∈ M. Let u ∈ Tϕ(p)ϕ(U) and v ∈ Tψ(p)ψ(V ).

Then the triples (U,ϕ, u), (V, ψ, v) are called equivalent when D(ψ ◦ ϕ−1)(ϕ(p)) : u 7→ v . The chain rule

for derivatives Rn −→ Rn guarantees that this is indeed an equivalence relation.

The set of equivalence classes of such triples is called the tangent space to p of M, denoted TpM, and

forms a real vector space of dimension dimM.

As a set, the tangent bundle is defined by

TM =
G
p∈M

TpM,

and it is equipped with a natural surjective map π : TM −→ M, which is simply π(X) = x for X ∈ TxM.

We now give it a manifold structure in a natural way.

Proposition 2.1. For an n-manifold M, the set TM has a natural topology and smooth structure which

make it a 2n-manifold, and make π : TM −→ M a smooth map.

Proof. Any chart (U,ϕ) for M defines a bijection

Tϕ(U) ∼= U × Rn −→ π−1(U)

via (p, v) 7→ (U,ϕ, v). Using this, we induce a smooth manifold structure on π−1(U), and view the inverse

of this map as a chart (π−1(U),Φ) to ϕ(U)× Rn.

given another chart (V, ψ), we obtain another chart (π−1(V ),Ψ) and we may compare them via

Ψ ◦Φ−1 : ϕ(U ∩ V )× Rn −→ ψ(U ∩ V )× Rn,

which is given by (p, u) 7→ ((ψ ◦ϕ−1)(p), D(ψ ◦ϕ−1)pu), which is smooth. Therefore we obtain a topology

and smooth structure on all of TM (by defining W to be open when W ∩ π−1(U) is open for every U in an

atlas for M; all that remains is to verify the Hausdorff property, which holds since points x, y are either in

the same chart (in which case it is obvious) or they can be separated by the given type of charts.

A more constructive way of looking at the tangent bundle: We choose a countable, locally finite atlas

A = {(Ui , ϕi)} for M with gluing maps ϕi j = ϕj ◦ ϕ−1
i , and glue Ui × Rn to Uj × Rn via an equivalence

(x, u) ∼ (y, v) ⇔ y = ϕi j(x) and v = (Dϕi j)xu,

and verify the conditions of the general gluing construction (Assignment 1), obtaining a manifold TMA.

Then show that the result is independent of the chosen atlas in the smooth structure: for a different atlas

A′, one obtains a diffeomorphism ϕAA′ : TMA −→ TMA′ which itself satisfies ϕA′A′′ ◦ ϕAA′ = ϕAA′′ .

It is easy to see from the definition that (TM,πM ,M) is a fiber bundle with fiber type Rn; in fact there

is slightly more structure involved: the tangent spaces TpM have a natural vector space structure and the

given local trivializations Φ : π−1
M (U) −→ U × Rn preserve the vector space structure on each fiber, i.e.

Φ|TpM : TpM −→ {p} × Rn is a linear map for all p. This makes (TM,πM ,M) into a vector bundle.
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2.1 Tangent morphism

The tangent bundle itself is only the result of applying the tangent functor to a manifold. We must explain

how to apply the tangent functor to a morphism of manifolds. This is otherwise known as taking the

“derivative” of a smooth map f : M −→ N. Such a map may be defined locally in charts (Ui , ϕi) for M

and (Vα, ψα) for N as a collection of vector-valued functions ψα ◦ f ◦ ϕ−1
i = fiα : ϕi(Ui) −→ ψα(Vα) which

satisfy

ψαβ ◦ fiα = fjβ ◦ ϕi j .
Differentiating, we obtain

Dψαβ ◦Dfiα = Dfjβ ◦Dϕi j ,
and hence we obtain a map TM −→ TN. This map is called the derivative of f and is denoted T f : TM −→
TN (or sometimes just Df : TM −→ TN). Sometimes it is called the “push-forward” of vectors and is

denoted f∗. The map fits into the commutative diagram

TM
T f //

πM

��

TN

πN

��
M

f
// N

Just as π−1(x) = TxM ⊂ TM is a vector space for all x , making TM into a “bundle of vector spaces”, the

map T f : TxM −→ Tf (x)N is a linear map and hence T f is a “bundle of linear maps”. The pair (f , T f ) is a

morphism of vector bundles (TM,πM ,M) −→ (TN, πN , N).

The usual chain rule for derivatives then implies that if f ◦g = h as maps of manifolds, then T f ◦Tg = Th.

As a result, we obtain the following category-theoretic statement.

Proposition 2.2. The map T which takes a manifold M to its tangent bundle TM, and which takes maps

f : M −→ N to the derivative T f : TM −→ TN, is a functor from the category of manifolds and smooth

maps to itself.

The tangent bundle allows us to make sense of the notion of vector field in a global way. Locally, in a

chart (Ui , ϕi), we would say that a vector field Xi is simply a vector-valued function on Ui , i.e. a function

Xi : ϕ(Ui) −→ Rn. Of course if we had another vector field Xj on (Uj , ϕj), then the two would agree

as vector fields on the overlap Ui ∩ Uj when Dϕi j : Xi(p) 7→ Xj(ϕi j(p)). So, if we specify a collection

{Xi ∈ C∞(Ui ,Rn)} which glue on overlaps, this would define a global vector field. This leads precisely to

the following definition.

Definition 12. A smooth vector field on the manifold M is a smooth map X : M −→ TM such that

π ◦ X : M −→ M is the identity. Essentially it is a smooth assignment of a unique tangent vector to each

point in M.

Such maps X are also called cross-sections or simply sections of the tangent bundle TM, and the set

of all such sections is denoted C∞(M,TM) or sometimes Γ∞(M,TM), to distinguish them from simply

smooth maps M −→ TM.

Example 2.3. From a computational point of view, given an atlas (Ũi , ϕi) for M, let Ui = ϕi(Ũi) ⊂ Rn and

let ϕi j = ϕj ◦ ϕ−1
i . Then a global vector field X ∈ Γ∞(M,TM) is specified by a collection of vector-valued

functions Xi : Ui −→ Rn such that Dϕi j(Xi(x)) = Xj(ϕi j(x)) for all x ∈ ϕi(Ũi ∩ Ũj).

For example, if S1 = U0 u U1/ ∼, with U0 = R and U1 = R, with x ∈ U0\{0} ∼ y ∈ U1\{0} whenever

y = x−1, then ϕ01 : x 7→ x−1 and Dϕ01(x) : (x, v) 7→ (x−1,−x−2v).

If we choose the coordinate vector field X0 = ∂
∂x

(in coordinates this is simply x 7→ (x, 1)), then we see

that Dϕ01(X0) = (x−1,−x−2 · 1), i.e. the vector field y 7→ (y,−y 2), in other words X1 = −y 2 ∂
∂y

.

Hence the following local vector fields glue to form a global vector field on S1:

X0 =
∂

∂x

X1 = −y 2 ∂

∂y
.

This vector field does not vanish in U0 but vanishes to order 2 at a single point in U1. Find the local

expression in these charts for the rotational vector field on S1 given in polar coordinates by ∂
∂θ

.
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A word of warning: it may be tempting to think that the assignment M 7→ Γ∞(M,TM) is a functor

from manifolds to vector spaces; it is not, because there is no way to push forward or pull back vector fields.

Nevertheless, if f : M −→ N is a smooth map, it does define an equivalence relation between vector fields

on M and N:

Definition 13. if f : M −→ N smooth, then X ∈ Γ∞(M,TM) is called f -related to Y ∈ Γ∞(N, TN) when

f∗(X(p)) = Y (f (p)), i.e. the diagram commutes:

TM
T f // TN

M

X

OO

f
// N

Y

OO

So, another way to phrase the definition of a vector field is that they are local vector-valued functions

which are ϕi j -related on overlaps.

2.2 Properties of vector fields

The concept of derivation of an algebra A is the infinitesimal version of an automorphism of A. That is, if

φt : A −→ A is a family of automorphisms of A starting at Id, so that φt(ab) = φt(a)φt(b), then the map

a 7→ d
dt
|t=0φt(a) is a derivation.

Definition 14. A derivation of the R-algebra A is a R-linear map D : A −→ A such that D(ab) = (Da)b +

a(Db). The space of all derivations is denoted Der(A). Note that this makes sense for noncommutative

algebras also.

In the following, we show that derivations of the algebra of functions actually correspond to vector fields.

The vector fields Γ∞(M,TM) form a vector space over R of infinite dimension (unless dimM = 0).

They also form a module over the ring of smooth functions C∞(M,R) via pointwise multiplication: for

f ∈ C∞(M,R) and X ∈ Γ∞(M,TM), we claim that f X : x 7→ f (x)X(x) defines a smooth vector field:

this is clear from local considerations: A vector field V =
P

i v
i(x1, . . . xn) ∂

∂x i
is smooth precisely when the

component functions v i are smooth: the vector field f V then has components f v i , still smooth.

The important property of vector fields which we are interested in is that they act as R-derivations of

the algebra of smooth functions. Locally, it is clear that a vector field X =
P

i a
i ∂
∂x i

gives a derivation of

the algebra of smooth functions, via the formula X(f ) =
P

i a
i ∂f
∂x i

, since

X(f g) =
X
i

ai( ∂f
∂x i
g + f ∂g

∂x i
) = X(f )g + f X(g).

We wish to verify that this local action extends to a well-defined global derivation on C∞(M,R).

Proposition 2.4. Let f be a smooth function on U ⊂ Rn, and X : U −→ TRn = Rn × Rn a vector field.

Then

X(f ) = π2 ◦Df ◦X,
where π2 : R× R −→ R is the second projection (i.e. projection to the fiber of TRn.) In local coordinates,

we have X(f ) =
P

i a
i ∂f
∂x i

whereas Df : X(x) 7→ (f (x),
P

i
∂f
∂x i
ai), so that we obtain the result by projection.

Proposition 2.5. Local partial differentiation extends to an injective map Γ∞(M,TM) −→ Der(C∞(M,R)).

Proof. A global function is given by fi = fj ◦ ϕi j . We verify that

Xi(fi) = π2 ◦Dfi ◦ Xi (12)

= π2 ◦Dfj ◦Dϕi j ◦Xi (13)

= π2 ◦Dfj ◦ Xj ◦ ϕi j (14)

= Xj(fj) ◦ ϕi j , (15)

showing that {Xi(fi)} defines a global function. Injectivity follows from the local fact that V (f ) = 0 for all

f would imply, for V =
P

i v
i ∂
∂x i

, that V (x i) = v i = 0 for all i , i.e. V = 0.
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In fact, vector fields provide all possible derivations of the algebra A = C∞(M,R):

Theorem 2.6. The map Γ∞(M,TM) −→ Der(C∞(M,R)) is an isomorphism.

Proof. First we prove the result for an open set U ⊂ Rn. Let D be a derivation of C∞(U,R) and define

the smooth functions ai = D(x i). Then we claim D =
P

i a
i ∂
∂x i

. We prove this by testing against smooth

functions. Any smooth function f on Rn may be written

f (x) = f (0) +
X
i

x igi(x),

with gi(0) = ∂f
∂x i

(0) (simply take gi(x) =
R 1

0
∂f
∂x i

(tx)dt). Translating the origin to y ∈ U, we obtain for any

z ∈ U
f (z) = f (y) +

X
i

(x i(z)− x i(y))gi(z), gi(y) = ∂f
∂x i

(y).

Applying D, we obtain

Df (z) =
X
i

(Dx i)gi(z)−
X
i

(x i(z)− x i(y))Dgi(z).

Letting z approach y , we obtain

Df (y) =
X
i

ai ∂f
∂x i

(y) = X(f )(y),

as required.

To prove the global result, let (Vi ⊂ Ui , ϕi) be a regular covering and θi the associated partition of

unity. Then for each i , θiD : f 7→ θiD(f ) is also a derivation of C∞(M,R). This derivation defines a unique

derivation Di of C∞(Ui ,R) such that Di(f |Ui ) = (θiDf )|Ui , since for any point p ∈ Ui , a given function

g ∈ C∞(Ui ,R) may be replaced with a function g̃ ∈ C∞(M,R) which agrees with g on a small neighbourhood

of p, and we define (Dig)(p) = θi(p)Dg̃(p). This definition is independent of g̃, since if h1 = h2 on an

open set, Dh1 = Dh2 on that open set (let ψ = 1 in a neighbourhood of p and vanish outside Ui ; then

h1 − h2 = (h1 − h2)(1− ψ) and applying D we obtain zero).

The derivation Di is then represented by a vector field Xi , which must vanish outside the support of θi .

Hence it may be extended by zero to a global vector field which we also call Xi . Finally we observe that for

X =
P

i Xi , we have

X(f ) =
X
i

Xi(f ) =
X
i

Di(f ) = D(f ),

as required.

Since vector fields are derivations, we deduce that they have all the properties that derivationsdo, and

we also have a natural source of examples, coming from infinitesimal automorphisms of M.

Definition 15. For any algebra A, the derivations Der(A) form a Lie algebra via the bracket [X, Y ](f ) =

X(Y (f ))− Y (X(f )). For vector fields (A = C∞(M,R)), this bracket is called the Lie bracket.

Example 2.7. Let ϕt : be a smooth family of diffeomorphisms of M with ϕ0 = Id. That is, let ϕ : (−ε, ε)×
M −→ M be a smooth map and ϕt : M −→ M a diffeomorphism for each t. Then X(f )(p) = d

dt
|t=0(ϕ∗t f )(p)

defines a smooth vector field. A better way of seeing that it is smooth is to rewrite it as follows: Let ∂
∂t

be

the coordinate vector field on (−ε, ε) and observe X(f )(p) = ∂
∂t

(ϕ∗f )(0, p).

In many cases, a smooth vector field may be expressed as above, i.e. as an infinitesimal automorphism of

M, but this is not always the case. In general, it gives rise to a “local 1-parameter group of diffeomorphisms”,

as follows:

Definition 16. A local 1-parameter group of diffeomorphisms is an open set U ⊂ R×M containing {0}×M
and a smooth map

Φ :U −→ M

(t, x) 7→ ϕt(x)

such that R×{x} ∩U is connected, ϕ0(x) = x for all x and if (t, x), (t + t ′, x), (t ′, ϕt(x)) are all in U then

ϕt ′(ϕt(x)) = ϕt+t ′(x) (note that this last fact indicates that ϕt are all diffeomorphisms, having inverses

ϕ−t).
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Then the local existence and uniqueness of solutions to systems of ODE implies that every smooth

vector field X ∈ Γ∞(M,TM) gives rise to a local 1-parameter group of diffeomorphisms (U,Φ) such that

the curve γx : t 7→ ϕt(x) is such that (γx)∗(
d
dt

) = X(γx(t)) (this means that γx is an integral curve or

“trajectory” of the “dynamical system” defined by X). Furthermore, if (U ′,Φ′) are another such data, then

Φ = Φ′ on U ∩ U ′.
Definition 17. A vector field X ∈ Γ∞(M,TM) is called complete when it has a local 1-parameter group of

diffeomorphisms with U = R×M.

Theorem 2.8. If M is compact, then every smooth vector field is complete. Similarly any compactly-

supported vector field is complete.

Example 2.9. The vector field X = x2 ∂
∂x

on R is not complete. For initial condition x0, have integral curve

γ(t) = x0(1− tx0)−1, which gives Φ(t, x0) = x0(1− tx0)−1, which is well-defined on {1− tx > 0}.
Remark 3. If φt and ψt are families of automorphisms of A with φ0 = ψ0 = Id, then they correspond

to derivations X = d
dt
|t=0φt and Y = d

dt
|t=0ψt , and the family of automorphisms γt = φtψtφ

−1
t ψ

−1
t has

d
dt
|t=0γt = 0 and d2

dt2 |t=0γt = [X, Y ].

2.3 Local structure of smooth maps

In some ways, smooth manifolds are easier to produce or find than general topological manifolds, because

of the fact that smooth maps have linear approximations. Therefore smooth maps often behave like linear

maps of vector spaces, and we may gain inspiration from vector space constructions (e.g. subspace, kernel,

image, cokernel) to produce new examples of manifolds.

In charts (U,ϕ), (V, ψ) for the smooth manifolds M,N, a smooth map f : M −→ N is represented by a

smooth map ψ ◦ f ◦ ϕ−1 ∈ C∞(ϕ(U),Rn). We shall give a general local classification of such maps, based

on the behaviour of the derivative. The fundamental result which provides information about the map based

on its derivative is the inverse function theorem.

Theorem 2.10 (Inverse function theorem). Let U ⊂ Rm an open set and f : U −→ Rm a smooth map such

that Df (p) is an invertible linear operator. Then there is a neighbourhood V ⊂ U of p such that f (V ) is

open and f : V −→ f (V ) is a diffeomorphism. furthermore, D(f −1)(f (p)) = (Df (p))−1.

Proof not given in class – this is the standard proof seen in first analysis course. Without loss of general-

ity, assume that U contains the origin, that f (0) = 0 and that Df (p) = Id (for this, replace f by

(Df (0))−1 ◦ f . We are trying to invert f , so solve the equation y = f (x) uniquely for x . Define g so

that f (x) = x + g(x). Hence g(x) is the nonlinear part of f .

The claim is that if y is in a sufficiently small neighbourhood of the origin, then the map hy : x 7→ y−g(x)

is a contraction mapping on some closed ball; it then has a unique fixed point φ(y) by the Banach fixed

point theorem (Look it up!), and so y − g(φ(y)) = φ(y), i.e. φ is an inverse for f .

Why is hy a contraction mapping? Note that Dhy (0) = 0 and hence there is a ball B(0, r) where

||Dhy || ≤ 1
2

. This then implies (mean value theorem) that for x, x ′ ∈ B(0, r),

||hy (x)− hy (x ′)|| ≤ 1
2
||x − x ′||.

Therefore hy does look like a contraction, we just have to make sure it’s operating on a complete metric

space. Let’s estimate the size of hy (x):

||hy (x)|| ≤ ||hy (x)− hy (0)||+ ||hy (0)|| ≤ 1
2
||x ||+ ||y ||.

Therefore by taking y ∈ B(0, r
2

), the map hy is a contraction mapping on B(0, r). Let φ(y) be the unique

fixed point of hy guaranteed by the contraction mapping theorem.

To see that φ is continuous (and hence f is a homeomorphism), we compute

||φ(y)− φ(y ′)|| = ||hy (φ(y))− hy ′(φ(y ′))||
≤ ||g(φ(y))− g(φ(y ′))||+ ||y − y ′||
≤ 1

2
||φ(y)− φ(y ′)||+ ||y − y ′||,

so that we have ||φ(y)− φ(y ′)|| ≤ 2||y − y ′′||, as required.
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To see that φ is differentiable, we guess the derivative (Df )−1 and compute. Let x = φ(y) and

x ′ = φ(y ′). For this to make sense we must have chosen r small enough so that Df is nonsingular on

B(0, r), which is not a problem.

||φ(y)− φ(y ′)− (Df (x))−1(y − y ′)|| = ||x − x ′ − (Df (x))−1(f (x)− f (x ′))||

≤ ||(Df (x))−1||||(Df (x))(x − x ′)− (f (x)− f (x ′))||
≤ o(||x − x ′||), using differentiability of f

≤ o(||y − y ′||), using continuity of φ.

Now that we have shown φ is differentiable with derivative (Df )−1, we use the fact that Df is C∞ and

inversion is C∞, implying that Dφ is C∞ and hence φ also.

This theorem immediately provides us with a local normal form for a smooth map with Df (p) invertible:

we may choose coordinates on sufficiently small neighbourhoods of p, f (p) so that f is represented by the

identity map Rn −→ Rn.

In fact, the inverse function theorem leads to a normal form theorem for a more general class of maps:

Theorem 2.11 (Constant rank theorem). If f : M −→ N is a smooth map of manifolds of dimension m, n

respectively, and if T f has constrant rank k in some open set Ũ ⊂ M then for each point p ∈ Ũ there are

charts (U,ϕ) and (V, ψ) containing p, f (p) such that

ψ ◦ f ◦ ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk , 0, . . . , 0).

Proof. Begin by choosing coordinates near p, f (p) on M and N. Since rk (T f ) = k at p, there is a k × k
minor of Df (p) with nonzero determinant. Reorder the coordinates on Rm and Rn so that this minor is top

left, and translate coordinates so that f (0) = 0. label the coordinates (x1, . . . , xk , y1, . . . ym−k) on V and

(u1, . . . uk , v1, . . . , vn−k) on W .

Then we may write f (x, y) = (Q(x, y), R(x, y)), where Q is the projection to u = (u1, . . . , uk) and R

is the projection to v . with ∂Q
∂x

nonsingular. First we wish to put Q into normal form. Consider the map

φ(x, y) = (Q(x, y), y), which has derivative

Dφ =

„
∂Q
∂x

∂Q
∂y

0 1

«
As a result we see Dφ(0) is nonsingular and hence there exists a local inverse φ−1(x, y) = (A(x, y), B(x, y)).

Since it’s an inverse this means (x, y) = φ(φ−1(x, y)) = (Q(A,B), B), which implies that B(x, y) = y .

Then f ◦ φ−1 : (x, y) 7→ (x, R̃ = R(A, y)), and must still be of rank k. Since its derivative is

D(f ◦ φ−1) =

 
Ik×k 0
∂R̃
∂x

∂R̃
∂y

!

and since we know that T f must have rank k in a neighbourhood of p, we conclude that ∂R̃
∂y

= 0 in a

neighbourhood of p, meaning that R̃ is a function S(x) only of the variables x .

f ◦ φ−1 : (x, y) 7→ (x, S(x)).

We now postcompose by the diffeomorphism σ : (u, v) 7→ (u, v − S(u)), to obtain

σ ◦ f ◦ φ−1 : (x, y) 7→ (x, 0),

as required.

Some special cases of the above theorem have special names:

local immersion: (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0)

local submersion: (x1, . . . , xm) 7→ (x1, . . . , xk)

local diffeomorphism: (x1, . . . , xm) 7→ (x1, . . . , xm)
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Definition 18. A smooth map f : M −→ N is called a submersion when T f (p) is surjective at all points

p ∈ M, and is called an immersion when T f (p) is injective at all points p ∈ M.

For linear maps A : V −→ W , we obtain new vector spaces as subspaces ker(A) ⊂ V and im(A) ⊂ W .

The same thing occurs for smooth maps, assuming that they satisfy the conditions of the theorem above.

Definition 19. An embedded submanifold (sometimes called regular submanifold) of dimension k in an

n-manifold M is a subspace S ⊂ M such that ∀s ∈ S, there exists a chart (U,ϕ) for M, containing s, and

with

S ∩ U = ϕ−1(xk+1 = · · · = xn = 0).

In other words, the inclusion S ⊂ M is locally isomorphic to the vector space inclusion Rk ⊂ Rn.

Of course, the remaining coordinates {x1, . . . , xk} define a smooth manifold structure on S itself, justi-

fying the terminology.

Proposition 2.12 (analog of kernel). If f : M −→ N is a smooth map of manifolds, and if T f (p) has

constant rank on M, then for any q ∈ f (M), the inverse image f −1(q) ⊂ M is an embedded submanifold.

Proof. Let x ∈ f −1(q). Then there exist charts ψ,ϕ such that ψ◦f ◦ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk , 0, . . . , 0)

and f −1(q) ∩ U = {x1 = · · · = xk = 0}. Hence we obtain that f −1(q) is a codimension k embedded sub-

manifold.

Example 2.13. Let f : Rn −→ R be given by (x1, . . . , xn) 7→
P
x2
i . Then Df (x) = (2x1, . . . , 2xn), which

has rank 1 at all points in Rn\{0}. Hence since f −1(q) contains {0} iff q = 0, we see that f −1(q) is an

embedded submanifold for all q 6= 0. Exercise: show that this manifold structure is compatible with that

obtained in Example 1.9.

If T f has maximal rank at a point p ∈ M, this is a special case, because then it will have maximal rank

in a neighbourhood of p, and the local normal form will hold.

Definition 20. A point p ∈ M for which T f (p) has maximal rank is called a regular point. Otherwise it

is called a critical point. Values q ∈ N for which f −1(q) are all regular points are called regular values

(including points for which f −1(q) = ∅). Other values are called critical values. Warning: even if q is a

critical value, f −1(q) may contain regular points.

Proposition 2.14 (maximal rank special case). If f : M −→ N is a smooth map of manifolds and q ∈ N is

a regular value, then f −1(q) is an embedded submanifold of M.

Proof. Since the rank is maximal along f −1(q), it must be maximal in an open neighbourhood U ⊂ M

containing f −1(q), and hence f : U −→ N is of constant rank.

Warning: An immersion locally defines an embedded submanifold. But globally, it may not be injective,

and it also may not be a homeomorphism onto its image (examples: figure 8 embedding of S1 in R2 and

number 9 immersion of R in R2.)

Definition 21. If f is an injective immersion which is a homeomorphism onto its image (when the image is

equipped with subspace topology), then we call f an embedding

Proposition 2.15. If f : M −→ N is an embedding, then f (M) is a regular submanifold.

Proof. Let f : M −→ N be an embedding. Then for all m ∈ M, we have charts (U,ϕ), (V, ψ) where

ψ ◦ f ◦ ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0). If f (U) = f (M) ∩ V , we’re done. To make sure that

some other piece of M doesn’t get sent into the neighbourhood, use the fact that f x(U) is open in the

subspace topology. This means we can find a smaller open set V ′ ⊂ V such that V ′ ∩ f (M) = f (U). Then

we can restrict the charts (V ′, ψ|V ′), (U ′ = f −1(V ′), ϕU′) so that we see the embedding.

Remark 4. If ι : M −→ N is an embedding of M into N, then Tι : TM −→ TN is also an embedding, and

hence T kι : T kM −→ T kN are all embeddings.

Having the constant rank theorem in hand, we may also apply it to study manifolds with boundary. The

following two results illustrate how this may easily be done.
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Proposition 2.16. Let M be a smooth n-manifold and f : M −→ R a smooth real-valued function, and let

a, b, with a < b, be regular values of f . Then f −1([a, b]) is a cobordism between the n−1-manifolds f −1(a)

and f −1(b).

Proof. The pre-image f −1((a, b)) is an open subset of M and hence a submanifold of M. Since p is regular

for all p ∈ f −1(a), we may (by the constant rank theorem) find charts such that f is given near p by the

linear map

(x1, . . . , xm) 7→ xm.

Possibly replacing xm by −xm, we therefore obtain a chart near p for f −1([a, b]) into Hm, as required.

Proceed similarly for p ∈ f −1(b).

Example 2.17. Using f : Rn −→ R given by (x1, . . . , xn) 7→
P
x2
i , this gives a simple proof for the fact that

the closed unit ball B(0, 1) = f −1([−1, 1]) is a manifold with boundary.

Example 2.18. Consider the C∞ function f : R3 −→ R given by (x, y , z) 7→ x2 + y 2− z2. Both +1 and −1

are regular values for this map, with pre-images given by 1- and 2-sheeted hyperboloids, respectively. Hence

f −1([−1, 1]) is a cobordism between hyperboloids of 1 and 2 sheets. In other words, it defines a cobordism

between the disjoint union of two closed disks and the closed cylinder (each of which has boundary S1tS1).

Does this cobordism tell us something about the cobordism class of a connected sum?

Proposition 2.19. Let f : M −→ N be a smooth map from a manifold with boundary to the manifold

N. Suppose that q ∈ N is a regular value of f and also of f |∂M . Then the pre-image f −1(q) is a regular

submanifold with boundary (i.e. locally modeled on Rk ⊂ Rn or the inclusion Hk ⊂ Hn given by (x1, . . . xk) 7→
(0, . . . , 0, x1, . . . xk).) Furthermore, the boundary of f −1(q) is simply its intersection with ∂M.

Proof. If p ∈ f −1(q) is not in ∂M, then as before f −1(q) is a regular submanifold in a neighbourhood of

p. Therefore suppose p ∈ ∂M ∩ f −1(q). Pick charts ϕ,ψ so that ϕ(p) = 0 and ψ(q) = 0, and ψf ϕ−1 is

a map U ⊂ Hm −→ Rn. Extend this to a smooth function f̃ defined in an open set Ũ ⊂ Rm containing U.

Shrinking Ũ if necessary, we may assume f̃ is regular on Ũ. Hence f̃ −1(0) is a regular submanifold of Rm of

dimension m − n.

Now consider the real-valued function π : f̃ −1(0) −→ R given by the restriction of (x1, . . . , xm) 7→ xm.

0 ∈ R must be a regular value of π, since if not, then the tangent space to f̃ −1(0) at 0 would lie completely

in xm = 0, which contradicts the fact that q is a regular point for f |∂M .

Hence, by Proposition 2.16, we have expressed f −1(q), in a neighbourhood of p, as a regular submanifold

with boundary given by {ϕ−1(x) : x ∈ f̃ −1(0) and π(x) ≥ 0}, as required.

One important use of the above result is in a proof of the Brouwer fixed point theorem. But in order to

use it, we need to know that most values are regular values, i.e. that regular values are generic. This is a

result of transversality theory, known as Sard’s theorem [next section].

Corollary 2.20. Let M be a compact manifold with boundary. There is no smooth map f : M −→ ∂M

leaving ∂M pointwise fixed. Such a map is called a smooth retraction of M onto its boundary.

Proof. Such a map f must have a regular value by Sard’s theorem, let this value be y ∈ ∂M. Then y is

obviously a regular value for f |∂M = Id as well, so that f −1(y) must be a compact 1-manifold with boundary

given by f −1(y)∩ ∂M, which is simply the point y itself. Since there is no compact 1-manifold with a single

boundary point, we have a contradiction.

For example, this shows that the identity map Sn −→ Sn may not be extended to a smooth map

f : B(0, 1) −→ Sn.

Corollary 2.21. Every smooth map of the closed n-ball to itself has a fixed point.

Proof. Let Dn = B(0, 1). If g : Dn −→ Dn had no fixed points, then define the function f : Dn −→ Sn−1

as follows: let f (x) be the point nearer to x on the line joining x and g(x).

This map is smooth, since f (x) = x + tu, where

u = ||x − g(x)||−1(x − g(x)),

and t is the positive solution to the quadratic equation (x+tu)·(x+tu) = 1, which has positive discriminant

b2 − 4ac = 4(1− |x |2 + (x · u)2). Such a smooth map is therefore impossible by the previous corollary.
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Theorem 2.22 (Brouwer fixed point theorem). Any continuous self-map of Dn has a fixed point.

Not given in class, won’t use it in class. The Weierstrass approximation theorem says that any continuous

function on [0, 1] can be uniformly approximated by a polynomial function in the supremum norm ||f ||∞ =

supx∈[0,1] |f (x)|. In other words, the polynomials are dense in the continuous functions with respect to the

supremum norm. The Stone-Weierstrass is a generalization, stating that for any compact Hausdorff space

X, if A is a subalgebra of C0(X,R) such that A separates points (∀x, y , ∃f ∈ A : f (x) 6= f (y)) and contains

a nonzero constant function, then A is dense in C0.

Given this result, approximate a given continuous self-map g of Dn by a polynomial function p′ so that

||p′ − g||∞ < ε on Dn. To ensure p′ sends Dn into itself, rescale it via

p = (1 + ε)−1p′.

Then clearly p is a Dn self-map while ||p − g||∞ < 2ε. If g had no fixed point, then |g(x)− x | must have a

minimum value µ on Dn, and by choosing 2ε = µ we guarantee that for each x ,

|p(x)− x | ≥ |g(x)− x | − |g(x)− p(x)| > µ− µ = 0.

Hence p has no fixed point. Such a smooth function can’t exist and hence we obtain the result.

3 Transversality

In this section, we continue to use the inverse and constant rank theorems to produce more manifolds, except

now these are cut out only locally by functions. We ask when the intersection of two submanifolds yields a

submanifold. You should think that intersecting a given submanifold with another is the local imposing of a

certain number of constraints.

Two subspaces K,L ⊂ V of a vector space V are called transversal when K + L = V , i.e. every vector

in V may be written as a (possibly non-unique) linear combination of vectors in K and L. In this situation

one can easily see that

dim V = dimK + dimL− dimK ∩ L.
We may apply this to submanifolds as follows:

Definition 22. Let K,L ⊂ M be regular submanifolds such that every point p ∈ K ∩ L satisfies

TpK + TpL = TpM.

Then K,L are said to be transverse submanifolds and we write K ∩| L.

Proposition 3.1. If K,L ⊂ M are transverse regular submanifolds then K ∩ L is also a regular submanifold,

of dimension dimK + dimL− dimM.

Proof. Let p ∈ K ∩ L. Then there is a neighbourhood U of p for which K ∩ U = f −1(0) for 0 a regular

value of a function f : U −→ Rk and L ∩ U = g−1(0) for 0 a regular value of a function g : L ∩ U −→ Rl ,
where K and L have codimension k, l respectively.

Now note that K ∩ L ∩ U = (f , g)−1(0), where (f , g) : K ∩ L ∩ U −→ Rk+l . But 0 is a regular value for

(f , g), since ker T (f , g) = ker T f ∩ ker Tg = TpK ∩ TpL, which has codimension k + l by the transversality

assumption. Hence the rank of T (f , g) must be k + l , just because the rank of a linear map is always given

by the codimension of its kernel.

Example 3.2 (Exotic spheres). Consider the following intersections in C5\0:

S7
k = {z2

1 + z2
2 + z2

3 + z3
4 + z6k−1

5 = 0} ∩ {|z1|2 + |z2|2 + |z3|2 + |z4|2 + |z5|2 = 1}.

This is a transverse intersection, and for k = 1, . . . , 28 the intersection is a smooth manifold homeomorphic

to S7. These exotic 7-spheres were constructed by Brieskorn and represent each of the 28 diffeomorphism

classes on S7.
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We now phrase the previous transversality result in a slightly different way, in terms of the embedding

maps k, l for K,L in M. Specifically, we say the maps k, l are transverse when, ∀a ∈ K, b ∈ L such that

k(a) = l(b) = p, we have im(Tk(a)) + im(T l(b)) = TpM. The advantage of this approach is that it makes

sense for any maps, not necessarily embeddings.

Definition 23. Two maps f : K −→ M, g : L −→ M of manifolds are called transverse when T f (TaK) +

Tg(TbL) = TpM for all a, b, p such that f (a) = g(b) = p.

Proposition 3.3. If f : K −→ M, g : L −→ M are transverse smooth maps, then Kf×gL = {(a, b) ∈
K × L : f (a) = g(b)} is naturally a smooth manifold equipped with commuting maps

K × L
p2

))TTTTTTTTTTTTTTTTTT

p1

��7
77

77
77

77
77

77
77

7

Kf×gL
i

ddJJJJJJJJJ

��

//

f ∩g

##GGGGGGGG L

g

��
K

f
// M

where i is the inclusion and f ∩ g : (a, b) 7→ f (a) = g(b).

The manifold Kf×gL of the previous proposition is called the fiber product of K with L over M, and is

a generalization of the intersection of submanifolds.

Proof. Consider the graphs Γf ⊂ K ×M and Γg ⊂ L×M. Then we show that the following intersection of

regular submanifolds is transverse:

Γf ∩g = (Γf × Γg) ∩ (K × L× ∆M),

where ∆M = {(p, p) ∈ M × M : p ∈ M} is the diagonal. To show this, let f (k) = g(l) = m so that

x = (k, l , m,m) ∈ X, and note that

Tx(Γf × Γg) = {((v,Df (v)), (w,Dg(w))), v ∈ TkK, w ∈ TlL} (16)

whereas we also have

Tx(K × L× ∆M) = {((v,m), (w,m)) : v ∈ TkK, w ∈ TlL, m ∈ TpM} (17)

By transversality of f , g, any tangent vector mi ∈ TpM may be written as Df (vi)+Dg(wi) for some (vi , wi),

i = 1, 2. In particular, we may decompose a general tangent vector to M ×M as

(m1, m2) = (Df (v2), Df (v2)) + (Dg(w1), Dg(w1)) + (Df (v1 − v2), Dg(w2 − w1)),

leading directly to the transversality of the spaces (16), (17). This shows that Γf ∩g is a regular submanifold of

K×L×M×M. Actually since it sits inside K×L×∆M , we may compose with the projection diffeomorphism

to view it as a regular submanifold in K × L ×M. Then we observe that the restriction of the projection

onto K × L to the submanifold Γf ∩g is an embedding with image exactly Kf×gL. Hence the fiber product

is a smooth manifold and Γf ∩g may then be viewed as the graph of a smooth map f ∩ g : Kf×gL −→ M

which makes the diagram above commute by definition.

Example 3.4. If K1 = M×Z1 and K2 = M×Z2, we may view both Ki as smooth fiber bundles over M with

fibers Zi . If pi are the projections to M, then K1 ×M K2 = M × Z1 × Z2, hence the name “fiber product”.

Example 3.5. Consider the Hopf map p : S3 −→ S2 given by composing the embedding S3 ⊂ C2\{0}
with the projection π : C2\{0} −→ CP 1 ∼= S2. Then for any point q ∈ S2, p−1(q) ∼= S1. Since p is a

submersion, it is obviously transverse to itself, hence we may form the fiber product

S3 ×S2 S
3,

which is a smooth 4-manifold equipped with a map p ∩ p to S2 with fibers (p ∩ p)−1(q) ∼= S1 × S1.

These are our first examples of nontrivial fiber bundles, which we shall explore later.
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The following result is an exercise: just as we may take the product of a manifold with boundary K with

a manifold without boundary L to obtain a manifold with boundary K × L, we have a similar result for fiber

products.

Proposition 3.6. Let K be a manifold with boundary where L,M are without boundary. Assume that

f : K −→ M and g : L −→ M are smooth maps such that both f and ∂f are transverse to g. Then the

fiber product K ×M L is a manifold with boundary equal to ∂K ×M L.

3.1 Stability

We wish to understand the intuitive notion that “transversality is a stable condition”, which in some sense

means that if true, it remains so under small perturbations (of the submanifolds or maps involved). After

this, we will go much further using Sard’s theorem, and show that not only is it stable, it is actually generic,

meaning that even if it is not true, it can be made true by a small perturbation. In this sense, stability says

that transversal maps form an open set, and genericity says that this open set is dense in the space of maps.

To make this precise, we would introduce a topology on the space of maps, something which we leave for

another course.

A property of a smooth map f0 : M −→ N is stable under perturbations when for any smooth homotopy

ft of f0, i.e. a smooth map f : [0, 1] ×M −→ N with f |{0}×M = f0, the property holds for all ft = f |{t}×M
with t < ε for some ε > 0.

Proposition 3.7. Let M be a compact manifold and f0 : M −→ N a smooth map. Then the property of being

an immersion or submersion are each stable under perturbations. If M ′ is compact, then the transversality

of f0 : M −→ N, g0 : M ′ −→ N is also stable under perturbations of f0, g0.

As an exercise, show that local diffeomorphisms, diffeomorphisms, and embeddings are also stable.

Proof. Let ft , t ∈ [0, 1] be a smooth homotopy of f0, and suppose that f0 is an immersion. This means that

at each point p ∈ M, the jacobian of f0 in some chart has a m×m submatrix with nonvanishing determinant,

for m = dimM. By continuity, this m×m submatrix must have nonvanishing determinant in a neighbourhood

around (0, p) ∈ [0, 1] ×M. {0} ×M may be covered by a finite number of such neighbourhoods, since M

is compact. Choose ε such that [0, ε)×M is contained in the union of these intervals, giving the result.

The proof for submersions is identical. The condition that f0 be transversal to g0 is equivalent to the

fact that Γf0 × Γg0 is transversal to C = M ×M ′ × ∆N . Choosing coordinate charts adapted to C, we may

express this locally as a submersion condition. Hence by the previous result we have stability.

3.2 Genericity of transversality

The fundamental idea which allows us to prove that transversality is a generic condition is a the theorem

of Sard showing that critical values of a smooth map f : M −→ N (i.e. points q ∈ N for which the map f

and the inclusion ι : q ↪→ N fail to be transverse maps) are rare. The following proof is taken from Milnor,

based on Pontryagin.

The meaning of “rare” will be that the set of critical values is of measure zero, which means, in Rm,

that for any ε > 0 we can find a sequence of balls in Rm, containing f (C) in their union, with total volume

less than ε. Some easy facts about sets of measure zero: the countable union of measure zero sets is of

measure zero, the complement of a set of measure zero is dense.

We begin with an elementary lemma which shows that “measure zero” is a property preserved by

diffeomorphisms.

Lemma 3.8. Let A ⊂ Rm have measure zero and let F : A −→ Rn be a C1 map with m ≤ n. Then F (A)

has measure zero.

Proof. F has an extension to a neighbourhood W of A. Let B be a closed ball in W . We then show that

F (A ∩ B) has measure zero, and since F (A) is the union of countably many such sets, we obtain F (A) of

measure zero.

Since F is C1, we have the mean value theorem stating for all x, y ∈ B

f (y)− f (x) = [

Z 1

0

F∗((1− t)x + ty)dt](y − x),
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where the integral of the matrix is done component-wise. Then we have the estimate

||f (y)− f (x)|| = ||[
Z 1

0

F∗((1− t)x + ty)dt](y − x)||

≤
Z 1

0

||F∗((1− t)x + ty)(y − x)||dt

≤
Z 1

0

||F∗((1− t)x + ty)|| · ||y − x ||dt

= C||y − x ||.

Then the image of a ball of radius r contained in B would be contained in a ball of radius at most Cr ,

which would have volume proportional to r n.

A is of measure zero, hence for each ε we have a countable covering of A by balls of radius rk with

total volume cm
P

k r
m
k < ε. We deduce that f (Ai) is covered by balls of radius Crk with total volume

≤ Cncn
P

k r
n
k and since n ≥ m this is certainly arbitrarily small. We conclude that f (A) is of measure

zero.

Remark 5. If we considered the case n < m, the resulting sum of volumes may be larger in Rn. For example,

the projection map R2 −→ R given by (x, y) 7→ x clearly takes the set of measure zero y = 0 to one of

positive measure.

A subset A ⊂ M of a manifold is said to have measure zero when its image in any coordinate chart

has measure zero. Since manifolds are second countable and we may choose a countable basis Vi such that

V i ⊂ Ui are compact subsets of coordinate charts (any coordinate neighbourhood is a countable union of

closed balls), it follows that a subset A ⊂ M of measure zero may be expressed as a countable union of

subsets Ak ⊂ V i with ϕi(Ak) satisfying the Lemma. We therefore obtain

Proposition 3.9. Let f : M −→ N be a C1 map of manifolds where dimM ≤ dimN. Then the image f (A)

of a set A ⊂ M of measure zero also has measure zero.

Corollary 3.10 (Baby Sard). Let f : M −→ N be a C1 of manifolds where dimM < dimN. Then f (M)

(i.e. the set of critical values) has measure zero in N.

Proof. We could form M̃ = M × R and consider F : M̃ −→ N given by F (x, t) = f (x). Then f (M) =

F (M × {0}). Since M × {0} ⊂ M × R is measure zero, and dim M̃ ≤ dimN, so is the image.

Now we investigate the measure of the critical values of a map f : M −→ N where dimM = dimN. Of

course the set of critical points need not have measure zero, but we shall see that because the values of f

on the critical set do not vary much, the set of critical values will have measure zero.

Theorem 3.11 (Equidimensional Sard). Let f : M −→ N be a C1 map of n-manifolds, and let C ⊂ M be

the set of critical points. Then f (C) has measure zero.

Proof. It suffices to show result for the unit cube. Let f : In −→ Rn a C1 map and let C ⊂ In be the set of

critical points.

Since f ∈ C1(In,Rn), we have that the linear approximation to f at x ∈ In, namely

f l inx (y) = f (x) + f∗(x)(y − x),

approximates f to second order, i.e. there is a positive function b(ε) with b → 0 as ε→ 0 such that

||f (y)− f l inx (y)|| ≤ b(|y − x |)||y − x ||.

Of course f is still Lipschitz so that

||f (y)− f (x)|| ≤ a||y − x || ∀x, y ∈ In

Since f is Lipschitz, we know that ||y − x || < ε implies ||f (y)− f (x)|| < aε. But if x is a critical point,

then f l inx has image contained in a hyperplane Px , which is of lower dimension and hence measure zero. This

means the distance of f (y) to Px is less than εb(ε).

21



Therefore f (y) lies in the cube centered at f (x) of edge aε, but if we choose the cube to have a face

parallel to Px , then the edge perpendicular to Px can be shortened to only 2εbε. Therefore f (y) is in a

region of volume (aε)n−12εb(ε).

Now partition In into hn cubes each of edge h−1. Any such cube containing a critical point x is certainly

contained in a ball around x of radius r = h−1√n. The image of this ball then has volume ≤ (ar)n−12rb(r) =

Ar nb(r) for A = 2an−1. The total volume of all the images is then less than

hnAr nb(r) = Ann/2b(r).

Note that A and n are fixed, while r = h−1√n is determined by the number h of cubes. By increasing the

number of cubes, we may decrease their radius arbitrarily, and hence the above total volume, as required.

The argument above will not work for dimN < dimM; we need more control on the function f . In

particular, one can find a C1 function from I2 −→ R which fails to have critical values of measure zero

(hint: C + C = [0, 2] where C is the Cantor set). As a result, Sard’s theorem in general requires more

differentiability of f .

Theorem 3.12 (Big Sard’s theorem). Let f : M −→ N be a Ck map of manifolds of dimension m, n,

respectively. Let C be the set of critical points, i.e. points x ∈ U with

rank Df (x) < n.

Then f (C) has measure zero if k > m
n
− 1.

Do not give proof in class, no time. As before, it suffices to show for f : Im −→ Rn.

Define C1 ⊂ C to be the set of points x for which Df (x) = 0. Define Ci ⊂ Ci−1 to be the set of points

x for which Dj f (x) = 0 for all j ≤ i . So we have a descending sequence of closed sets:

C ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck .

We will show that f (C) has measure zero by showing

1. f (Ck) has measure zero,

2. each successive difference f (Ci\Ci+1) has measure zero for i ≥ 1,

3. f (C\C1) has measure zero.

Step 1: For x ∈ Ck , Taylor’s theorem gives the estimate

f (x + t) = f (x) + R(x, t), with ||R(x, t)|| ≤ c ||t||k+1,

where c depends only on Im and f , and t sufficiently small.

If we now subdivide Im into hm cubes with edge h−1, suppose that x sits in a specific cube I1. Then any

point in I1 may be written as x + t with ||t|| ≤ h−1√m. As a result, f (I1) lies in a cube of edge ah−(k+1),

where a = 2cm(k+1)/2 is independent of the cube size. There are at most hm such cubes, with total volume

less than

hm(ah−(k+1))n = anhm−(k+1)n.

Assuming that k > m
n
− 1, this tends to 0 as we increase the number of cubes.

Step 2: For each x ∈ Ci\Ci+1, i ≥ 1, there is a i + 1th partial ∂ i+1fj/∂xs1 · · · ∂xsi+1 which is nonzero at x .

Therefore the function

w(x) = ∂k fj/∂xs2 · · · ∂xsi+1

vanishes at x but its partial derivative ∂w/∂xs1 does not. WLOG suppose s1 = 1, the first coordinate. Then

the map

h(x) = (w(x), x2, . . . , xm)

is a local diffeomorphism by the inverse function theorem (of class Ck) which sends a neighbourhood V of

x to an open set V ′. Note that h(Ci ∩ V ) ⊂ {0} × Rm−1. Now if we restrict f ◦ h−1 to {0} × Rm−1 ∩ V ′,
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we obtain a map g whose critical points include h(Ci ∩ V ). Hence we may prove by induction on m that

g(h(Ci ∩ V )) = f (Ci ∩ V ) has measure zero. Cover by countably many such neighbourhoods V .

Step 3: Let x ∈ C\C1. Then there is some partial derivative, wlog ∂f1/∂x1, which is nonzero at x . the map

h(x) = (f1(x), x2, . . . , xm)

is a local diffeomorphism from a neighbourhood V of x to an open set V ′ (of class Ck). Then g = f ◦ h−1

has critical points h(V ∩C), and has critical values f (V ∩C). The map g sends hyperplanes {t} ×Rm−1 to

hyperplanes {t} × Rn−1, call the restriction map gt . A point in {t} × Rm−1 is critical for gt if and only if it

is critical for g, since the Jacobian of g is  
1 0

∗ ∂git
∂xj

!
By induction on m, the set of critical values for gt has measure zero in {t}×Rn−1. By Fubini, the whole set

g(C ′) (which is measurable, since it is the countable union of compact subsets (critical values not necessarily

closed, but critical points are closed and hence a countable union of compact subsets, which implies the

same of the critical values.) is then measure zero. To show this consequence of Fubini directly, use the

following argument:

First note that for any covering of [a, b] by intervals, we may extract a finite subcovering of intervals

whose total length is ≤ 2|b−a|. Why? First choose a minimal subcovering {I1, . . . , Ip}, numbered according

to their left endpoints. Then the total overlap is at most the length of [a, b]. Therefore the total length is

at most 2|b − a|.
Now let B ⊂ Rn be compact, so that we may assume B ⊂ Rn−1 × [a, b]. We prove that if B ∩ Pc has

measure zero in the hyperplane Pc = {xn = c}, for any constant c ∈ [a, b], then it has measure zero in Rn.

If B ∩ Pc has measure zero, we can find a covering by open sets Ric ⊂ Pc with total volume < ε. For

sufficiently small αc , the sets Ric × [c − αc , c + αc ] cover B ∩
S
z∈[c−αc ,c+αc ] Pz (since B is compact). As

we vary c, the sets [c − αc , c + αc ] form a covering of [a, b], and we extract a finite subcover {Ij} of total

length ≤ 2|b − a|.
Let Rij be the set Ric for Ij = [c−αc , c+αc ]. Then the sets Rij × Ij form a cover of B with total volume

≤ 2ε|b − a|. We can make this arbitrarily small, so that B has measure zero.

We now proceed with the first step towards showing that transversality is generic.

Theorem 3.13 (Transversality theorem). Let F : X × S −→ Y and g : Z −→ Y be smooth maps of

manifolds where only X has boundary. Suppose that F and ∂F are transverse to g. Then for almost every

s ∈ S, fs = F (·, s) and ∂fs are transverse to g.

Proof. The fiber product W = (X × S) ×Y Z is a regular submanifold (with boundary) of X × S × Z and

projects to S via the usual projection map π. We show that any s ∈ S which is a regular value for both the

projection map π : W −→ S and its boundary map ∂π gives rise to a fs which is transverse to g. Then by

Sard’s theorem the s which fail to be regular in this way form a set of measure zero.

Suppose that s ∈ S is a regular value for π. Suppose that fs(x) = g(z) = y and we now show that fs is

transverse to g there. Since F (x, s) = g(z) and F is transverse to g, we know that

imDF(x,s) + imDgz = TyY.

Therefore, for any a ∈ TyY , there exists b = (w, e) ∈ T (X × S) with DF(x,s)b − a in the image of Dgz .

But since Dπ is surjective, there exists (w ′, e, c ′) ∈ T(x,y ,z)W . Hence we observe that

(Dfs)(w − w ′)− a = DF(x,s)[(w, e)− (w ′, e)]− a = (DF(x,s)b − a)−DF(x,s)(w ′, e),

where both terms on the right hand side lie in imDgz .

Precisely the same argument (with X replaced with ∂X and F replaced with ∂F ) shows that if s is

regular for ∂π then ∂fs is transverse to g. This gives the result.

The previous result immediately shows that transversal maps to Rn are generic, since for any smooth

map f : M −→ Rn we may produce a family of maps

F : M × Rn −→ Rn
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via F (x, s) = f (x) + s. This new map F is clearly a submersion and hence is transverse to any smooth map

g : Z −→ Rn. For arbitrary target manifolds, we will imitate this argument, but we will require a (weak)

version of Whitney’s embedding theorem for manifolds into Rn.

3.3 Whitney embedding

We now investigate the embedding of arbitrary smooth manifolds as regular submanifolds of Rk . We shall

first show by a straightforward argument that any smooth manifold may be embedded in some RN for some

sufficiently large N. We will then explain how to cut down on N and approach the optimal N = 2 dimM

which Whitney showed (we shall reach 2 dimM+1 and possibly at the end of the course, show N = 2 dimM.)

Theorem 3.14 (Compact Whitney embedding in RN). Any compact manifold may be embedded in RN for

sufficiently large N.

Proof. Let {(Ui ⊃ Vi , ϕi)}ki=1 be a finite regular covering, which exists by compactness. Choose a partition

of unity {f1, . . . , fk} as in Theorem 1.19 and define the following “zoom-in” maps M −→ RdimM :

ϕ̃i(x) =

(
fi(x)ϕi(x) x ∈ Ui ,
0 x /∈ Ui .

Then define a map Φ : M −→ Rk(dimM+1) which zooms simultaneously into all neighbourhoods, with extra

information to guarantee injectivity:

Φ(x) = (ϕ̃1(x), . . . , ϕ̃k(x), f1(x), . . . , fk(x)).

Note that Φ(x) = Φ(x ′) implies that for some i , fi(x) = fi(x
′) 6= 0 and hence x, x ′ ∈ Ui . This then implies

that ϕi(x) = ϕi(x
′), implying x = x ′. Hence Φ is injective.

We now check that DΦ is injective, which will show that it is an injective immersion. At any point x

the differential sends v ∈ TxM to the following vector in RdimM × · · · × RdimM × R× · · · × R.

(Df1(v)ϕ1(x) + f1(x)Dϕ1(v), . . . , Dfk(v)ϕk(x) + fk(x)Dϕ1(v), Df1(v), . . . , Dfk(v)

But this vector cannot be zero. Hence we see that Φ is an immersion.

But an injective immersion from a compact space must be an embedding: view Φ as a bijection onto its

image. We must show that Φ−1 is continuous, i.e. that Φ takes closed sets to closed sets. IfK ⊂ M is closed,

it is also compact and hence Φ(K) must be compact, hence closed (since the target is Hausdorff).

Theorem 3.15 (Compact Whitney embedding in R2n+1). Any compact n-manifold may be embedded in

R2n+1.

Proof. Begin with an embedding Φ : M −→ RN and assume N > 2n+ 1. We then show that by projecting

onto a hyperplane it is possible to obtain an embedding to RN−1.

A vector v ∈ SN−1 ⊂ RN defines a hyperplane (the orthogonal complement) and let Pv : RN −→ RN−1

be the orthogonal projection to this hyperplane. We show that the set of v for which Φv = Pv ◦Φ fails to be

an embedding is a set of measure zero, hence that it is possible to choose v for which Φv is an embedding.

Φv fails to be an embedding exactly when Φv is not injective or DΦv is not injective at some point. Let

us consider the two failures separately:

If v is in the image of the map β1 : (M ×M)\∆M −→ SN−1 given by

β1(p1, p2) =
Φ(p2)−Φ(p1)

||Φ(p2)−Φ(p1)|| ,

then Φv will fail to be injective. Note however that β1 maps a 2n-dimensional manifold to a N−1-manifold,

and if N > 2n + 1 then baby Sard’s theorem implies the image has measure zero.

The immersion condition is a local one, which we may analyze in a chart (U,ϕ). Φv will fail to be an

immersion in U precisely when v coincides with a vector in the normalized image of D(Φ ◦ ϕ−1) where

Φ ◦ ϕ−1 : ϕ(U) ⊂ Rn −→ RN .
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Hence we have a map (letting N(w) = ||w ||)

D(Φ ◦ ϕ−1)

N ◦D(Φ ◦ ϕ−1)
: U × Sn−1 −→ SN−1.

The image has measure zero as long as 2n − 1 < N − 1, which is certainly true since 2n < N − 1. Taking

union over countably many charts, we see that immersion fails on a set of measure zero in SN−1.

Hence we see that Φv fails to be an embedding for a set of v ∈ SN−1 of measure zero. Hence we may

reduce N all the way to N = 2n + 1.

Corollary 3.16. We see from the proof that if we do not require injectivity but only that the manifold be

immersed in RN , then we can take N = 2n instead of 2n + 1.

We now use Whitney embedding to prove genericity of transversality for all target manifolds, not just

Rn. We do this by embedding the manifold M into RN , translating it, and projecting back onto M.

If Y ⊂ RN is an embedded submanifold, the normal space at y ∈ Y is defined by NyY = {v ∈ RN :

v⊥TyY }. The collection of all normal spaces of all points in Y is called the normal bundle:

NY = {(y, v) ∈ Y × RN : v ∈ NyY }.

This is an embedded submanifold of RN × RN of dimension N, and it has a projection map π : (y, v) 7→ y

such that (NY, π, Y ) is a vector bundle. We may take advantage of the embedding in RN to define a smooth

map E : NY −→ RN via

E(x, v) = x + v.

Definition 24. A tubular neighbourhood of the embedded submanifold Y ⊂ RN is a neighbourhood U of Y

in RN that is the diffeomorphic image under E of an open subset V ⊂ NY of the form

V = {(y, v) ∈ NY : |v | < δ(y)},

for some positive continuous function δ : M −→ R.

If U ⊂ RN is such a tubular neighbourhood of Y , then there does exist a positive continuous function

ε : Y −→ R such that Uε = {x ∈ RN : ∃y ∈ Y with |x − y | < ε(y)} is contained in U. This is simply

ε(y) = sup{r : B(y, r) ⊂ U}.

Theorem 3.17 (Tubular neighbourhood theorem). Every embedded submanifold of RN has a tubular neigh-

bourhood.

Corollary 3.18. Let X be a manifold with boundary and f : X −→ Y be a smooth map to a manifold Y .

Then there is an open ball S = B(0, 1) ⊂ RN and a smooth map F : X×S −→ Y such that F (x, 0) = f (x)

and for fixed x , the map fx : s 7→ F (x, s) is a submersion S −→ Y . In particular, F and ∂F are submersions.

Proof. Embed Y in RN , and let S = B(0, 1) ⊂ RN . Then use the tubular neighbourhood to define

F (y, s) = (π ◦ E−1)(f (y) + ε(y)s),

The transversality theorem then guarantees that given any smooth g : Z −→ Y , for almost all s ∈ S the

maps fs , ∂fs are transverse to g. We improve this slightly to show that fs may be chosen to be homotopic

to f .

Corollary 3.19 (Transverse deformation of maps). Given any smooth maps f : X −→ Y , g : Z −→ Y ,

where only X has boundary, there exists a smooth map f ′ : X −→ Y homotopic to f with f ′, ∂f ′ both

transverse to g.

Proof. Let S, F be as in the previous corollary. Away from a set of measure zero in S, the functions fs , ∂fs
are transverse to g, by the transversality theorem. But these fs are all homotopic to f via the homotopy

X × [0, 1] −→ Y given by

(x, t) 7→ F (x, ts).
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The last theorem we shall prove concerning transversality is a very useful extension result which is

essential for intersection theory:

Theorem 3.20 (Transverse deformation of homotopies). Let X be a manifold with boundary and f : X −→ Y

a smooth map to a manifold Y . Suppose that ∂f is transverse to the closed map g : Z −→ Y . Then there

exists a map f ′ : X −→ Y , homotopic to f and with ∂f ′ = ∂f , such that f ′ is transverse to g.

Proof. First observe that since ∂f is transverse to g on ∂X, f is also transverse to g there, and furthermore

since g is closed, f is transverse to g in a neighbourhood U of ∂X. (if x ∈ ∂X but x not in f −1(g(Z)) then

since the latter set is closed, we obtain a neighbourhood of x for which f is transverse to g. If x ∈ ∂X and

x ∈ f −1(g(Z)), then transversality at x implies transversality near x .)

Now choose a smooth function γ : X −→ [0, 1] which is 1 outside U but 0 on a neighbourhood of ∂X.

(why does γ exist? exercise.) Then set τ = γ2, so that dτ(x) = 0 wherever τ(x) = 0. Recall the map

F : X × S −→ Y we used in proving the transversality homotopy theorem 3.19 and modify it via

F ′(x, s) = F (x, τ(x)s).

Then F ′ and ∂F ′ are transverse to g, and we can pick s so that f ′ : x 7→ F ′(x, s) and ∂f ′ are transverse to

g. Finally, if x is in the neighbourhood of ∂X for which τ = 0, then f ′(x) = F (x, 0) = f (x).

Corollary 3.21. if f : X −→ Y and f ′ : X −→ Y are homotopic smooth maps of manifolds, each transverse

to the closed map g : Z −→ Y , then the fiber products W = Xf×gZ and W ′ = Xf ′×gZ are cobordant.

Proof. if F : X × [0, 1] −→ Y is the homotopy between {f , f ′}, then by the previous theorem, we may

find a (homotopic) homotopy F ′ : X × [0, 1] −→ Y which is transverse to g. Hence the fiber product

U = (X × [0, 1])F ′×gZ is the cobordism with boundary W tW ′.

3.4 Intersection theory

The previous corollary allows us to make the following definition:

Definition 25. Let f : X −→ Y and g : Z −→ Y be smooth maps with X compact, g closed, and

dimX + dimZ = dim Y . Then we define the (mod 2) intersection number of f and g to be

I2(f , g) = ](Xf ′ ×g Z) (mod 2),

where f ′ : X −→ Y is any smooth map smoothly homotopic to f but transverse to g, and where we assume

the fiber product to consist of a finite number of points (this is always guaranteed, e.g. if g is proper, or if

g is a closed embedding).

Example 3.22. If C1, C2 are two distinct great circles on S2 then they have two transverse intersection

points, so I2(C1, C2) = 0 in Z2. Of course we can shrink one of the circles to get a homotopic one which

does not intersect the other at all. This corresponds to the standard cobordism from two points to the

empty set.

Example 3.23. If (e1, e2, e3) is a basis for R3 we can consider the following two embeddings of S1 = R/2πZ
into RP 2: ι1 : θ 7→ 〈cos(θ/2)e1 + sin(θ/2)e2〉 and ι2 : θ 7→ 〈cos(θ/2)e2 + sin(θ/2)e3〉. These two embedded

submanifolds intersect transversally in a single point 〈e2〉, and hence I2(ι1, ι2) = 1 in Z2. As a result,

there is no way to deform ιi so that they intersect transversally in zero points. In particular, RP 2 has a

noncontractible loop.

Example 3.24. Given a smooth map f : X −→ Y for X compact and dim Y = 2 dimX, we may consider

the self-intersection I2(f , f ). In the previous examples we may check I2(C1, C1) = 0 and I2(ι1, ι1) = 1.

Any embedded S1 in an oriented surface has no self-intersection. If the surface is nonorientable, the self-

intersection may be nonzero.

Example 3.25. Let p ∈ S1. Then the identity map Id : S1 −→ S1 is transverse to the inclusion ι : p −→ S1

with one point of intersection. Hence the identity map is not (smoothly) homotopic to a constant map,

which would be transverse to ι with zero intersection. Using smooth approximation, get that Id is not

continuously homotopic to a constant map, and also that S1 is not contractible.

Example 3.26. By the previous argument, any compact manifold is not contractible.
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Example 3.27. Consider SO(3) ∼= RP 3 and let ` ⊂ RP 3 be a line, diffeomorphic to S1. This line corresponds

to a path of rotations about an axis by θ ∈ [0, π] radians. Let P ⊂ RP 3 be a plane intersecting ` in one

point. Since this is a transverse intersection in a single point, ` cannot be deformed to a point (which would

have zero intersection with P. This shows that the path of rotations is not homotopic to a constant path.

If ι : θ 7→ ι(θ) is the embedding of S1, then traversing the path twice via ι′ : θ 7→ ι(2θ), we obtain a map

ι′ which is transverse to P but with two intersection points. Hence it is possible that ι′ may be deformed

so as not to intersect P. Can it be done?

Example 3.28. Consider RP 4 and two transverse hyperplanes P1, P2 each an embedded copy of RP 3. These

then intersect in P1∩P2 = RP 2, and since RP 2 is not null-cobordant, we cannot deform the planes to remove

all intersection.

Intersection theory also allows us to define the degree of a map modulo 2. The degree measures how

many generic preimages there are of a local diffeomorphism.

Definition 26. Let f : M −→ N be a smooth map of manifolds of the same dimension, and suppose M is

compact and N connected. Let p ∈ N be any point. Then we define deg2(f ) = I2(f , p).

4 Differential forms

Differential forms are an essential tool in differential geometry: first, the k-forms are intended to give a

notion of k-dimensional volume (this is why they are multilinear and skew-symmetric, like the determinant)

and in a way compatible with the boundary map (this leads to the exterior derivative and Stokes’ theorem).

Second, they behave well functorially, better than vector fields or other tensors. In a way, you may think of

them as generalized functions (in fact, viewing TM as a supermanifold, differential forms are its functions).

4.1 Associated vector bundles

Recall that the tangent bundle (TM,πM ,M) is a bundle of vector spaces

TM = tpTpM

which has local trivializations Φ : π−1
M (U) −→ U × Rk which preserve the projections to U, and which are

linear maps for fixed p.

By the smoothness and linearity of these local trivializations, we note that, for charts (Ui , ϕi), we have

gi j = (Φj ◦Φ−1
i ) = T (ϕj ◦ ϕ−1

i ) : Ui ∩ Uj −→ GL(Rk)

is a collection of smooth matrix-valued functions, called the “transition functions” of the bundle. These

obviously satisfy the gluing conditions or “cocycle condition” gi jgjkgki = 1k×k on Ui ∩ Uj ∩ Uk .

We will now use the tangent bundle to create other bundles, and for this we will use functors from the

category of vector spaces VectR to itself obtained from linear algebra.

Example 4.1 (Cotangent bundle). Consider the duality functor V 7→ V ∗ = Hom(V,R) which is contravariant,

i.e. if A : V −→ W then A∗ : W ∗ −→ V ∗. Also, it is a smooth functor in the sense that the map A 7→ A∗ is

smooth map of vector spaces (in this case it is the identity map, essentially).

The idea is to apply this functor to the bundle fibrewise, to apply it to the trivializations fiberwise, and

to use the smoothness of the functor to obtain the manifold structure on the result.

Therefore we can form the set

T ∗M = tp(TpM)∗,

which also has a projection map pM to M. And, for each trivialization Φ : π−1
M (U) −→ U × Rk , we obtain

bijections F = (Φ∗)−1 : pM
−1(U) −→ U×Rk . We use these bijections as charts for T ∗M, and we check the

smoothness by computing the transition functions:

(Pj ◦ P−1
i ) = (g∗i j)

−1.

Therefore we see that the transition functions for T ∗M are the inverse duals of the transition functions for

TM. Since this is still smooth, we obtain a smooth vector bundle. It is called the cotangent bundle.
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Example 4.2. There is a well-known functor VectR ×VectR −→ VectR given by (V,W ) 7→ V ⊕W . This is

a smooth functor and we may apply it to our vector bundles to obtain new ones, such as TM ⊕ T ∗M. The

transition functions for this particular example would be„
gi j 0

0 (g∗i j)
−1

«
Example 4.3 (Bundle of multivectors and differential forms). Recall that for any finite-dimensional vector

space V , we can form the exterior algebra

∧•V = R⊕ V ⊕ ∧2V ⊕ · · · ⊕ ∧nV,

for n = dim V . The product is usually denoted (a, b) 7→ a ∧ b, and it satisfies a ∧ b = (−1)|a||b|b ∧ a.

With this product, the algebra is generated by the degree 1 elements in V . So, ∧•V is a “finite dimensional

Z-graded algebra generated in degree 1”.

If (v1, . . . vn) is a basis for V , then vi1 ∧ · · · ∧ vik for i1 < · · · < ik form a basis for ∧kV . This space then

has dimension
`
n
k

´
, hence the algebra ∧•V has dimension 2n.

Note in particular that ∧nV has dimension 1, is also called the determinant line det V , and a choice of

nonzero element in det V is called an “orientation” on the vector space V .

Recall that if f : V −→ W is a linear map, then ∧k f : ∧kV −→ ∧kW is defined on monomials via

∧k f (a1 ∧ · · · ∧ ak) = f (a1) ∧ · · · ∧ f (ak).

In particular, if A : V −→ V is a linear map, then for n = dim V , the top exterior power ∧nA : ∧nV −→ ∧nV
is a linear map of a 1-dimensional space onto itself, and is hence given by a number, called detA, the

determinant of A.

We may now apply this functor to the tangent and cotangent bundles: we obtain new bundles ∧•TM
and ∧•T ∗M, called the bundle of multivectors and the bundle of differential forms. Each of these bundles

is a sum of degree k sub-bundles, called the k-multivectors and k-forms, respectively. We will be concerned

primarily with sections of the bundle of k-forms, i.e.

Ωk(M) = Γ (M,∧kT ∗M).

4.2 Coordinate representations

We are familiar with vector fields, which are sections of TM, and we know that a vector field is written

locally in coordinates (x1, . . . , xn) as

X =
X
i

v i ∂
∂x i
,

with coefficients v i smooth functions.

There is an easy way to produce examples of 1-forms in Ω1(M), using smooth functions f . We note

that the action X 7→ X(f ) defines a dual vector at each point of M, since (X(f ))p depends only on the

vector Xp and not the behaviour of X away from p. Recall that X(f ) = π2 ◦ T f ◦X.

Definition 27. The exterior derivative of a function f , denoted df , is the section of T ∗M given by the fiber

projection π2 ◦ T f .

In a coordinate chart, we can apply d to the coordinates x i ; we obtain dx i , which satisfy dx i( ∂
∂x j

) = δij .

Therefore (dx1, . . . , dxn) is the dual basis to ( ∂
∂x1 , . . . ,

∂
∂xn

). Therefore, a section of T ∗M has local expression

ξ =
X
i

ξidx
i ,

for ξi smooth functions, given by ξi = ξ( ∂
∂x i

). In particular, the exterior derivative of a function df can be

written

df =
X
i

∂f
∂x i
dx i .

A general differential form ρ ∈ Ωk(M) can be written

ρ =
X

i1<···<ik

ρi1···ik dx
i1 ∧ · · · ∧ dx ik
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4.3 Pullback of forms

Given a smooth map f : M −→ N, we obtain bundle maps f∗ : TM −→ TN and hence f ∗ := ∧k(f∗)
∗ :

∧kT ∗N −→ ∧kT ∗M. Hence we have the diagram

∧kT ∗M
πM

��

∧kT ∗N
πN

��

f ∗
oo

M
f

// N

The interesting thing is that if ρ ∈ Ωk(N) is a differential form on N, then it is a section of πN . Composing

with f , f ∗, we obtain a section f ∗ρ := f ∗ ◦ ρ ◦ f of πM . Hence we obtain a natural map

Ωk(N)
f ∗−→ Ωk(M).

Such a natural map does not exist (in either direction) for multivector fields, for instance.

Suppose that ρ ∈ Ωk(N) is given in a coordinate chart by ρ =
P
ρi1···ik dy

i1 ∧ · · · ∧ dy ik . Now choose

a coordinate chart for M with coordinates x1, . . . xm. What is the local expression for f ∗ρ? We need only

compute f ∗dyi . We use a notation where f k denotes the k th component of f in the coordinates (y 1, . . . y n),

i.e. f k = y k ◦ f .

f ∗dyi(
∂
∂x j

) = dyi(f∗
∂
∂x j

) (18)

= dyi(
X
k

∂f k

∂x j
∂
∂yk

) (19)

= ∂f i

∂x j
. (20)

Hence we conclude that

f ∗dyi =
X
j

∂f i

∂x j
dx j .

Finally we compute

f ∗ρ =
X

i1<···<ik

f ∗ρi1···ik f
∗(dy i1 ) ∧ · · · ∧ f ∗(dy ik ) (21)

=
X

i1<···<ik

(ρi1···ik ◦ f )
X
j1

· · ·
X
jk

∂f i1

∂x j1
· · · ∂f

ik

∂x jk
dx j1 ∧ · · · dx jk . (22)

4.4 The exterior derivative

Differential forms are equipped with a natural differential operator, which extends the exterior derivative

of functions to all forms: d : Ωk(M) −→ Ωk+1(M). The exterior derivative is uniquely specified by the

following requirements: first, it satisfies d(df ) = 0 for all functions f . Second, it is a graded derivation of

the algebra of exterior differential forms of degree 1, i.e.

d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ.

This allows us to compute its action on any 1-form d(ξidx
i) = dξi ∧ dx i , and hence, in coordinates, we

have

d(ρdx i1 ∧ · · · ∧ dx ik ) =
X
k

∂ρ

∂xk
dxk ∧ dx i1 ∧ · · · ∧ dx ik .

Extending by linearity, this gives a local definition of d on all forms. Does it actually satisfy the requirements?

this is a simple calculation: let τp = dx i1 ∧ · · · ∧ dx ip and τq = dx j1 ∧ · · · ∧ dx jq . Then

d((f τp) ∧ (gτq)) = d(f gτp ∧ τq) = (gdf + f dg) ∧ τp ∧ τq = d(f τp) ∧ gτq + (−1)pf τp ∧ d(gτq),

as required.

Therefore we have defined d , and since the definition is coordinate-independent, we can be satisfied that

d is well-defined.
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Definition 28. d is the unique degree +1 graded derivation of Ω•(M) such that df (X) = X(f ) and

d(df ) = 0 for all functions f .

Example 4.4. Consider M = R3. For f ∈ Ω0(M), we have

df = ∂f
∂x1 dx

1 + ∂f
∂x2 dx

2 + ∂f
∂x3 dx

3.

Similarly, for A = A1dx
1 + A2dx

2 + A3dx
3, we have

dA = ( ∂A2

∂x1 − ∂A1

∂x2 )dx1 ∧ dx2 + ( ∂A3

∂x1 − ∂A1

∂x3 )dx1 ∧ dx3 + ( ∂A3

∂x2 − ∂A2

∂x3 )dx2 ∧ dx3

Finally, for B = B12dx
1 ∧ dx2 + B13dx

1 ∧ dx3 + B23dx
2 ∧ dx3, we have

dB = ( ∂B12

∂x3 − ∂B13

∂x2 + ∂B23

∂x1 )dx1 ∧ dx2 ∧ dx3.

Definition 29. The form ρ ∈ Ω•(M) is called closed when dρ = 0 and exact when ρ = dτ for some τ .

Example 4.5. A function f ∈ Ω0(M) is closed if and only if it is constant on each connected component of

M: This is because, in coordinates, we have

df = ∂f
∂x1 dx

1 + · · ·+ ∂f
∂xn
dxn,

and if this vanishes, then all partial derivatives of f must vanish, and hence f must be constant.

Theorem 4.6. The exterior derivative of an exact form is zero, i.e. d ◦ d = 0. Usually written d2 = 0.

Proof. The graded commutator [d1, d2] = d1 ◦ d2 − (−1)|d1||d2|d2 ◦ d1 of derivations of degree |d1|, |d2| is

always (why?) a derivation of degree |d1| + |d2|. Hence we see [d, d ] = d ◦ d − (−1)1·1d ◦ d = 2d2 is

a derivation of degree 2 (and so is d2). Hence to show it vanishes we must test on functions and exact

1-forms, which locally generate forms since every form is of the form f dxi1 ∧ · · · ∧ dxik .

But d(df ) = 0 by definition and this certainly implies d2(df ) = 0, showing that d2 = 0.

The fact that d2 = 0 is dual to the fact that ∂(∂M) = ∅ for a manifold with boundary M. We will see

later that Stokes’ theorem explains this duality. Because of the fact d2 = 0, we have a very special algebraic

structure: we have a sequence of vector spaces Ωk(M), and maps d : Ωk(M) −→ Ωk+1(M) which are such

that any successive composition is zero. This means that the image of d is contained in the kernel of the

next d in the sequence. This arrangement of vector spaces and operators is called a cochain complex of

vector spaces 2. We often simply refer to this as a “complex” and omit the term “cochain”. The reason

for the “co” is that the differential increases the degree k, which is opposite to the usual boundary map on

manifolds, which decreases k. We will see chain complexes when we study homology.

A complex of vector spaces is usually drawn as a linear sequence of symbols and arrows as follows: if

f : U −→ V is a linear map and g : V −→ W is a linear map such that g ◦ f = 0, then we write

U
f−→ V

g−→ W

In general, this simply means that imf ⊂ ker g, and to measure the difference between them we look at the

quotient ker g/imf , which is called the cohomology of the complex at the position V (or homology, if d

decreases degree). If we are lucky, and the complex has no cohomology at V , meaning that ker g is precisely

equal to imf , then we say that the complex is exact at V . If the complex is exact everywhere, we call it an

exact sequence (and it has no cohomology!) In our case, we have a longer cochain complex:

0 −→ Ω0(M)
d−→ · · · d−→ Ωk−1(M)

d−→ Ωk(M)
d−→ Ωk+1(M)

d−→ · · · d−→ Ωn(M) −→ 0

There is a bit of terminology to learn: we have seen that if dρ = 0 then ρ is called closed. But these are

also called cocycles and denoted Zk(M). Similarly the exact forms dα are also called coboundaries, and

are denoted Bk(M). Hence the cohomology groups may be written HkdR(M) = ZkdR(M)/BkdR(M).

Definition 30. The de Rham complex is the complex (Ω•(M), d), and its cohomology at Ωk(M) is called

HkdR(M), the de Rham cohomology.

2since this complex appears for Ω•(U) for any open set U ⊂ M, this is actually a cochain complex of sheaves of vector spaces,

but this won’t concern us right away.

30



Exercise: Check that the graded vector space H•dR(M) =
L

k∈ZH
k(M) inherits a product from the

wedge product of forms, making it into a Z-graded ring. This is called the de Rham cohomology ring of M,

and the product is called the cup product.

It is clear from the definition of d that it commutes with pullback via diffeomorphisms, in the sense

f ∗ ◦ d = d ◦ f ∗. But this is only a special case of a more fundamental property of d :

Theorem 4.7. Exterior differentiation commutes with pullback: for f : M −→ N a smooth map, f ∗ ◦ dN =

dM ◦ f ∗.

Proof. We need only check this on functions g and exact 1-forms dg: let X be a vector field on M and

g ∈ C∞(N,R).

f ∗(dg)(X) = dg(f∗X) = π2g∗f∗X = π2(g ◦ f )∗X = d(f ∗g)(X),

giving f ∗dg = df ∗g, as required. For exact 1-forms we have f ∗d(dg) = 0 and d(f ∗dg) = d(df ∗g) = 0 by

the result for functions.

This theorem may be interpreted as follows: The differential forms give us a Z-graded ring, Ω•(M),

which is equipped with a differential d : Ωk −→ Ωk+1. This sequence of vector spaces and maps which

compose to zero is called a cochain complex. Beyond it being a cochain complex, it is equipped with a

wedge product.

Cochain complexes (C•, dC) may be considered as objects of a new category, whose morphisms consist

of a sum of linear maps ψk : Ck −→ Dk commuting with the differentials, i.e. dD ◦ ψk = ψk+1 ◦ dC .

The previous theorem shows that pullback f ∗ defines a morphism of cochain complexes Ω•(N) −→ Ω•(M);

indeed it even preserves the wedge product, hence it is a morphism of differential graded algebras.

Corollary 4.8. We may interpret the previous result as showing that Ω• is a functor from manifolds to

differential graded algebras (or, if we forget the wedge product, to the category of cochain complexes). As

a result, we see that the de Rham cohomology H•dR may be viewed as a functor, from smooth manifolds to

Z-graded commutative rings.

Example 4.9. S1 is connected, and hence H0
dR(S1) = R. So it remains to compute H1

dR(S1).

Let ∂
∂θ

be the rotational vector field on S1 of unit Euclidean norm, and let dθ be its dual 1-form, i.e.

dθ( ∂
∂θ

) = 1. Note that θ is not a well-defined function on S1, so the notation dθ may be misleading at first.

Of course, d(dθ) = 0, since Ω2(S1) = 0. We might ask, is there a function f (θ) such that df = dθ? This

would mean ∂f
∂θ

= 1, and hence f = θ+c2. But since f is a function on S1, we must have f (θ+ 2π) = f (θ),

which is a contradiction. Hence dθ is not exact, and [dθ] 6= 0 in H1
dR(S1).

Any other 1-form will be closed, and can be represented as gdθ for g ∈ C∞(S1,R). Let g =
1

2π

R θ=2π

θ=0
g(θ)dθ be the average value of g, and consider g0 = g − g. Then define

f (θ) =

Z t=θ

t=0

g0(t)dt.

Clearly we have ∂f
∂θ

= g0(θ), and furthermore f is a well-defined function on S1, since f (θ + 2π) = f (θ).

Hence we have that g0 = df , and hence g = g + df , showing that [gdθ] = g[dθ].

Hence H1
dR(S1) = R, and as a ring, H0

dR +H1
dR is simply R[x ]/(x2).

Note that technically we have proven that H1
dR(S1) ∼= R, but we will see from the definition of integration

later that this isomorphism is canonical.

The de Rham cohomology is an important invariant of a smooth manifold (in fact it doesn’t even depend

on the smooth structure, only the topological structure). To compute it, there are many tools available.

There are three particularly important tools: first, there is Poincaré’s lemma, telling us the cohomology of

Rn. Second, there is integration, which allows us to prove that certain cohomology classes are non-trivial.

Third, there is the Mayer-Vietoris sequence, which allows us to compute the cohomology of a union of open

sets, given knowledge about the cohomology of each set in the union.

Lemma 4.10. Consider the embeddings Ji : M −→ M × [0, 1] given by x 7→ (x, i) for i = 0, 1. The induced

morphisms of de Rham complexes J∗0 and J∗1 are chain homotopic morphisms, meaning that there is a linear

map K : Ωk(M × [0, 1]) −→ Ωk−1(M) such that

J∗1 − J∗0 = dK +Kd

This shows that on closed forms, J∗i may differ, but only by an exact form.

31



Proof. Let t be the coordinate on [0, 1]. Define Kf = 0 for f ∈ Ω0(M × [0, 1]), and Kα = 0 if α = f ρ for

ρ ∈ Ωk(M) . But for β = f dt ∧ ρ we define

Kβ = (

Z 1

0

f dt)ρ.

Then we verify that

dKf +Kdf = 0 +

Z 1

0

∂f
∂t
dt = (J∗1 − J∗0 )f ,

dKα+Kdα = 0 + (

Z 1

0

∂f
∂t
dt)ρ = (J∗1 − J∗0 )α,

dKβ +Kdβ = (

Z 1

0

dM f dt) ∧ ρ+ (

Z 1

0

f dt) ∧ dρ+K(df ∧ dt ∧ ρ− f dt ∧ dρ) = 0,

which agrees with (J∗1 − J∗0 )β = 0− 0 = 0. Note that we have used K(df ∧ dt ∧ ρ) = K(−dt ∧ dM f ∧ ρ) =

−(
R 1

0
dM f ) ∧ ρ, and the notation dM f is a time-dependent 1-form whose value at time t is the exterior

derivative on M of the function f (−, t) ∈ Ω0(M).

The previous theorem can be used in a clever way to prove that homotopic maps M −→ N induce the

same map on cohomology:

Theorem 4.11. Let f : M −→ N and g : M −→ N be smooth maps which are (smoothly) homotopic. Then

f ∗ = g∗ as maps H•(N) −→ H•(M).

Proof. Let H : M × [0, 1] −→ N be a (smooth) homotopy between f , g, and let J0, J1 be the embeddings

M −→ M×[0, 1] from the previous result, so that H◦J0 = f and H◦J1 = g. Recall that J∗1−J∗0 = dK+Kd ,

so we have

g∗ − f ∗ = (J∗1 − J∗0 )H∗ = (dK +Kd)H∗ = dKH∗ +KH∗d

This shows that f ∗, g∗ differ, on closed forms, only by exact terms, and hence are equal on cohomology.

Corollary 4.12. If M,N are (smoothly) homotopic, then H•dR(M) ∼= H•dR(N).

Proof. M,N are homotopic iff we have maps f : M −→ N, g : N −→ M with f g ∼ 1 and gf ∼ 1. This

shows that f ∗g∗ = 1 and g∗f ∗ = 1, hence f ∗, g∗ are inverses of each other on cohomology, and hence

isomorphisms.

Corollary 4.13 (Poincaré lemma). Since Rn is homotopic to the 1-point space (R0), we have

HkdR(Rn) =

(
R for k = 0

0 for k > 0

As a note, we should mention that the homotopy in the previous theorem need not be smooth, since

any homotopy may be deformed (using a continuous homotopy) to a smooth homotopy, by smooth ap-

proximation. Hence we finally obtain that the de Rham cohomology is a homotopy invariant of smooth

manifolds.

4.5 Integration

Since we are accustomed to the idea that a function may be integrated over a subset of Rn, we might think

that if we have a function on a manifold, we can compute its local integrals and take a sum. This, however,

makes no sense, because the answer will depend on the particular coordinate system you choose in each

open set: for example, if f : U −→ R is a smooth function on U ⊂ Rn and ϕ : V −→ U is a diffeomorphism

onto V ⊂ Rn, then we have the usual change of variables formula for the (Lebesgue or Riemann) integral:Z
U

f dx1dx2 · · · dxn =

Z
V

ϕ∗f
˛̨̨
det[ ∂ϕi

∂x j
]
˛̨̨
dx1 · · · dxn.

The extra factor of the absolute value of the Jacobian determinant shows that the integral of f is coordinate-

dependant. For this reason, it makes more sense to view the left hand side not as the integral of f but
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rather as the integral of ν = f dx1∧· · ·∧dxn. Then, the right hand side is indeed the integral of ϕ∗ν (which

includes the Jacobian determinant in its expression automatically) , as long as ϕ∗ has positive Jacobian

determinant.

Therefore, the integral of a differential n-form will be well-defined on an n-manifold M, as long as we

can choose an atlas where the Jacobian determinants of the gluing maps are all positive: This is precisely

the choice of an orientation on M, as we now show.

Definition 31. A n-manifold M is called orientable when detT ∗M := ∧nT ∗M is isomorphic to the trivial

line bundle. An orientation is the choice of an equivalence class of nonvanishing sections v , where v ∼ v ′
iff f v = v ′ for f ∈ C∞(M,R). M is called oriented when an orientation is chosen, and if M is connected

and orientable, there are two possible orientations.

Rn has a natural orientation by dx1 ∧ · · · ∧ dxn; if M is orientable, we may choose charts which preserve

orientation, as we now show.

Proposition 4.14. If the n-manifold M is oriented by [v ], it is possible to choose an orientation-preserving

atlas (Ui , ϕi) in the sense that ϕ∗i dx
1 ∧ · · · ∧ dxn ∼ v for all i . In particular, the Jacobian determinants for

this atlas are all positive.

Proof. Choose any atlas (Ui , ϕi). For each i , either ϕ∗i dx
1∧· · ·∧dxn ∼ v , and if not, replace ϕi with q ◦ϕ,

where q : (x1, . . . , xn) 7→ (−x1, . . . , xn). This completes the proof.

Now we can define the integral on an oriented n-manifold M, by defining the integral on chart images

and asking it to be compatible with these charts:

Theorem 4.15. Let M be an oriented n-manifold. Then there is a unique linear map
R
M

: Ωn
c(M) −→ R on

compactly supported n-forms which has the following property: if h is an orientation-preserving diffeomor-

phism from V ⊂ Rn to U ⊂ M, and if α ∈ Ωn
c(M) has support contained in U, thenZ

M

α =

Z
V

h∗α.

Proof. Let α ∈ Ωn
c(M) and choose an orientation-preserving, locally finite atlas (Ui , ϕi) with subordinate

partition of unity (θi). Then using the required properties (and noting that α is nonzero in only finitely many

Ui), we have Z
M

α =
X
i

Z
M

θiα =
X
i

Z
ϕi (Ui )

(ϕ−1
i )∗θiα.

This proves the uniqueness of the integral. To show existence, we must prove that the above expression

actually satisfies the defining condition, and hence can be used as an explicit definition of the integral.

Let h : V −→ U be an orientation-preserving diffeomorphism from V ⊂ Rn to U ⊂ M, and suppose α

has support in U. Then ϕi ◦ h are orientation-preserving, and

Z
M

α =
X
i

Z
ϕi (Ui )∩ϕi (U)

(ϕ−1
i )∗θiα

=
X
i

Z
V ∩h−1(Ui )

(ϕi ◦ h)∗(ϕ−1
i )∗θiα

=
X
i

Z
V ∩h−1(Ui )

h∗(θiα)

=

Z
V

h∗α,

as required.

Having defined the integral, we wish to explain the duality between d and ∂: A n − 1-form α on a n-

manifold may be pulled back to the boundary ∂M and integrated. On the other hand, it can be differentiated

and integrated over M. The fact that these are equal is Stokes’ theorem, and is a generalization of the

fundamental theorem of calculus.
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First we must some simple observations concerning the behaviour of forms in a neighbourhood of the

boundary.

Recall the operation of contraction with a vector field X, which maps ρ ∈ Ωk(M) to iXρ ∈ Ωk−1(M),

defined by the condition of being a graded derivation iX(α∧β) = iXα∧β+ (−1)|α|α∧ iXβ such that iX f = 0

and iXdf = X(f ) for all f ∈ C∞(M,R).

Proposition 4.16. Let M be a manifold with boundary. If M is orientable, then so is ∂M. Furthermore, an

orientation on M induces one on ∂M.

Proof. We need a vector field X which is tangent to M, pointing outward everywhere along the boundary

(and nonvanishing on the boundary). This can be constructed by taking a locally finite covering {Ui} of the

boundary of M by charts of M, choosing vector fields Xi in Ui corresponding to the outward pointing vector

field − ∂
∂xm

in the coordinates, and forming X =
P

i θiXi for a partition of unity {θi}.
Given an orientation [v ] of M, we can form [j∗(iXv)], for j : ∂M −→ M the inclusion of the boundary.

This is then an orientation of ∂M. This depends only on [v ] and X being a nonvanishing outward vector

field.

We now verify a local computation leading to Stokes’ theorem. If

α =
X
i

aidx
1 ∧ · · · ∧ dx i−1 ∧ dx i+1 ∧ · · · ∧ dxm

is a degree m − 1 form with compact support in U ⊂ Hm, and if U does not intersect the boundary ∂Hm,

then by the fundamental theorem of calculus,Z
U

dα =
X
i

(−1)i−1

Z
U

∂ai
∂x i
dx1 · · · dxm = 0.

Now suppose that V = U ∩ ∂Hm 6= ∅. ThenZ
U

dα =
X
i

(−1)i−1

Z
U

∂ai
∂x i
dx1 · · · dxm

= −(−1)m−1

Z
V

am(x1, . . . , xm−1, 0)dx1 · · · dxm−1

=

Z
V

am(x1, . . . , xm−1, 0)i
− ∂
∂xm

(dx1 ∧ · · · dxm)

=

Z
V

j∗α,

where the last integral is with respect to the orientation induced by the outward vector field.

Theorem 4.17 (Stokes’ theorem). Let M be an oriented manifold with boundary, and let the boundary be

oriented with respect to an outward pointing vector field. Then for α ∈ Ωm−1
c (M) and j : ∂M −→ M the

inclusion of the boundary, we have Z
M

dα =

Z
∂M

j∗α.

Proof. For a locally finite atlas (Ui , ϕi), we haveZ
M

dα =

Z
M

d(
X
i

θiα) =
X
i

Z
ϕi (Ui )

(ϕ−1
i )∗d(θiα)

By the local calculation above, if ϕi(Ui) ∩ ∂Hm = ∅, the summand on the right hand side vanishes. On the

other hand, if ϕi(Ui) ∩ ∂Hm 6= ∅, we obtain (letting ψi = ϕi |Ui∩∂M and j ′ : ∂Hm −→ Rn), using the local

result, Z
ϕi (Ui )

(ϕ−1
i )∗d(θiα) =

Z
ϕi (Ui )∩∂Hm

j ′
∗
(ϕ−1

i )∗(θiα)

=

Z
ϕi (Ui )∩∂Hm

(ψ−1
i )∗(j∗(θiα)).

This then shows that
R
M
dα =

R
∂M
j∗α, as desired.
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Corollary 4.18. If ∂M = ∅, then for all α ∈ Ωn−1
c (M), we have

R
M
dα = 0.

Corollary 4.19. Let M be orientable and compact, and let v ∈ Ωn(M) be nonvanishing. Then
R
M
v > 0,

when M is oriented by [v ]. Hence, v cannot be exact, by the previous corollary. This tells us that the class

[v ] ∈ HndR(M) cannot be zero. In this way, integration of a closed form may often be used to show that it

is nontrivial in de Rham cohomology.

4.6 The Mayer-Vietoris sequence

Decompose a manifold M into a union of open sets M = U∪V . We wish to relate the de Rham cohomology

of M to that of U and V separately, and also that of U ∩ V . These 4 manifolds are related by obvious

inclusion maps as follows:

U ∪ V U t Voo U ∩ V
∂Uoo
∂V

oo

Applying the functor Ω•, we obtain morphisms of complexes in the other direction, given by simple restriction

(pullback under inclusion):

Ω•(U ∪ V ) // Ω•(U)⊕Ω•(V )
∂∗
U

//
∂∗
V //

Ω•(U ∩ V )

Now we notice the following: if forms ω ∈ Ω•(U) and τ ∈ Ω•(V ) come from a single global form on U ∪ V ,

then they are killed by ∂∗V − ∂∗U . Hence we obtain a complex of (morphisms of cochain complexes):

0 // Ω•(U ∪ V ) // Ω•(U)⊕Ω•(V )
∂∗
V
−∂∗

U // Ω•(U ∩ V ) // 0 (23)

It is clear that this complex is exact at the first position, since a form must vanish if it vanishes on U and

V . Similarly, if forms on U, V agree on U ∩ V , they must glue to a form on U ∪ V . Hence the complex is

exact at the middle position. We now show that the complex is exact at the last position.

Theorem 4.20. The above complex (of de Rham complexes) is exact. It may be called a “short exact

sequence” of cochain complexes.

Proof. Let α ∈ Ωq(U ∩ V ). We wish to write α as a difference τ −ω with τ ∈ Ωq(U) and ω ∈ Ωq(V ). Let

(ρU , ρV ) be a partition of unity subordinate to (U, V ). Then we have α = ρUα − (−ρV α) in U ∩ V . Now

observe that ρUα may be extended by zero in V (call the result τ), while −ρV α may be extended by zero in

U (call the result ω). Then we have α = (∂∗V − ∂∗U)(τ, ω), as required.

It is not surprising that given an exact sequence of morphisms of complexes

0 −→ A•
f−→ B•

g−→ C• −→ 0

we obtain maps between the cohomology groups of the complexes

Hk(A•)
f∗−→ Hk(B•)

g∗−→ Hk(C•).

And it is not difficult to see that this sequence is exact at the middle term: Let [ρ] ∈ Hk(B•), for ρ ∈ Bk
such that dBρ = 0. Suppose that g(ρ) vanishes in cohomology, meaning g(ρ) = dCγ in Ck . Then by

surjectivity of g, there exists q ∈ Bk−1 with g(q) = γ, and then g(ρ − dBq) = 0, so that by middle

exactness, there exists τ ∈ Ak with f (τ) = ρ − dBq. Then since f is a morphism of complexes, it follows

that f (dAτ) = dBf (τ) = dBρ = 0. Since f : Ak+1 −→ Bk+1 is injective, this implies that dAτ = 0, so we

have an actual cohomology class [τ ] such that f∗[τ ] = [ρ], as required.

The interesting thing is that the maps g∗ are not necessarily surjective, nor are f∗ necessarily injective. In

fact, there is a natural map δ : Hk(C•) −→ Hk+1(A•) (called the connecting homomorphism) which extends

the 3-term sequence to a full complex involving all cohomology groups of arbitrary degree:

If [α] ∈ Hk(C•), where dCα = 0, then there must exist ξ ∈ Bk with g(ξ) = α, and g(dBξ) = dC(g(ξ)) =

dCα = 0, so that there must exist β ∈ Ak+1 with f (β) = dBξ, and f (dAβ) = dB(f (β) = 0. Hence this
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determines a class [β] ∈ Hk+1(A•), and one can check that this does not depend on the choices made. We

then define δ([α]) = [β].

Exercise: with this definition of δ, we obtain a “long exact sequence” of vector spaces as follows:

H•(A)
f∗ // H•(B)

g∗zzuuuuuuuuu

H•(C)

δ+1

ddHHHHHHHHH

Therefore, from the complex of complexes (23), we immediately obtain a long exact sequence of vector

spaces, called the Mayer-Vietoris sequence:

· · · −→ Hk(U ∪ V ) −→ Hk(U)⊕Hk(V ) −→ Hk(U ∩ V )
δ−→ Hk+1(U ∪ V ) −→ · · · ,

where the first map is simply a restriction map, the second map is the difference of the restrictions δ∗V − δ∗U ,

and the third map is the connecting homomorphism δ, which can be written explicitly as follows:

δ[α] = [β], β = −d(ρV α) = d(ρUα).

(notice that β has support contained in U ∩ V .)

4.7 Examples of cohomology computations

Example 4.21 (Circle). Here we present another computation of H•dR(S1), by the Mayer-Vietoris sequence.

Express S1 = U0 ∪ U1 as before, with Ui ∼= R, so that H0(Ui) = R, H1
dR(Ui) = 0 by the Poincaré lemma.

Since U0∩U1
∼= RtR, we have H0(U0∩U1) = R⊕R and H1(U0∩U1) = 0. Since we know that H2

dR(S1) = 0,

the Mayer-Vietoris sequence only has 4 a priori nonzero terms:

0 −→ H0(S1) −→ R⊕ R
δ∗1−δ

∗
0−→ R⊕ R δ−→ H1(S1) −→ 0.

The middle map takes (c1, c0) 7→ c1− c0 and hence has 1-dimensional kernel. Hence H0(S1) = R. Further-

more the kernel of δ must only be 1-dimensional, hence H1(S1) = R as well. Exercise: Using a partition of

unity, determine an explicit representative for the class in H1
dR(S1), starting with the function on U0 ∩ U1

which takes values 0,1 on each respective connected component.

Example 4.22 (Spheres). To determine the cohomology of S2, decompose into the usual coordinate charts

U0, U1, so that Ui ∼= R2, while U0 ∩ U1 ∼ S1. The first line of the Mayer-Vietoris sequence is

0 −→ H0(S2) −→ R⊕ R −→ R.

The third map is nontrivial, since it is just the subtraction. Hence this first line must be exact, and

H0(S2) = R (not surprising since S2 is connected). The second line then reads (we can start it with zero

since the first line was exact)

0 −→ H1(S2) −→ 0 −→ H1(S1) = R,
where the second zero comes from the fact that H1(R2) = 0. This then shows us that H1(S2) = 0. The

last term, together with the third line now give

0 −→ H1(S1) = R −→ H2(S2) −→ 0,

showing that H2(S2) = R.

Continuing this process, we obtain the de Rham cohomology of all spheres:

HkdR(Sn) =

(
R, for k = 0 or n,

0 otherwise.
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