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CHAPTER 0

Introduction

This course will describe a category. That is, we will describe the objects of
the category and the morphisms between them. The objects will be differentiable
manifolds and the morphisms will be differentiable maps. We can refer to the
category as DIFF.

There are at least two reasons for the importance of this category. The
first reason is that differentiable manifolds and differentiable maps appear in
many other subjects. Much of physics is based on the idea that we live in a
differentiable manifold. If you consider space as viewed by Newton, the number
of dimensions is three. If you take time into account, the number of dimensions
is four. Keep this in mind when you read the last comment in this introduction.
Of course, more modern theories of physics have us living in a manifolds of even
higher dimension, where the number of dimensions and the total structure are
far from fully understood.

The second reason for the importance of the category is that there is a rich
set of tools for analyzing its objects and morphisms. Most of the time will be
spent in developing some of the tools. There will be only a small amount of time
devoted to results that use the tools. Differential topology is a large subject and
just learning some of the tools is a good start. Besides, the tools are useful in
other subjects as well.

These notes are based on a set of notes written in 1994 for a half semester
introduction to the subject. Those notes were to be presented in the class by
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6 0. INTRODUCTION

the students. These will also be presented in class by the students, but there
will be additional material to be presented by the students that is not in these
notes. The extra material will be identified when it is used.

The additional material will be from the following two books

1. John W. Milnor, Topology from the differentiable viewpoint, Princeton,
1965.
2. Th. Brocker and K. Janich, Introduction to differential topology, Cam-
bridge, 1982 (English Edition), out of print.
The material within these notes was gathered from several sources. These

include the following.

3. Serge Lang, Differential manifolds, Addison Wesley, 1972.

4. Morris W. Hirsch, Differential topology, Springer-Verlag, 1976.

5. Michael Spivak, Calculus on manifolds, Benjamin, 1965.

6. James R. Munkres, Elementary differential topology, Princeton, 1966.

Another book on the subject that we did not use is
7. Andrew Wallace, Differential topology: first steps, Benjamin, 1968.

The only purpose of the rest of this introduction is to whet the appetite by
pointing out some differences between the differentiable world and the topolog-
ical world. New terms are presented on an informal basis, and definitions are
given for clarity and not rigor. Formal introductions will occur later in these
notes and all definitions given here will be repeated or expanded later.

A differentiable manifold M will be a topological space with extra restrictions.

1. M must be a separable metric space.
2. There must be an integer n > 0 so that every x € M has a neighborhood
homeomorphic to R™.

3. There is a restriction to be given later on how the neighborhoods overlap.
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The third restriction will allow us to say in a well defined way when a map
between differentiable manifolds is differentiable. The differentiable maps will
be continuous functions that also satisfy extra restrictions. The category DIFF
will have the differentiable manifolds and objects, and the diffentiable maps as
morphisms.

A topological space satisfying (1) and (2) of the previous paragraph is a topo-
logical manifold. Thus every differentiable manifold is a topological manifold.
We can define a category whose objects are topological manifolds, and whose
morphisms are just the continuous functions between them. We can refer to this
category as TOP.

We have a forgetful functor from DIFF to TOP. That is, if M is an object in
DIFF, then we can forget the third restriction in the definition of differentiable
manifold and regard M as an object in TOP. If f is a morphism in DIFF, then
we can forget the extra restrictions that make it differentiable and regard it as
a morphism in TOP.

Questions about differentiable manifolds may have different answers when
looked at in the DIFF than when looked at in the TOP. Obviously, objects that
are isomorphic in DIFF will be isomorphic in TOP. However, the converse is
false. We will not have time to give proofs of this in the course, but we will

mention some interesting examples at the end of this introduction.

There are other examples of the differences between DIFF and TOP. Some
are quite simple once the machinery is developed, and others are more delicate.
These other examples do not refer to isomorphisms but to other concepts. Let
fo: X =Y and f; : X - Y be two embeddings of one topological space into
another. In the following definitions I denotes the unit interval [0,1]. We say
that fo is i¢sotopic to f; if thereisamap F: X X[ - Y sothatif F; : X - Y
is deinfed by Fy(z) = F(z,t), then Fy = fo, F1 = f1 and for all t € I, F; is
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a)

FIGURE 0.1. Two knots in 3-space

an embedding. We say that fy is concordant to f; if there is an embedding
F:X xI—Y xI so that for each z € X we have F(z,0) = (fo(z),0) and
F(z,1) = (f1(x),1). Note that isotopic implies concordant implies homotopic.
If all spaces and maps in the previous paragraph are in TOP, then we have
the definitions of TOP isotopies and TOP concordances. If all maps and spaces

are in DIFF, then we have DIFF isotopies and concordances.

Examples of maps that are TOP isotopic or TOP concordant but are not
DIFF isotopic or DIFF concordant are easy to describe. Proving the claimed
properties is a different matter. We give a few examples. In the examples, we
use D? to denote the unit disk in R? and S! to denote its boundary.

Figure 0.1 shows two knots in R3. That is, they show two embeddings of S*
into R3, and we assume that the embeddings are in DIFF. The two embddings
are TOP isotopic but not DIFF isotopic. We leave the TOP isotopy as an
exercise. The lack of a DIFF isotopy is an application of a theorem in DIFF and

a calculation involving the fundamental group.
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(80

FIGURE 0.2. The square knot

Concordances can be harder to work with. Clearly the knots in Figure 0.1
are TOP concordant. The fact that they are not DIFF concordant is harder to
show than the fact that they are not DIFF isotopic. We leave as an exercise the
fact that the knot in Figure 0.2 is DIFF concordant to the knot in Figure 0.1(b).

There are examples that are even more subtle. In Figure 0.3, we show three
solid tori. Each solid torus is homeomorphic to D? x S'. Each solid torus has an
embedded image of S'. We can assume that the embeddings are in DIFF. We
leave as an exercise the fact that embeddings (a) and (b) in Figure 0.3 are DIFF
concordant. Building the concordance with a finite number of differentiable
pieces will be enough to argue that the entire concordance is DIFF. Of course,
this will also show that embeddings (a) and (b) are TOP concordant. It turns
out that embedding (c) is not DIFF concordant to the other two. The argument
is similar to the one that shows that the two knots in Figure 0.1 are not DIFF
concordant. What is surprising is the fact that all three embeddings in Figure
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F1GURE 0.3. Three knots in solid tori

0.3 are TOP concordant. The argument is short and elementary but extremely

tricky, and is due to C. Giffen. We leave it for now as a challenging exercise.

We should have time in this course to give arguments that the examples
given above have the claimed properties. We will not have time to prove the
following remarkable statements. (1) There are 28 objects in DIFF with no two
isomorphic in DIFF, but whose images in TOP under the forgetful functor are
all the 7-dimensional sphere. (2) There are uncountably many objects in DIFF
with no two isomorphic in DIFF, but whose images in TOP under the forgetful

functor are all R*.



CHAPTER 1

Calculus on Euclidean Spaces

Manifolds start as spaces based on Euclidean spaces. Every point in a man-
ifold has a neighborhood that is homeomorphic to some Euclidean space. The
notion of a differentiable manifold and the notion of a differentiable map between
differentiable manifolds will be based on our understanding of differentiation in
Euclidean spaces. This chapter is designed to lay out the needed material on
differentiation in Euclidean spaces.

Much of the material below can be put in more general settings, such as
Hilbert spaces or Banach spaces. There are technical difficulties, however. The
presenter might want to see how much can be done in these setting. All of the
material goes through in finite dimensional, normed vector spaces over R. This
can be exploited in Section 1.4 to avoid coordinates and partial derivatives. We
will point out there how that goes, but we do not use it as the main approach.
Had we done so, we would have avoided all connection to the derivatives familiar
from calculus courses.

In the following, we make use of the norm ||v|| of a vector in R™. This is
length of v and is the square root of the sum of the squares of the coordinates of
v. Were we to work with some arbitrary vector space V over R, we would simply
hypothesize a norm || || : V' — R with the usual properties that one assumes in
analysis for a normed, linear space. If V is finite dimensional, then all norms
induce the same topology, and the resulting metric space is complete.

11



12 1. CALCULUS ON EUCLIDEAN SPACES
1.1. Derivatives in Euclidean spaces

If f: R — R is a function, then its derivative at x is defined by

h—0 h

If we try to generalize to functions f : R™ — R", then we run into the problem
of dividing by a vector.

If we return to the case of f : R — R, then the definition of derivative can
be reinterpreted to say that f is differentiable at  and that its derivative at x
has the value f'(z) if

@) = (@) = F(a)h

h—0 h =0

The function h — f'(z)h is a linear function from R to R. If we call this linear
function A, then we have that f is differentiable at z if there is a linear function
A:R — R so that

Lo F@ ) = f(@) = AR

h—0 h =0

The number f'(z) is just the slope of the linear function A. Instead of defining
the derivative of f at = to be the slope of the linear function A we can define the
derivative of f at x to be the linear function A itself. This gives a setting that
can be imitated in higher dimensions. Note that since the definition involves a
limit at a specific point, we only need to have f defined on an open set containing
the point. This will be reflected in the setting of the defintion.

Let f : U — R"™ be a function where U is an open subset of R™. We say that

f is differentiable at « € U if there is a linear function A : R™ — R"™ so that

o 1@+ 1) = (@) = AB] _

0.
h—0 12l

(1.1)

The quotients make sense since the denominators are real numbers. We could

also say

o £@+R) = £(2) = AR)

=0
h—0 It
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since a vector goes to zero if and only if its length goes to zero.

If f, z and X satisfy (1.1), then we say that the derivative of f at = is A and
denote it D f,. We will say that f is differentiable on all of U if f is differentiable
on each x € U. Note that f satisfies this vacuously if U is empty. This will be
convenient later. It is important to remember that Df, is a linear function. We
can summarize the idea in (1.1) by saying that the derivative of f at z¢ is the
“best linear approximation to (f(z) — f(zo)).”

Note that the “domain” of the limit in (1.1) is U — z = {u — @|u € U} which
is the translation of the open set U that carries x to 0 and is thus an open set in
R™ containing 0. In (¢,d) form, the limit statement reads: for any € > 0, there
is a § > 0 so that for any h # 0 in the §-ball about 0 in R™, we have that

If(z+h) - f(z) = A(h)

|
< €.
([l

Or, in other words,
(1.2) £ (@ + h) = f(z) = AR)]| < elln]].

Since }llin}] A(h) = 0, the following is an immediate consequence of (1.2).
—

LemMA 1.1.1. If f is differentiable at x, then it is continuous at .
We also get the uniqueness of the derivative from (1.2).

PROPOSITION 1.1.2. Let f : U — R"™ be differentiable at x where U is an

open set in R™. Then D f, is unique.

PROOF Suppose that linear \; : R™ — R", i = 1,2 both satisfy
) @)~ x|

h—0 12l

0.

Thus for € > 0 and restriction of A to a suitable §-ball we can make

[f(z+h) = f(z) = X(h)]| < gllhll-
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Now,
[M(R) = Ao (R)[| = [ A (R) = f(z + h) + f(z) + f(z + h) — f(z) = de(h)]
<Aah) = f(@+h) + f(@)]| + [1f (2 + h) = f(z) = A2(R)]|
< e[|,
This gives the not surprising statement that the A; do not differ by much on
small vectors. But the A; are linear and we can use this and the inequality
above to show that they do not differ by much on any vector. Let v € R™ be
arbitrary and let ¢ > 0 be small enough so that tv is in the §-ball. Then
tel|v]| = el[tv]]
> [|Ax(tv) — Az (t0)]
= [[tA1 (v) =t ()]
= t]| A1 (v) = A2 (0)]]-
So

[A1(0) = Az (v)[| < elo.
But this can be done for this v and any € > 0. So [|[A1(v) — A2(v)|| = 0 and
A1 = A |

We give two easily computed derivatives.

LEMMA 1.1.3. Let f : R™ — R"™ be a linear mapping. Then for all z € R™,
Dfm = f

Proor With f linear, f(z + h) = f(z) + f(h) so
L f@ k)~ (@)~ £(B)

=0.
h—0 12l

Since we need a linear function of h that gives the above limit and the linear f

does the trick, f must be the derivative. |

LEMMA 1.1.4. If f is a constant, then all Df, are the zero tranformation.
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PROOF The linear map 0 works in

Lo S+ h) = (@) = o)

=0.
h—0 IRl

We leave as easy exercises the fact that the derivative is a linear operator on

functions. Specifically, D(f + ¢9)» = Dfy + Dg, and D(rf), = rDf,.

1.2. The Chain Rule

The next result, the chain rule, is one of the crucial ingredients. In its proof,
we will need the continuity of certain linear functions. This is straightforward
but not trivial in the finite dimensional setting that we are in if we use the usual
topology on the Euclidean spaces. It is false in infinite dimensions for most
topologies that are put on the vector spaces.

We will need the notion of the norm of a linear map. Let A : R™ — R" be a
linear map. Let B be the closed unit ball in R™ and let ||A|| be the maximum
distance from 0 to a point in f(B). This exists and is finite since B is compact.
It may be zero if f is the zero linear map. Let v € R™. We have the following
inequality:

A@)I| = vl - 1A (ﬁ) < ol - lIA-

The finiteness of ||A|| depends on the continuity of A\. As mentioned above, linear
maps with finite dimensional domains are continuous. In an infinite dimensional

setting, the finiteness of ||A|| is equivalent to the continuity of .

THEOREM 1.2.1 (Chain Rule on Euclidean spaces). IfU C R™ and V C R"
are open sets and f : U — R™ and g : V — RP are differentiable at a € U and
b= f(a) € V respectively, then gf : U — RP is differentiable at a and

D(gf)a = (Dgs)(Dfa)-



16 1. CALCULUS ON EUCLIDEAN SPACES

PROOF Another way to interpret the definition of the derivative of f at z is

to say that if we define

E(h) = f(z +h) - f(z) — Dfz(h),
then for any € > 0, there is a § > 0 so that ||h|| < ¢ implies ||E(h)|| < €||h]|-
Note that E(0) = 0 so that we do not have to say 0 < ||h|| < 6.
Let A= Df, and u = Dgy. We have
lg(f(z + h)) — g(f(2)) — p(A(R))]
< llg(f(=) + A(h) + E(R)) — g(f(=)) — p(A(h) + E(h))]|
+ [u(A(h) + E(R)) — p(A(R))]]
= llg(f(=) + A(R) + E(h)) — g(£(x)) — u(A(h) + E(h))]]
+ ll(EMR)|l
where the equality follows from the linearity of ;. We will be done if for a given

€ > 0 we can find a 6 > 0 so that ||h|| < § makes

(L3)  llg(f(@)+A(h) + E(h) - 9(F(@)) — sA(R) + BRI < 5]
and
(L4) In(E®)] < SIIA.

We have

lg(f(z) + A(h) + E(h)) — g(f(2)) — p(A(R) + E(R))|| < ex[|A(R) + E(R)]|
if
(1.5) IA(R) + E(R)|| < 61.

Now
IAR) + E(R)[| < [|AR)] + IECR)]|

(1.6) < I 170l =+ llea]|A]
= (Il + e2) ]
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for
(L.7) Al < 62
SO
e1|A(h) + E(R)|| < (e1||Al] + exea) |||
< <|Inll
2

if all of

€ €
(18) €< -, €1 < ———7, € < 1

4 4|l

hold. Thus we get (1.3) if we can satisfy all of (1.8). Now
(EEDI < el - [1EH)]

< elul - [
€
—||h
<2l
if
€
(1.9) < .
2l

Thus we get (1.4) if we can satisfy (1.9).
So given €, we determine €; and €z from (1.8) and (1.9). This determines §;
and d2 which puts our first restriction § < d2 on & because of (1.7). We must

deal with (1.5). But we can get this from (1.6) by putting the resriction

01
< —=—
[IA]l + €2

on J. This finishes the proof. |

1.3. Derivatives and Products

We give a lemma that we will use to relate two notions of derivative that we
will define. We assume the usual notation that if « : A - C and 8: B — D
are functions, then the notation o X B refers to the function from A x B to

C x D defined by (a x 8)(a,b) = (a(a), B(b)). We also invent a notation that if
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v:A— Bandd: A— C are given, then (v, §) refers to the function from A to
B x C defined by (v, d)(a) = (v(a),d(a)).

LEmMMA 1.3.1. If U € R™ and V € R?® are open sets and f : U - R"
and g : V — R! are differentiable at a € U and b € V respectively, then
fxg:UxV — R" xR is differentiable at (a,b) and the derivative there is
Df, x Dgy. If, in addition, h : U — RY is differentiable at a, then (f,h) is
differentiable at a and the derivative there is (Dfq, Dhy).

PrOOF Consider
I(f x g)(a+ h1,b+ ha) — (f x g)(a,b) — (Dfa X Dgs)(ha, ha)||

(110)  =[(f(a+h),g(b+ h2)) = (f(a)g(b)) — (Dfa(ha), Dgs(ha))|
=[I(f(a+ h1) = f(a) = Dfa(h1) , g(b+ h2) — g(b) — Dgy(ha))||-

The i-th coordinate, ¢ = 1,2, in (1.10) can be kept less than €||h;|| by confining

h; to some §;-ball. So if

[[(R1, ho)|| = max{|[Ra]], |2} < min{dy, 32},
then both coordinates in (1.10) are less than
emax{||hl, [|h2[|} = €[|(h1, h)]-

This proves the first part.

Now consider the diagonal map d : U — R™ x R™ defined by d(u) = (u, u).
This is linear so Dd = d. Note that (f,h) = (f x h)d. Now D(f,h) = D(f x
h)Dd = (Df x Dh)d = (Df, Dh). n

We can use this to relate the standard notion of the derivative of a curve,
to the notion of a derivative as developed in this section. Recall that if f is a
function from R to R, then f’(z) gives the slope of Df,. Thus for f and g from
R to R, we have f'(z) = ¢'(z) if and only if Df, = Dg,. Even more, we can
recover f'(z) from Df,. Since f'(z) is the slope of the linear map Df, : R — R,
we must have f'(z) = Df,(1).
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Now if we have f : R — R", we have f = (f1,..., fn). By Lemma 1.3.1,
we have Df = (Dfi,...,Df,). If g : R — R" is given, then we also have
f'(z) = ¢'() if and only if Df, = Dg,. And further,

f'() = (fi(2), ..., fu(@))
(1.11) = (D(f1)2(1),- -, D(f)2(1))
— D).

This equality will be convenient later on.

1.4. Higher Derivatives

Thus far, there has been little mention of coordinates or partial derivatives. In
conjunction, there has been no mention of bases when we talk about linear maps
between the vector spaces R™ and R™. We break this silence for one section and
bring in partial derivatives and specific bases to discuss higher derivatives. This
can be avoided, at the expense of never relating this material to more familiar
material. The way to avoid partial derivatives and specific bases is given at the
end of the section.

Let f: R™ — R" be differentiable at . Then the derivative Df, at z is a
linear map from R™ to R™. If f is differentiable on all points in R™, then we
have a function Df from R™ to the set of linear transformations from R™ to
R™. We can call this function the derivative of f. If we stop here, then partial
derivatives have not been brought in. We can bring them in to make the set of
linear transformations from R™ to R"™ look more familiar. We will also need to
choose bases for R™ and R™.

Let the standard bases be chosen for R™ and R™ (unit vectors in the co-
ordinate directions) and let elements of R™ and R™ be represented by column
vectors. Now a linear transformation from R™ to R™ is represented as left

multiplication by an n x m matrix. At this point the partial derivatives have
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appeared. This is because the particular matrix that represents D f, using the

standard bases is the Jacobian matrix whose entries are

Ofi
(sz)i,j = 8.’Ef]

We drop the partial derivatives for several paragraphs to inspect the structure

that we have built so far.

We have that Df is a function from R™ to the set of linear transformation
from R™ to R™. With our choice of bases, we have a particular one to one
correspondence between the set of linear transformations from R™ to R™ and
the set of n X m matrices. Thus our choice of basis allows us to look at Df as
a function from R™ to the set of n X m matrices.

We can add extra structure to the set of n xm matrices and make a topological
space and a vector space out of it. This can be done by letting basis vectors for
the set of m x m matrices be those n x m matrices with a one in a single position
and zeros everywhere else. This (second) choice now makes Df a function from
R™ to R™™.

Now that Df is a function between Euclidean spaces, we can discuss two
things — the continuity of D f and the differentiability of Df. If Df is continu-
ous, then we say that f is of class C'. If Df is differentiable, then its derivative
D2f is a function from R™ to R™™". We see that we can now discuss higher
derivatives and higher classes of differentiability. In particular, we can say that
f is of class C" if and only if Df is of class C" 1.

Note that linear functions are infinitely differentiable. In fact, if f is linear,
then Df, = f for all z so that Df is a constant (even though each D f, is not
necessarily the constant linear transformation). Now all higer derivatives of f
are zero.

The fact that linear functions are infinitely differentiable is relevant because

choices were made in setting up Df as a function from R™ to R™. The
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correspondence depended on two choices of bases. Different choices of bases give
different correspondences that can be obtained from the original by multiplying
by “change of basis” matrices at appropriate places. Multiplying by matrices is
linear and thus infinitley differentiable. From this it follows that if f is C" as
measured with one choice of bases, then it is as measured with another.

We now return to the partial derivatives. Our choice of bases made Df a
function from R™ to R™. The coordinates in R™ are the entries in the
matrices that represent the linear transformations D f,. These entries are just
the partial derivatives of f at . Thus the coordinate functions of Df are the
partial derivatives. This means that a C! function f has continuous partial
derivatives and a C™ function f has partial derivatives of class C"~!.

There are converses to this (continuous partial derivatives imply continuously
differentiable if “equality of mixed partials” is satisfied) but we will not go into
this. This might leave a hole a couple of sections down the way. There are proofs
of this converse in various books on advanced calculus.

It is an elementary exercise that the composition of C” functions is C” for a
fixed 7. The (local) inverses of C” functions are discussed in the next section.

We say that a function is of class C* (or smooth) if it is of class C" for all
r. The composition of smooth functions is also smooth. Since smooth functions
tend to be as well behaved as C" functions, we will often make statements about
C" functions for 1 < r < oo.

[To avoid coordinates, and partial derivatives, we can use the norm of a linear
function between normed linear spaces as defined in Section 1.2. Let V and W
be normed linear spaces. Now for a differentiable f : V — W, we have that D f
is a function from V to Hom(V, W), the linear functions from V to W. Since
Hom(V, W) is also a normed linear space and thus a metric space, the continuity

of Df can be discussed. Further, the differentiability of Df : V. — Hom(V, W)
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can be discussed, and D?f can be defined. Now the classes C", 1,< r < oo, can

be defined.]

1.5. The Inverse Function Theorem

Hirsh makes the following comments. A derivative gives information about
infinitesimal behavior. It tells about the limiting behavior near a point. The
next step up from limiting behavior is local behavior—behavior on all of some
open set about a point. The theorem in this section is the basis of several results
that make the passage from infinitesimal to local. That is, they take information
about infinitesimal behavior and make conclusions about local behavior. This
transition is one of the key tools in differential topology. The transition from
local to global is another goal of all branches of topology and will be illustrated
elsewhere.

A rule of thumb is that differentiable functions with invertible derivatives are
locally invertible. We will want a statement to that effect for manifolds, but that
will follow with very few words from such a statement for Euclidean spaces. We
start with the statement. The statement for manifolds will be identical except

that M and N will represent differentiable manifolds.

THEOREM 1.5.1 (Inverse Function Theorem on Euclidean spaces). Assume
that f : M — N is a C" function, 1 < r < 0o, between open subsets of Fuclidean
spaces, and assume that Df, is an isomorphism for some x € M. Then there
is an open set U about = so that V = f(U) is open in N, so that f|ly is a
homeomorphism onto V and so that (f|y) tis C" and if (flv) 1(z) = z, then

D((flv)™"), = (Dfa)~"

We will unroll the proof of the Inverse Function Theorem very slowly. Various
intermediate results are stated and proven in the middle of the proof of the

Inverse Function Theorem theorem. To prove a homeomorphism, one must
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prove that a function is both one to one and onto. The proofs of these two
parts are quite separate and are done in with a large interruption in between to
introduce needed lemmas.

The first theorem that one learns in calculus that extracts information from
the derivative is the Mean Value Theorem. The importance of this theorem
cannot be overemphasized. We give a version of the Mean Value Theorem in

higher dimensions.

THEOREM 1.5.2 (Mean Value Theorem). Let f : R™ — R" be C' and let
a,b € R™. Assume that |Df,|| < K for some real K > 0 and for all z on the
straight line from a to b. Then ||f(b) — f(a)|]| < K||b—a.

PROOF Let z be on the line L from a to b and let € be greater than 0. Consider

h small enough to make the following true:

If(z+h) = @) — IDf(R)| < [If(z+h) = f(z) = Dfa(h)]| < ellAl].

For such an A,

If(z+h) = f@) < [Dfz(R)]| + €llA]
< |[Dfzll - [IB]l + €llAl
< (K + )R]l

Now each x € L has a §, > 0 so that the above holds whenever h is within §,
of x and we get an open cover of L. Pick a Lebesgue number 7 for this cover and
divide L into intervals of length less than 7. Let the endpoints of the intervals

bea =29 <z1,--- <zp =0. Now

1£() = @)l < Y lIf(z:) = fl@i)|
(K46 [lzi — zioa
= (K+¢€)|b—aq|.

A

This can be done for any € > 0 so the statement of the theorem holds. |
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We will start the proof of the Inverse Function Theorem by first showing that
there is a neighborhood of z on which f is one to one. The main tool will be a
technique that controls how much points move under various maps. The main
tool for the control will be the Mean Value Theorem.

PROOF OF THE INVERSE FUNCTION THEOREM: INJECTIVITY Since Df, is
a linear isomorphism, the dimension of the domain and range are the same. Let
this common dimension be m.

We now argue a reduction. We wish to replace the hypothesis of the Inverse
Function Theorem by one which assumes more about f than is given in the
statement.

We have that f is a function from an open set in R™ to R™. If we compose
f on the right or left with linear isomorphisms, then the point of interest and
its image will shift, but the hypotheses will remain the same. This is because
linear isomorphisms are infinitely differentiable (so the class of the function is
not altered), and because the derivative of a linear isomorphism is a linear iso-
morphism (so the invertibility of the derivative is not lost).

By composing on the left and right with translations, we can assume that f
takes 0 to 0 and that we are concerned with the behavior of f at 0. We can
do this since translations are linear isomorphisms. Now we have that Df; is a
linear isomorphism from R™ to R™. We can compose f with the inverse of this
linear isomorphism and we now have that f carries the origin to the origin and
D fy is the identity.

Thus we assume that f is a function from an open set U; in R™ to R™ that
takes 0 to 0 and which has Dfj as the identity from R™ to R™.

We now wish to show that there is a neighborhood of 0 on which f is one to
one. This will follow immediately if we show that for all x,y in some neighbor-

hood of 0, we have

(112) 1@~ f@I > Sllz 3l



1.5. THE INVERSE FUNCTION THEOREM 25

To get this kind of inequality that says that f does not contract much, we apply
a tranformation that reduces our task to showing that another function does not
expand much. Consider the function g(z) = z — f(z). Assume we can show that

in some neighborhood of 0 every x and y in this neighborhood satisfies

(113) lo(@) @)l < sl il

So

\%

llg(z) — g(w)l
l(z —y) = (f(z) = F))I
lz —yll — [If(z) — f(W)I-

1
Sl =l

Y

Thus we get (1.12).

Our task is now to show (1.13). This is now in a form that can be handled by
the Mean Value Theorem. We will be done by the Mean Value Theorem if we
can show that ||Dg,|| < 1/2 for all  in some neighborhood of the origin. Since
fis C", so is g. We know D is the identity, so Dgo = D(z — f(z))o = 0. We
now need a continuity argument.

Because Dy is continuous, we have a continuous map (which we can call Dg)
from U;, the domain of g, to R™ which we identify with the space of linear

maps from R™ to itself. It takes u € U; to Dg,. We have

U; x R™ MRmQ < R™ E—s Rm
where p represents matrix multiplication. The composition is continuous. The
composition takes (z,v) to Dg,(v).

We now use this to estimate ||Dg,|| for values of z near 0. We know Dygy is
the zero map and ||[Dgg|| = 0. That is, the image of the unit ball B in R™ is
the point 0 in R™ under Dgo. By the continuity of pu(Dg x 1) each (z,v) in
({0} x B) C Uy x R™ has a d(,4) so that (y, w) within §(5 ) of (x,v) implies
that Dg,(w) is withing 1/2 of 0. This gives an open cover of ({0} x B) with
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Lebesgue number 7. Now for & within 7 of 0, we have Dg,(B) within 1/2 of 0.
Thus for  within 7 of 0, we have ||Dg,|| < 1/2.
Combining this with our observations above, we have that f is one to one on

the open ball E of radius 1 around 0. |

Before we start work on the proof that f is surjective onto some open set
in R™ that contains 0, we need some preliminaries. As a start, it becomes
important at this point to mention that we are using the Euclidean metric on
R™. That is, the square root of the sum of the squares of the differences of the
coordinates. We use p to denote this metric. The property that we need from
this metric is that straight lines give the shortest distances betweeen points.
We only need this in the form of a strict triangle inequality for non-degenerate
triangles which can be deduced from the law of cosines. It is used in the next

chain of lemmas.

LEMMA 1.5.3. Let ABC be an isosceles triangle in R™ so that p(A, B) equals
p(A,C) and so that B # C. Let D be a point in the interior of p(A,B). Then
p(D,C) > p(D, B).

Proor If false, then the non-degenerate triangle ADC violates the strict

triangle inequality by having p(A, D) + p(D, C) no greater than p(A4, C). |

LEMMA 1.5.4. Let B be a closed, round ball in R™ and let y be a point in
the interior of B that is not the center. Let z be the point on the boundary of B
that is the intersection of a ray from the center of B through y. Then, for any
point T in R™ minus the interior of B, p(z,y) > p(y, 2).

PROOF If z is on the boundary of B, then x, z and the center of B form an
isosceles triangle with y in the interior of one of the equal legs. The result follows

from the previous lemma. If x is not on the boundary of B, then the straight
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line segment from y to x must hit the boundary of B in a point w interior to
the segment and w will be closer to y than z. But now w is farther from y than

z unless w = z. [ |

LeEMMA 1.5.5. Let B be a closed round ball in R™ and let z be a point on
the boundary of B. Let U be an open subset of R™ and let f : R® — R™ be
C! taking a point x to z. Assume that the image of f misses the interior of B.

Then Df, is not a surjection.

PROOF By applying a translation, we may assume that z is the origin. Let
v be the center of B. We will show that the image of D f, does not contain v.
Since Df, is linear, this is equivalent to showing that D f, hits no multiple of
v. Assume that v is in the image. Then for some A € R"™ we have Df,(h) is a

positive multiple of v. For real ¢ > 0, consider

(1.14) If(z + th) — f(z) — Dfo(th)]-

For small values of ¢, the vector D f,(th) is parallel to v but shorter. Thus
it represents a point y in the interior of B that is not the center and, by the
previous lemma, z is the point not in the interior of B that is closest to y. Now
f(z) = z which is the origin, so (1.14) reduces to ||f(z + th) — y||. Since the
hypothesis says that f(z + th) is not in the interior of B, we know, from the
previous lemma, that ||y|| < ||f(z + th) — y|| which restates as

IDf2(@R)I| < |If(z+th) = f(z) — Dfa(th)]]-
But for any € > 0, suitably small values of ¢ > 0 make the right side is less than
€||th||. Linearity of Df, gives t||Df,(h)|| < te||h| or [|Dfz(h)]| < €||lh||- Since
this is true for any € > 0, we must have Df;(h) = 0. But now no multiple of
Df,(h) equals v. |
PROOF OF THE INVERSE FUNCTION THEOREM: SURJECTIVITY We assume

that we work in the open ball £ about 0 on which f is one to one. Let B be the
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closed ball about 0 of radius half that of £. We know that f takes 0 to 0 and is
one to one on B. Thus no point of S, the boundary of B, is taken to 0. Since S
is compact, there is a minimum distance § from 0 to f(S). Let B’ be the ball
about 0 of radius §/3. We claim that B’ is in the image of B. Let y be a point
in B’. If y is not in the image of B, then there is a minimum distance v from y
to f(B) and there is a point z in B for which p(y, f(z)) = v. Now p(y,0) < /3
and 0 is in the image of B, so v < §/3. Since ¢ is the minimum distance from
0 to f(.5), the triangle inequality says that the distance from y to any point in
f(S) is at least 26/3. Thus z is not in S and is in the interior of B.

We now have the situation of the previous lemma since f is a C” map from
the interior of B to R™ which hits the boundary of the v ball about y but not
the interior of that ball. Thus by the previous lemma, D f, is not surjective.
In particular, it is not an isomorphism. This occured inside a given ball B, so
if f is not surjective onto some open neighborhood, then it happens arbitrarily
close to 0. Now if Df, is not an isomorphism, then its matrix representation has
determinant 0. Thus if f is not surjective onto some open set, then there are
points x; converging to 0 whose derivatives have determinant 0. But Dfj is an
isomorphism and has non-zero determinant. The determinant is a continuous

function of the entries of a matrix. Since f is C!, we have a contradiction. N

We are not quite done. The statment of the theorem has something to say
about the differentiability of the inverse function and we do not yet even know
if the inverse is continuous. The next arguments finish the proof.

PROOF OF THE INVERSE FUNCTION THEOREM: CONCLUSION We have that
f is a continuous one to one correspondence from some open set U containing 0
to an open set W containing 0. By the argument just above using the continuity
of Df, we can also assume that the neighborhood U has been picked so that

Df, is an isomorphism for all z € U.
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Let z,w be in W and let z,y in U be such that f(z) = z and f(y) = w.
Denote the inverse of f by F. From (1.12) we have
1
Iz —wl = SlIF(z) - F(w)]|
or
[F(z) — F(w)]| < 2|z —wl|

which shows the continuity of F.
To validate the claim in the statement of the Inverse Function Theorem about

the derivative DF, we must look at

(1.15) [|F(w) = F(2) = (Dfe) " (w = 2)|| = lly— =z — (Dfe) "' (F(v) = F ()]
The expression inside the norm in (1.15) is obtained from the expression inside
the norm of (1.16) by applying (D f;)~!. Thus if K = ||[(Df;)™!||, then (1.15)

is no greater than

(1.16)  K[|Dfz(y —2) — f(y) + f(2)| = Klf(y) — f(z) - Dfa(y —2)|.-
Now (1.16) can be kept less than (e/2)||ly — z|| for a given € > 0 by keeping
|ly — z|| suitably small. We want our original (1.15) (which is no greater than

(1.16)) smaller than €||w — z||. But another application of (1.12) gives us

(e/2)lly — x|l < €llf(y) — f(@)]] = ellw — z].

We obtain this by controling ||y — z|| = ||F(w) — F(z)|- We want to do it by
controlling ||w — z||. But by (1.12) again, ||F(w) — F(2)|| < 2||lw — z|| so keeping
lw — 2| half the size required for ||y — z|| = [|F(w) — F(2)|| will do the job.
This shows that F' is differentiable and that its derivative is as claimed in the
statement of the theorem.

We now show that F is C". We have DF, = (Dfp(,))'. We can regard
z — DF, as a composition of three functions ¢(Df)F where 1 : R™ — R™ is

the operation of matrix inverse. Cramer’s rule (a formula for matrix inversion
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involving determinants) shows that i is C*. Since f is C?, the function z — Df,

is continuous. Thus
(1.17) DF =i(Df)F

is continuous and F is C'. But now if f is C?, then all the functions on the right
side of (1.17) have continuous derivatives and F is C2. Further, the derivative of
both sides of (1.17) and the chain rule give D?F as a composition involving DF,
Di and D?f. But (1.17) can be used again to replace DF in the composition
with the right side of (1.17) in which only F' and not DF appears. Since ¢ is
infinitely differentiable, the only thing to stop this process is the limit on the
differentiability of f. Inductively, we get that if f is C", then so is F. |

[The proof of surjectivity above can be short circuited significantly by replac-
ing the geometric argument about the derivative at the point of closest approach
to a point in the range by a more algebraic one. The right way to measure to
detect the closest approach is to use the square of the distance. This has the
double advantage that the square of the distance has a simple formula that is
differentiable and that it can be represented by a dot product. It turns out
that formulas involving the dot product are easy to differentiate. In fact, the
dot product is an example of a bilinear map and these are easy to differentiate.
Let f : A x B — C be a bilinear map between vector spaces. That means
that f(a,b1 + b2) = f(a,b1) + f(a,b2), f(a1 + a2,b) = f(a1,b) + f(az,b), and
rf(a,b) = f(ra,b) = f(a,rd). Unfortunately, it also means that f is not linear
unless one of A or B is trivial so we cannot say that Df = f. Consider the
inclusions i, : A — A x B defined by i,(u) = (u,v) and j, : B - A x B
defined by j,(v) = (u,v). Each is a constant plus a linear map. For example
iy(u) = (0,v) + ip(u) and g is linear. Thus D(i,), = %o for all u and v, and

D(jy)y = jo for all u and v. Now the compositions (fi,) and (f7,) are basically
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the restrictions of f to A x {v} and to {u} x B respectively and are also linear
(since f is bilinear) and are their own derivatives.
This observation and the chain rule give
fiv = D(fiv)u
= (Dfi, )0
= (Df(u,v))ios
and
Fiu = D(fju)v
= (D fj,))Jo
= (D f(uw))Jo-
These can be applied to a € A and b € B as appropriate to give
(fiv)(a) = (Df(u,))(io)(a), or
f(a,v) = Df(u,)(a,0),
and
(f3u)(0) = (Df(u0))(Jo)(0), or
f(u,b) = D fy4)(0,b).

Since D f, . is a linear map, we have

Dfuw)(a,b) = f(a,v) + f(u,b).
We can now apply this to dot products. Consider d : R™ x R™ — R where
d(u,v) is the dot product of u and v. This is bilinear so the above applies.
Consider f : X - R™ and g : Y — R™. We have (f-g) = d(f x g). Now
D(f -g) = Dd(Df x Dg). More specifically
D(f - 9)(z.5)(a,b) = (Dd(5(a) g(4))(Dfo X Dgy)(a;b)
= Dd4(z),9(»)) (P f2(a), Dgy (b)

= f(z) - Dgy(b) + 9(y) - Dfz(a
This is often referred to as a product formula.

~—

Going back to the proof of surjectivity, it is now possible to use this to show
that if # has f(z) the closest point to y, then all vectors in the image of D f,

are perpendicular to the vector from f(z) to y.]
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There are three standard consequences of the Inverse Function Theorem: the
Immersion Theorem, the Submersion Theorem and the Implicit Function Theo-
rem. Their proofs from the Inverse Function Theorem are not long. Further, it
is actually a disadvantage to have to state them separately for Euclidean spaces
before stating them for differentiable manifolds. Thus we will put off these three

theorems until we define differentiable manifolds.



CHAPTER 2

Differentiable Manifolds

2.1. Definition

A differentiable manifold M of class C" and dimension n (or a C" n-manifold),
with n > 1, will be a separable metric space together with a set A (called an

atlas

~—

of homeomorphisms (called charts) that satisfy the following properties.

Each € in A has domain an open set in M and image an open set in R".

The domains of the elements of A form an open cover of M.

w Mo

For each pair (6, @) of elements in A with domains U and V respectively,

the map
7 0UNV) = p(UNYV)

is differentiable of class C".
4. The set A is maximal with respect to the first three properties.
We say that A gives M a C" differential structure. The definition needs some
discussion.

If one ignores Property 3, then one has a definition of a manifold. The
words “separable metric” are always thrown in to avoid certain examples that
no one wants to call manifolds. The property that every point must have a
neighborhood that is homeomorphic to an open subset of some Euclidean space
easily implies that each point has a neighborhood that is homeomorphic to all
of some Euclidean space. This is often referred to as “locally Euclidean.” Thus
a manifold is a separable, metric, locally Euclidean space. A locally Euclidean

33
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space that is not separable is the “long line.” Locally Euclidean spaces that are
not Hausdorff are easy to construct. (For example, this can be done by adding
an extra point to the real line and putting in the right set of neighborhoods for
the new point.) These examples are certainly not metric.

It turns out that Hausdorff is the main obstruction to being nice. Once
a locally Euclidean, Hausdorff space is assumed, then there is a long list of
properties that turn out to be equivalent. This list includes: (a) metrisable,
(b) paracompact, (c) Lindeldf, (d) second countable and (e) sigma compact.
However, the list does not include separable which is a consequence of (a)—(e)
for locally Euclidean, Hausdorff spaces, but which does not imply (a)-(e).

We will see later, that paracompact is an extremely relevant property. So
“paracompact, Hausdorff” might be a good pair of words to use with locally
Euclidean if the properties that are useful are to be emphasized. Many texts
include “Hausdorff” in the definition of “paracompact.” Thus in theory, “para-
compact and locally Euclidean” is enough to define a manifold. However, it is
not good to rely on defintions that might not be assumed as standard.

Metrisable is equivalent to paracompact for locally Euclidean, Hausdorff spaces,
so “metric, Hausdorff” might also be a good pair from the point of view of use-
ful properties. Since metric implies Hausdorff (no assumed definitions needed
here), this is also redundant and metric and locally Euclidean is enough. This
makes the pair of properties “separable, metric” an odd choice to go with locally
Euclidean. “Separable, metric” is used since each one of the pair is used to rule
out a specific example.

All of that being said, we point out that proving that a space is a manifold
does not always come down to proving the defining properties directly. Proving
metrisability directly, or proving paracompact directly is not easy. The Urysohn

metrisation theorem says that a regular (73) space that is second countable is
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metrisable. One can show that locally Euclidean and Hausdorff imply regular.
From the point of view of easily provable properties that imply that a space is
a manifold, the pair of properties “Hausdorff, second countable” could be used
with locally Euclidean. In spite of this, few say it that way. (There is at least
one text that does.) The pair “separable, metric” is there by way of popularity.

We now look at the property that makes a manifold differentiable. Property
3 holds for all pairs of charts. Since (¢, ) is as valid a pair as (6, ¢), it follows
that

06 p(UNV) = 6UNV)

must also be differentiable of class C”. The functions ¢! and ¢f~! are called
coordinate change functions or sometimes overlap maps. Property 3 demands
that all overlap maps are C". All overlap maps are homeomorphisms from their
domains to their images.

Since each 0 € A is a homeomorphism, the open subsets of its domain are
known once 6 is understood. Also, since the domains of the elements of A form
an open cover of M, the topologies on the domains of elements of A determine
the topology of M. Thus the topology of M is fixed once the elements of A are
understood. We will exploit this later in the following fashion. If M is given as
only a set and not as a topological space, and a set of charts A is given whose
domains cover M and whose overlap maps are at least continuous, then the

collection of sets
{67*(U) | 6 € A, U open in image 0}

is a basis for a topology on M.

We take the point of view that part of the data of a function is its domain.
Thus it is superfluous to specify the domain of a function. However, it is some-
times very useful to have notation for the domain of a function introduced simul-

taneously with the notation for a function. Thus we will often (and many authors
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always) give a chart as an ordered pair (¢,U) where ¢ is the homeomorphism
and U is its domain.

Property 4 raises the question of how much information is needed to specify
an atlas, and even whether an atlas can be completely specified in the first place.
Also, the entire definition needs motivation. We will deal with the motiviation
before dealing with Property 4.

Let f: M — N be a function between C™ manifolds. The dimensions are
not important, but we will assume that M and N have dimensions m and n,
respectively. Let = be in M and let (61,U;) and (02,Uz) be two charts in the
atlas on M whose domains contain z. Let (¢1, V1) and (¢2, V2) be two charts in
the atlas on N whose domains contain f(z). An easy combination of the chain

rule and Property 3 shows that if

$1f07" 2 01(Ur) = 61(V1)
is C" at 61(z), then so is

$2f85 " : 02(Uz) — ¢a(Va).

Thus Property 3 makes the following well defined. We say that an f as given
above is differentiable of class C" at z if, for some chart (6,U) on M with z € U
and some chart (¢, V) on N with f(z) € V, we have that ¢f0~! is differentiable
of class C™ at 6(z). We now declare that f is C" (or differentiable of class C")
if it is C™ at every z € M.

The compositions of the form ¢ f§~! are very important. The homeomorphism
0 associates a unique m-tuple of real coordinates to each point in U and the
homeomorphim ¢ associates a unique n-tuple of real coordinates to each point
in V. The composition ¢f0~! replaces f in a neighborhood of = by a function
from the coordinate system given by 6 to U to the coordinate system given by ¢

to V. We say that the composition ¢f0~! is an expression (or representation)
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of f near (or about) = in local coordinates. Associated to this expression of f in

local coordinates is the diagram

v—-~ v

(21) o| |+

o) —— (1)
which commutes by definition. As trivial as this is, it is useful to keep in mind
when derivatives are discussed later.

Note that there are many expressions in local coordinates for a given f and
z. In particular, even the identity map from a manifold M to itself has many
expressions in local coordinates. If two charts § and ¢ have z in their domains,
then each of ¢! and ¢! is an expression of f in local coordinates near z.
Note that these are just overlap maps. Thus expressions in local coordinates for
identity maps are just overlap maps. Any two expression of a given f at one x
in local coordinates can be gotten from one another by composing on the right
and left by overlap maps.

This leaves Property 4. Let us call a set A of homeomorphisms satisfying
Properties 1, 2 and 3 a partial atlas on M. If p is a homeomorphism from some
open set W in M to some open subset in R™, then we say that p is compatible with
A if AU{p} is also a partial atlas on M. The following are easy consequences of
the chain rule. (1) If A; C A, are two partial atlases on M, then p is compatible
with A, if and only if it is compatible with A,. (2) If A; and As are two atlases
containing a partial atlas in common, then they are equal. (3) Every partial
atlas A is contained in a unique atlas, and this atlas consists of all charts that
are compatible with A.

The last observation makes Property 4 seem superfluous. However, it is ex-
tremently convenient, and allows the elimination of much verbiage in arguments.

We give an example of this.
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Let M be a C" n-manifold. Let  be a point in M. Let (6, U) be a chart with
x € U. There is a subset W of U that maps to a round ball V' of radius € > 0
centered at f(x) in R™. There is a C* homeomorphism from V to to R™ that
takes 6(z) to 0. This can be done by a translation and a combination of tangent
functions. Now a restriction of 8 to W composed with this homeomorphism
must also be in the atlas on M by Property 4. Thus for any x € M we can
assume a chart that takes z to 0 and whose image is all of R"™.

The unique atlas that contains a partial atlas can be referred to as the atlas
generated by (or determined by) the partial atlas. If two partial atlases deter-
mine the same atlas, we can think of them as equivalent. Two partial atlases
are equivalent if and only if every chart in one is compatible with the other and
vice versa. This is equivlent to asking that the union of the two partial atlases
be a partial atlas.

The chain rule gives that compositions of C" maps between C” manifolds
are C". Further, the identity map from a C" manifold to itself is C". (In that
last sentence domain and range not only have the same underlying set, but the
same differentiable structure. An example later in this section shows why that
point is important.) Thus for each r > 1 there is a category whose objects are
C™ manifolds and whose morphisms are C" maps. An isomorphism in such a
category is called a diffeornorphism. Note that a diffeomorphism is not just a C”
map that is invertible as a function. The inverse of a diffeomorphism must also
be C". An example relevant to this point will be given in the next paragraph.

We give some standard examples of differentiable manifolds. Let R™ have
a partial atlas consisting of the identity map from R"™ to itself. The C* atlas
determined by this partial atlas gives R™ a differential structure that we can refer
to as the usual C™ structure on R™. If R = R! is given the usual structure,
then z — z is a C* diffeomorphism but z + 23 is a C* homeomorphism but

not even a C! diffeomorphism.
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Let S™~! be the set of points in R™ for which the squares of the coordinates
sum to one. There are 2n open hemispheres S7; ' in S”~! where S_’f_i_l consists
of all points in S™~! with strictly positive i-th coordinate, and Sfi_l consists of
all points in S"~! with strictly negative i-th coordinate. There is an obvious
projection from any Sizl to the open unit disk in R®~!. This projection is a
homeomorphism and it is not hard to show that this gives a C'°° partial atlas
on S"~ 1. We will refer to the resulting structure as the usual C™ structure on
Sn-t,

Let us now give a less standard example. Let M = R with the usual C*
structure on it determined by «, the identity on M = R. Let N = R and let
the only element of a partial atlas on IV be the function 5 : R — R given by

ﬂ(w):{x z<0

2r ©>0.
Note that o and 8 cannot be in the same atlas.

Now « is a O function from M to M and from N to N, but is not C! from
M to N nor from N to M. The function § is a C*° function from N to M, but
not from M to N. The function 87! is a C* function from M to N but not
from N to M.

Now that we have differential structures and differentiable maps between
them, we should start differentiating these differentiable maps. However, this
takes some doing. The following example shows why.

If we let v : R — R be defined by v(z) = 2z, then we have « in the unique
atlas on M that contains the partial atlas {a}. The presence of v makes it
difficult to say what the derivative of a particular differentiable function is. The

L aay™!, yao™! and yay~! are all expressions of a : M —

compositions aaa™
M in local coordinates. However, they do not all have the same derivatives at a
given point (say 0). We got a consistent criterion for saying whether a function

was differentiable by making suitable restrictions (Property 3) on the charts of
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an atlas. We might get consistent values for the calculation of the derivative if
we made more restrictions. It turns out that restrictions that are strong enough
to work make it harder to build examples of manifolds. Thus it seems that even
though we know what functions are differentiable, we don’t know what their
derivatives are. It turns out that there is a way to build the derivative of a
function with the structures that we have defined. However, that takes another

section.

2.2. Tangent Vectors and Derivatives

The problems raised at the end of the last section come from the fact that we
are discussing a topic in topology and not a topic in geometry. The driving fact
behind the examples given is that we have no absolute measure of length. Since
a derivative is supposed to measure the stretch involved in going from domain
to range, we find ourselves without the machinery to measure that stretch.

However, even though we cannot say much about one function, we can com-
pare two functions. It turns out that we can say when two functions have the
same local stretch coefficients at a point (have the same derivatives) without
saying exactly what those coefficients are. Even further, we can say that the
stretch of one function is twice that of the other. Even more importantly, we
can say that the stretch of one function is zero times that of another. The last
implies that we can tell when a derivative is zero or not, even while being unable
to say what any of the non-zero derivates are.

The negatives of the last paragraph are exaggerated. The method of compar-
ing derivatives leads to a very powerful machine that arranges derivatives into
a linear space. We now give the details.

We will be comparing all functions against classes of reference functions. The
reference functions will be functions with a one-dimensional domain. This will

pick out one dimensional information about our manifold. The functions will be
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divided into classes since functions with the same derivative at a point will not
be distinguishable in what we do.

We start with the real line R with its usual C*° structure. Let M be a C”
m-manifold. Let f and g be two C" maps from R to M. We can write f ~ g if
f(0) = g(0) and for some chart (6,U) with f(0) € U, we have D(0f)o = D(09)o-
The chain rule implies that the second test is independent of the choice of chart.
Since only equalities are used in the definition, the relation ~ is clearly an
equivalence relation. We let [f] denote the equivalence class of f under this
equivalence relation.

Note that D(6f)o is an element of RY* = Hom(R,R™), the vector space
of linear maps from R to R™. For each r # 0 in R, there is an evaluation
isomorphism e, : R}* — R™ given by e,(A) = A(r). It is convenient to let r =1
and look at D(6f)o(1) € R™. By the remarks at the end of Section 1.3, this is
just (6£)'(0). Since e; is an isomorphism, we can define the equivalence relation
~ by saying f ~ g if and only if f(0) = g(0) and D(6f)e(1) = D(0g)o(1).

We use TU to denote the set of equivalence classes under ~. We call the
elements of TU tangent vectors or tangent vectors of U or vectors tangent to U.
It is not convenient to carry around the brackets [ ] at all times, so we will use
single letters for tangent vectors. This will result in abuse of notation when we
write v(0) and D(0v)o(1) for some v € TU. However, the abused notation does
not result in ambiguity of these values because of the definition of the equivalence
relation.

For z € U, we use T'M,, to denote those tangent vectors v € TU for which
v(0) = z. Note that the set T'M, is independent of the choice of chart that
contains z in its domain. We call the elements of T M, the tangent vectors to
M at x. We let TM denote the union of all the T M, as x ranges over M. We
would like to understand more of the structure of TM. That will be done in the

next section. Here we work to gain an understanding of T M, and TU.
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Since the equivalence relation ~ is detected by looking at values, it is easy
to relate the set of equivalence classes to the set of values. For v € TU, let
fv = ((6v)(0), D(6v)o(1)). We use (fv)(0) instead of v(0) since it is useful to
have our values in standard spaces such as R™. If we define (v) = (v)(0) and
(v) = D(6v)o(1), then we have A(v) = (6(v),H(v)). That is, § and § pick out
the two values that define ~. In particular, TM, = 6~1(6(z)).

From the definitions, we have that @ is a one-to-one correspondence onto its
image. However, the image is in the set (U) x R™. We claim that § is a one-
to-one correspondence between TU and all of (U) x R™. This will follow when
we show that for any z € U, the map 6:TM, > R™is a surjection.

Given u € R™, let a,, : R — R™ be defined by a,(t) = 6(z) + tu and form
gu = 07 'ay,. Now g,(0) = z and 0[g,] = D(0gu)o(1) = D(au)o(1) = u. This
makes 6 a surjection and thus also 8 is a surjection.

We can use 6 to induce a vector space structure on T'M, by setting

u+v=0"0(x) +6(v)), and
rv=0"1(r(v)).
However the bijection 6 from TM, to R™ depends heavily on 6. Thus if a chart
¢ with z in its domain is used, we might end up with a different structure. It
is easy to show that we end up with the same structure if J)é_l :R™ - R™
is a linear map. Given u € R™, we have already noted, that é[gu] = u where
gu = 0"y and oy (t) = O(z) + tu. Thus [g,] = §~'(u) and
$0~" (u) = d(gu)
= D(¢gu)o(1)

D(¢0™ aru)o(1)

D(¢0™)o(a) D(wu)o(1)

D($0™)g(a) ()
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and (,2363*1 is just the derivative of the overlap map ¢f~'. However, the derivative
is linear.

Thus we can declare T M, to be a vector space. Every chart § with z in its
domain gives an isomorphism § : TM, — R™ given by 8(v) = D(6v)o(1).

We now let NV be a C" n-manifold, and let f : M — N be a C" map. For v €
TM, with v = [o] and o : R — M taking 0 to z, we let f(v) = [fa] € TNy (z)-
Well definedness is covered in the next paragraph. Letting = run over all of M
and v over all of TM gives a map from TM to TN. For any z € M, we will use
fz. to denote the restriction of f to TM,.

The well definedness check will also give the tool needed to show that fw :
TM, — TNy, is a homomorphism. Let 6 and ¢ be charts for M and N,
respectively, with  in domain 6 and f(z) in domain ¢. If 8 € [a], then
D(6)o(1) = D(65)o(1) and

D(¢fa)o(1) = D(¢f67")D(fa)o(1)
(2.3) — D(¢£9~")D(98)o(1)
= D(¢fB)o(1)
which implies that [fa] = [f3]. We now have a well defined function f : TM, —
TNy (a)-
Note the use of the expression ¢f6~! of f in local coordinates. In fact, the

first equality in (2.3) is a verification that

TM, ! TNy(a)
(2.4) él l s
D(¢f0™ oo
R™ R

commutes. Since the vertical arrows are isomorphisms and the bottom arrow is
a homomorphism, we get that f is a “conjugate” of the linear D(¢f0~!) and
is a homomorphism. Diagram (2.4) is a companion to Diagram (2.1). The two

will be combined later.
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In the rather special case where M and NN represent open subsets of R™ and

R™, respectively, and 6 and ¢ are just inclusion maps, then (2.4) reduces to

TM, ! TNy (g
|
R™ d R™

where the vertical arrows are just the calculus derivatives of curves evaluated at
0. This makes f hard to distinguish from D f in this case.

In fact, what we are (temporarily) calling f is usually called D f and we will
use that notation for it starting now. Even in the case where M and N are
not open subsets of Euclidean spaces, (2.4) shows that the f = Df above is
intimately tied to derivatives of functions between Euclidean spaces.

The chain rule now resembles the chain rule for derivatives of functions be-
tween Euclidean spaces. If f: M — N and g : N — @ are C", then we already
know that gf is C". It is a triviality to verify that the chain rule now takes the
usual form D(gf)s = (Dg) ¢(2) D fe-

Now that we have Df : TM — TN for a differentiable f : M — N, we would
like to know more about the structure of TM and T'N. This will be done in the
next section.

The isomorphism f where § is a chart, and Diagrams (2.1) and (2.4) are
quite helpful in understanding some of the structures that we have defined. We
leave as an exercise that if M and N are C" manifolds with atlases A and B,
respectively, then the set of all (6 x ¢,U x V), (6,U) € A and (¢,V) € B,
forms a valid partial C" atlas for M x N. We can ask about the structure of
T(M X N)(g,y) for an (z,y) € M x N.

Let m and n be the dimensions of M and N, respectively. Consider the map
(x) : N - M x N given by (z)(y) = (z,y). Let (6,U) be a chart for M about =
with 8(z) = 0 and §(U) = R™ and (¢, V') be a chart for V about y with ¢(y) =0
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adn ¢(V) = R™. We get a chart (6 X ¢,U x V) for M x N about (z,y) and the

following commutative diagrams from (2.1) and (2.4)

D({z))
N S MxN TN, = T(M X N)(z,)
¢l Jew qil lm
h Dhgy)
R» — SR™xR” R” R™ x R"

where h is the expression of (z) in local coordinates. Our choices have made the
map h the inclusion of R™ into the second factor of R™ x R™. This is linear
and its own derivative. Thus Dhg(,) has the same description and th,(y)qg is
an isomorphism from T'N, to {0} x R™.

Now (m)D((w))y is an isomorphism from T'N, to {0} x R", so m must
restrict to an isomorphism from the image of D((z)), to {0} x R™. The image

of D({z)), is clearly equal to the subspace of T(M x N) ) consisting of those

(zy
v € T(M X N)(z,) With a representative curve with image entirely in {z} x N.
Apologizing in advance, we will denote this subspace by T'(M x N)n(z,y)- Thus
D((zx)), is an isomorphism from T'N,, to T(M X N)n(s,y) and 6’/><\¢ restricts to
an isomorphism from T'(M X N)n(z,y) to {0} x R™.

We can invent parallel notations for the other factors in the products and
without defining things, we have that D({y)), is an isomorphism from 7'M, to
T(M X N)p(a,y) and m restricts to an isomorphism from T'(M X N)a(s,y)
to R™ x {0}.

We have proven the perhaps obvious fact that T(M x N)(, ) is the direct

(z,y
sum of T(M X N)n(qs,y) and T(M x N)ps(z,,) and that these subspaces are the
images of D({z)), and of D({y))s, respectively.

This will be used later when we need a notion of a partial derivative. Let

f:(Mx N)— Q beaC” map with Q of dimension q. We define D, f, ) by

(2.5) Dsfay) = D((£)(2))y = (Df) @) D({2))y-
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If g is an expression of f with respect to (6 X @,U x V) and some chart p with

domain containing z = f(z,y), then we get the diagram

D Dfa,
(2.6) TN, CDv (0 x N g gy —2 Q.
] = Jﬁ
R" Dhyy) R™ x R" Dg(o(=).0(0) R

from (2.4). A similar definition can be made for D f(5,y)-

2.3. The Tangent Space of a Differentiable Manifold

For a C™ m-manifold M, we want TM to be a differentiable manifold as well.
It turns out that T'M is only a C"~! manifold, but we won’t discover that until
after we try to put some structure on it.

For each chart (6,U) of M, we have a one-to-one correspondence 6:TU —
6(U) x R™. Since M is the union of the TU as U varies over the domains of
the charts, we have that the sets TU cover TM. The topology of (U) x R™
induces a topology on TU under the one-to-one correspondence §. Also, each
6(U) x R™ is a subset of R™ x R™ since §(U) C R™. Thus it makes sense to
declare each 6 a chart and see if we get a differentiable structure that way.

Thus given a chart (6,U) we identify TU with (U) x R™ in both structure
and topology. The notation is lacking since another chart may have U as domain.
However, this lack will not be crippling in what follows.

As mentioned in Section 2.1, the declaration that @ is a chart for each chart 6
of M determines a topology on T'M. Since a differentiable manifold must start
as a separable metric space, we should look at the topology that we get first.
However, there is useful information in the overlap maps, so we look at them
first instead.

Let (6,U) and (¢, V) be two charts on M. From the definitions of TU and
TV, we have that (TU)N(TV) =T(UNV). Thus the overlap map that we wish
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to consider is
0 0(UNV)xR™ = $(UNV) x R™.

For an ¢ € UNV and v € TM,, we have 6(v) = (6(v),d(v)) and ¢(v) =
(¢(v), d(v)). Thus the action of 36! is that of ¢§ ! on the first coordinate and
is that of 0~ on the second. However, (¢6)(6(v(0))) = ¢(v(0)) and the action
on the first coordinate is just that of the overlap map ¢~ !. The calculations in
(2.2) show that q@é‘l is just the derivative of the overlap map ¢6~!'. Thus we

have

¢~ (z,y) = ((967")(2), D(¢0™)a(y)) -

To simplify notation, let h = #0~! and write h(z,y) = (h(z), Dh,(y)).

Since M is C" with r > 1, we have that Dh, varies continuously with z
in Hom(R™,R™). This makes h(z,y) vary continuously with  and y. As
mentioned in Section 2.1, the continuity of the overlap maps shows that the
collection of open sets in all the TU with (6,U) a chart of M is a basis for a
topology on T'M. We now look at this topology.

Since M is separable, there is a countable dense subset S of M. For each
x € S we can take a countable dense subset D, of TM,. The union D of the
D, as x ranges over S is countable. Each open set in T'M contains an open set
V in some TU whose projection to U is open and contains some z € S. Now
the intersection of V' with T M,, is open in T'M,, and contains some point in D,,.
Thus T'M is separable.

There are many ways to argue that 7'M is metrizable. We will show that 7'M
is second countable and regular. Then from the Urysohn metrization theorem,
we will have that TM is metrizable.

Separable and metric implies second countable. We do not know that T'M

is metric, but it is locally metric. Each chart (6, TU) induces a metric on TU.
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Since M is second countable, there are countably many charts whose domains
cover M. Each z in our countable dense set D has a countable neighborhood
base in each T'U for which z € U where U is in our collection of countably many
domains that cover M. We will show that the union of all these neighborhoods
bases is a countable basis for the topology on TM. Note that one x € D may
be used many times as a contributor of neighborhood bases. It will contribute
one neighborhood base for each U in our collection that contains z.

For an open V in TM and y € V, there is a U in our countable collection of
chart domains with y € U. With the metric on TU induced by the chart on U,
it is now a standard exercise to show that there is a member of our candidate
basis that contains y and is contained in V. This shows that we have a true
basis.

To show regular, we need to separate a point y from a closed set C. Equiv-
alently, we need to find an open V about y whose closure misses C. There is a
chart (6,U) so that y is in TU. There is an open V in TU with y € V and with
the closure of V in TU disjoint from C. Since T'U is the union of the T'M, with
x € U, we have a projection of V on M that takes v € TU to v(0) € M. Since
M is metric, we can also assume that V is so small that its projection in M has
its closure in U.

Now assume that V has a limit point p in T'M outside of TU. The point p lies
in some TW for some chart (¢, W). Now some sequence v; in VNTW converges
to p. The structure of TW is gotten from ¢ : TW — ¢(W) x R™. Looking at
the first coordinates, this means that the sequence ¢(v;) converges to ¢(p). Thus
the ¢(v;(0)) converge to ¢(p(0)). Since the charts on M determine the topology
on M, we have that the v;(0) in the projection of V on M converge to p(0) in
M. But since p is outside fo TU, we have p(0) outside of U, a contradiction.
Thus the closure of V in T M is the closure of V in TU and T M is regular.
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The last thing we wish to show is that the overlap maps are of class C" 1.
‘We noted above that the overlap maps take the form
h:U xR™—= V' xR™
where U’ and V' are open subsets of R™ (they are the images of charts of
M), and h(z,y) = (h(z), Dhy(y)). We assume that h is C”, so Dh : U’ —
hom(R™,R™) is C" . To simplify notation, let HR™ denote Hom(R™, R™).
To break h into simpler pieces, we let i be the identity on U’, we let j be the
identity on R™ and let E be the evaluation map
E:HR™ xR™ —-R™
given by E(a,u) = a(u).
Both 7 and j are C*°. We wish to look at the bilinear E. From our calculations
at the end of Section 1.5, we have
DE: HR™ x R™ — Hom(HR™ x R™,R™)
given by

DE(4,u)(B,v) = a(v) + B(u).
A straightforward check using this formula shows that DF is a linear map (which
is a different claim than the true fact that the values of DE are linear maps).
Thus DE is C*° and so is E.
Now Lemma 1.3.1 implies that
(i,Dh) : U’ - U’ x HR™, and,
((5,Dh) x j): U' xR™ - U’ x HR™ x R™
are both C™! and
(hx E):U' x HR™ x R™ - V' x R™
is C". Thus we get that

h = ((i, Dh) x j) o (h x E)
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is C" ! as desired. The above argument about the differentiability of h follows
the advice of Erik Pedersen to represent the map being analyzed as the longest
possible combination of simpler maps.

The collection of charts that we have introduced now form a partial atlas for
TM and give TM the structure of a C"™~! 2m-manifold.

It now remains to be shown that if f : M — N is a C" map between C" man-
ifolds, then Df : TM — TN is a C"~! map. The argument for this resembles
the argument above, and is left as an exercise.

The question of what T'M is as a topological space when M is given is not a

trivial one. We introduce some relevant terminology in the next section.

2.4. The Tangent Bundle

The tangent space of a differentiable manifold is an example of a vector bun-
dle. We start with a definition.

An n-dimensional vector bundle is a triple (E, 7, B) where E and B are topo-
logical spaces, where m : E — B is a surjective map and every 7~ !(b) has the
structure of an n-dimensional vector space. Further every b € B has a neigh-
borhood U in B and a homeomorphism hy : 7 '(U) — U x R" so that for
every x € U, the restriction of hy to 7~1(z) is a vector space isomorphism to
{z} x R™

We refer to E as the total space of the bundle, we refer to B as the base space
of the bundle, we refer to 7 as a projection, and we refer to each 7~ 1(b) as a fiber
of the bundle. The bundle is usually said to be over the base. Note that the
dimension mentioned in the term defined refers to the dimension of the fibers
and not to the dimension of either the base or the total space.

Sufficient information is given in the previous section to show that if M is a
C" n-manifold, » > 1, then (TM,n, M) is a vector bundle where 7 takes each
v € TM to v(0). Because of this TM is usually called the tangent bundle of M.
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Vector bundles are very easy to find. If B is any space and V is a finite dimen-
sional vector space, then (B x V,m, B) is a vector bundle where  is projection
onto the first factor. A bundle such as this is called a trivial vector bundle.

Vector bundles can be put into a category where the objects are vector bun-
dles. Given two vector bundles, (E,w, B) and (F,p, X), a morphism (called a
homomorphism) from the firstbundle to the second is a commutative diagram

ELF

B SELEN X
so that for every b € B the restriction of f; to 7 !(b) is a linear map to
P (f2(b))

Enough information is given in the previous section to show thatif f : M — N
is a differentiable map between differentiable manifolds, then Df : TM — TN
is a bundle homomorphism. The previous two sections combine to show that we
now have a functor from the category of C" manifolds and C” maps to vector
bundles where an object M in the first category is taken to 7'M in the second,
and a morphism f : M — N in the first category is taken to Df : TM — TN
in the second.

The usual notion of isomorphism comes in at this point. We have that diffeo-
morphic manifolds have isomorphic tangent bundles. Any vector bundle isomor-
phic to a trivial vector bundle is also called a trivial vector bundle. An obvious
question is whether the tangent bundle of a differentiable manifold is trivial. It
is not obvious that the answer is often no. It is quite immediate that if M is an
open subset of some R™ with partial atlas including the inclusion from M to
R™, then TM is a trivial vector bundle over M. We will see in Milnor’s book
that T'S? is not trivial.

If (E,w, B) is a vector bundle, then a section for the bundle is a map o : B —

E so that mo(z) = « for all z € B. The section is said to be non-zero if o(z) # 0
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for all x € B. A trivial bundle B x V always has a non-zero section. Take your
favorite non-zero v € V and let o(z) = v for all z € B. Thus one way to show
that a bundle is not trivial is to show that there are no non-zero sections.

The open Mébius band is a 1-dimensional vector bundle over S'. It is not
trivial. These statements are left as exercises.

Vector bundles admit various operations that derive from operations on vector
spaces. Direct sums, quotients, various products and other constructions on
vector spaces can be adapted to the vector bundle setting. We will probably see

some of these in action later in the course.

2.5. Inverse Function Theorem and Consequences

In this section we take the basic infinitesimal to local theorem—the Inverse
Function Theorem for Euclidean spaces—and deduce several theorems of the
same flavor for manifolds.

We start with the following,.

THEOREM 2.5.1 (Inverse Function Theorem on Manifolds). Assume that f :
M — N is a C" function, 1 < r < oo, between C" manifolds, and assume that
Df, is an isomorphism for some x € M. Then there is an open set U about x

so that V = f(U) is open in N, so that f|u is a homeomorphism onto V and so
that (flv)~tis C™ and if (flv) ' (2) =z, then D((flv)™"), = (Dfs) ™.

PROOF. Let m be the dimension of M. Since Df, is an isomorphism, the
dimensions of T'M, and T'M, are the same and m is the dimension of N as well.
There are charts (6,U) and (¢, V') expressing f in local coordinates about z with
the following commutative diagrams.

v—1 .y ™, — 2 7N,

(2.7) { J¢ @J F
Y D(¢f971)8(m)

O(U) ———— ¢(V) R™ ———— R™
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The diagrams in (2.7) show show that the hypotheses and thus the conclusions
of Theorem 1.5.1 hold, and that the conclusion that we are trying to prove must

hold. O

We will often use a single letter for an expression of a function in local coor-

dinates in order to decrease complexity of notation.

COROLLARY 2.5.1.1. Let f, M, N and x be as in the statement above. Then
there is an expression h of f about x in local coordinates so that h is the identity

function from a Fuclidean space to itself.

PrROOF. We know that M and N have a common dimension that we take to
be m. Assume the conclusion of the Inverse Function Theorem with the notation
as in the statement. We can find a coordinate chart (6, U;) with U; C U in which
6 is a homeomorphism onto R™ and so that f(U;) is contained in the domain of
a chart (¢, V1) for N. Thus, the expression h; of f in these coordinates takes R™
to an open subset of R™. We know that h; and (h;)~! are C". Let W = f(U;)
and let ¢ = (h1)~}(élw). Now ({, W) is is a valid coordinate chart for N and
the expression of f using coordinates (6, U;) and (¢, W) is the identity from R™
to itself. O

In each of the following arguments, we will use the phrase “by suitable choice

of local coordinates we can assume ...”

with the dots replaced by what we can
assume. Rather than make this rigorous, we point to paragraphs 2-5 in the proof
of the injectivity part of the Inverse Function Theorem for Euclidean spaces in
Section 1.5 as an example of what it takes to make the phrase rigorous. We also
will refer to expressions of an f in local coordinates that are “centered” about a
point z in the domain. This will refer to a choice of charts that take both z and
f(z) to 0 in appropriate Euclidean spaces. We have noted that this can always

be done. This use of the word “centered” is probably not all that standard.

We now give three standard consequences of the Inverse Function Theorem.
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THEOREM 2.5.2 (Immersion Theorem). Let f: M — N be a C" map, r > 1,
from an m-manifold to an n-manifold. Let D f, be a monomorphism for some
x € M. Then there is an expression h : R™ — R™ of f in local coordinates

centered about = for which h(z1,...,Zm) = (z1,...,Zm,0,...,0).

PROOF. By suitable choice of local coordinates we assume that f is a func-
tion from an open set U; in R™ into R™ that takes 0 to 0 and which has
Dfy : R™ — R™ act by taking (z1,...,Zm) to (z1,...,2Zm,0,...,0).

Let j : R"™™ — R" act by taking (z1,...,Zn—m) to (0,...,0,2Z1,...,Zn_m)
. We define f : U; x R"™™ — R" by f(u,v) = f(u) + j(v). The domains of
f, f and j do not agree, but we can fix this up by introducing 71 and 7, which

project U; x R™™™ onto its first and second factors respectively. Now we have

Fu,v) = (f o m1)(u,v) + (4 © m2)(u, v).
Each of j, m; and =y is linear and its own derivative. We have
D f(0,0)(a,b) = D(f o m1)(0,0)(a,b) + D(j o 72)(0,0) (@, b)
= Dfo(a) + j(b)
= (a,b)
by our assumptions about D fj.

By the the Inverse Function Theorem, there is an open set Uz in U; x R*™™
containing (0,0) on which f is a C” diffeomorphism onto an open set in R™.
There is a coordinate chart (Us, p) in Uy taking Us to R™ in a way that takes
U NU; to R™ x {(0,...,0)}. (It is easy to preserve the various coordinates.)
Now the last few lines in the proof of the corollary to the Inverse Function

Theorem can be duplicated. O

THEOREM 2.5.3 (Submersion Theorem). Let f: M — N be a C" map, r > 1,
from an m-manifold to an n-manifold. Let Df, be an epimorphism for some
x € M. Then there is an expression h : R™ — R™ of f in local coordinates

centered about x for which h(z1,...,Tn, Tnt1s--->Tm) = (T1,-..,Tn).
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PROOF. Again, suitable choice of local coordinates lets us to assume that f
is a function from an open set U; in R™ into R"™ that takes 0 to 0 and which
has Dfy : R™ — R™ act by taking (z1,...,Zn,Tnt1,---,Tm) t0 (T1,.-.,Zy).

Let m: R™ — R™ ™ take (Z1,...,Tn, Tntly---,ZTm) t0 (Tpt1,---,Tm). De-
fine f : Uy — R™ x R™™™ by setting f(u) = (f(u),n(u)). Since 7 is linear, we

have

Dfo(a) = (Dfo(a),m(a)) = a
by our assumption on D f;. The rest of the argument proceeds as in the proof

of the Immersion Theorem. O

A function is called an immersion (submersion) at an z in its domain, if the
Immersion (Submersion) Theorem applies to the function at . A function is
called an immersion (submersion) if it is an immersion (submersion) at each
point in its domain.

This leads to more terminology. A point in the domain of a function is a
reqular point of the function if the function is a submersion there. A point in
the domain of a function is a critical point of the function if it is not a regular
point of the function. A point in the range of a function is a critical value of
the function if it is the image of a dritical point of the function. A point in the
range of a function is a regular value of the function if it is not a critical value
of the function.

This chain of positive and negative definitions leads to conclusions that are
worth getting used to. A point that is in the range but not the image of a
function must be a regular value of the function since it cannot be a critical
value. If f : M — N is a function from an m-manifold to an n-manifold with
m < n, then all points in M are critical points and all points in the image of f
are critical values since it is impossible for f to be a submersion anywhere. If a

function is a submersion, then all points in the domain are regular points and
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all points in the range (whether in the image or not) are regular values. Lastly,
the image of a regular point might still be a critical value if it is also the image
of a critical point. That is, a regular value has the property that no point in
its preimage is a critical point. Later we will see the important theorem that
regular values greatly outnumber the critical values.

The “subimmersion theorem” fails. The function z — z? from R to R has
derivative at 0 that is neither one to one nor onto. There is also no expression of
the function in local coordinates centered at 0 that is linear. It is interesting to
see how far a combined proof of the Immersion and Submersion Theorems can
be pushed before it fails.

If k is a constant and x is a vector of several components, then under some
conditions a formula such as f(z) = k can define some of the coordinates as
functions of some of the others. The Implicit Function Theorem says when and
to what extent. The standard example of 22 +4? = 1 shows that the hypotheses
and conclusions are reasonable.

In the statement of the next theorem, we use the notion of a partial derivative

as defined in (2.5). The proof will refer to the associated diagram (2.6).

THEOREM 2.5.4 (Implicit Function Theorem). Let f : U XV — N be a C"
function, r > 1, between manifolds. Assume that Daf, ) is an isomorphism
for some (u,v) and let k = f(u,v). Then there is an open set Uy about u in U,
an open set V1 about v in V and a C" function g : Uy — V1 so that for every
(z,y) € U1 xV, we have f(z,y) =k if and only if y = g(x). Further, if Uz C Uy
is open and connected about u, then any continuous gg : Uy — V with go(u) =v

and satisfying f(z, go(x)) = k for every x € Us must agree with g on Us.

REMARK The function g is the function that is being “implicitly” defined by
the equation f(u,v) = k. It is worth finiding examples that illustrate the need

for the various assumptions in the statement of the theorem.
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PRrROOF. We get the diagram

D({u))y Df uw,v
TV, e (U % U)oy () TN,
| = !
Dh v D u),p(v
R () R™ x R™ 9(6(u),6(v)) R"

where m and n are the dimensions of U and V, respectively, and n must be
the dimension of N since Daf, ) is an isomorphism. By replacing p with the
composition of p with the inverse of the composition of the bottom two arrows,
we can assume that the expression of D; f(,, ,) in local coordinates is the identity
map from R" to itself.

We now replace the original data by the expression in local coordinates and
assume that U and V are open subsets of R™ and R" respectively, that (u,v) =
(0,0), that N is R™, that f(0,0) = 0, and that D;f(,0)(b) is the identity map.
We will now use u and v as arbitrary elements of U and V' and not as references
to items in the statement.

We get information about D f(g ) because for any b € R", we have

Df0,0(0,5) = (Df(0,0))(0)(b) = D((£)(0))o(b) = D2f(0,0)(b) = b

Let f: U x V — R™ x R™ be defined by

fu,v) = (u, f(u,v)) = (7 (v, v), f(u,v))
where 7 : U X V — U is projection. Now
Df(o,o)(aa b) = (m(a,b), D f(0,0)(a,b))

= (a, D f(0,0)(a,0) + Df(0,0)(0, b))

= (a,b+ A(a))
where ) is a linear function depending only on a. Now Df_(o,o) (a,b—XA(a)) = (a,b)
and D f(o,o) is invertible. (We do not even need the finite dimensionality of the
domain and range since D f(o,)(a,b) = (0,0) easily implies that (a,b) = (0,0).)

So f is a C" diffeomorphism from some open set about (0,0) to an open set
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about 0. Thus on some open set of the form U; x Vi, we have a C" inverse h of
f from an open set W about (0,0) € R™ x R™ onto U; x V;. Every (z,y) € W

has

Mz, y) = (h1(z,y), ha(z, y))
where both h; and hy are C". Now
(z,y) = f(h(z,y))
= f(hi(z,y), ha(z,y))
= (h

1(2,y), f(ha(x, y), h2(, 1)),
so hi(z,y) = z for all (z,y) in W and (z,y) = (z, f(z, ha(z,y))). This gives

that f(z, ha(z,y)) = 0 if and only if y = 0. Let g(z) = ho(z,0). Now f(z,2) =0
if and only if z = ha(z,0) = g(z). This holds for all (z,z) € Uy x V; since every
such (z, 2) is of the form (z, ha(z,y)) for an (z,y) € W.

Now assume Us is a connected, open subset of U; about 0 and assume there is
a continuous function go : Uz — V for which has go(0) = 0 and f(z,go(z)) =0
for every x € Us. Consider the subset A of Uy on which gg = g. We know 0 € A.
Let z¢ be in A. By the continuity of gg, there is an open Uz C Uy about xg so
that go(Us) C V4. But for z € Us, we have (z,go(z)) € Us x V1 C Uy x V5 and
here f(z,go(z)) = 0 if and only if go(z) = g(z). Thus A is open in U;. Now A
is the inverse image of 0 under the continuous g — go. Thus A is also closed in

Us. Since Us is connected, A is all of Us. O

2.6. Submanifolds

Let A be a subset of a C" m-manifold M. We say that A is a C" submanifold
of M of dimension k if each point a of A lies in the domain of a chart (0,U) of
M so that if R* C R™ is the set of points in R™ whose last m — k coordinates

are 0, then

UNnA=6"1RF).
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The chart (6,U) is called a submanifold chart for A in M. Note that all the
charts (0|yna,U N A) where (6,U) is a submanifold chart for A in M define a
C" differentiable structure for A.

The inclusion of the submanifold A into M is an immersion. That is because
a non-zero tangent vector in A cannot become zero in M since a chart to test
the tangent vector in A is the restriction of a chart that tests it in M. The
inclusion is also more than that. A basic open set in A (say the domain of a
chart) is also open in A in the subspace topology that A gets from M. Thus the
inclusion map is open and is a homeomorphism onto A. That this obvious fact
is worth pointing out is seen from the next two examples example. We give the
more complicated one first.

Let S! x S! be covered by R? in the usual way so that two points in R2
project to the same point in S! x S! if and only if their coordinates differ by
integers. Let L be a straight line in R? of irrational slope. It is impossible for two
points on L to have coordinates that differ by integers, so the covering projection
restricted to L is one to one. It is also an immersion. (Covering projections are
immersions under the reasonable assumption that the charts of the base space
and the charts of the covering space are chosen compatibly.) However it is not
a homeomorphism onto its image in S! x S! and its image is not a submanifold
of §! x S'. To argue that these statements are true, we argue that the image is

dense in S! x S1. First we need a lemma.

LEMMA 2.6.1. Let r be a positive irrational number, let z and € > 0 be real,
and let k be a positive integer. Then there are integers m and n with [m| > k so

that mr — n is within € of x.

PRrROOF. Consider the half open interval [0,1) as representative of the real

numbers modulo 1. Then the function from kZ to [0,1) taking km to kmr
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mod 1 is one to one since kmir — kmgyr € Z implies that r is rational. Thus
there are infinitely many different numbers in [0,1) of the form kmr — kn for
integers km and kn. There must be two (kmyr — kn1) < (kmar — kng) in [0,1)
that differ by less than e. Let § = k(mg — my)r — k(ng — n1). Now 0 < § and
¢ is smaller than both 1 and €. If my = m;, then ¢ is an integer and cannot be
greater than 0 and less than 1. Now the integral multiples of § divide the real
line into intervals of length § so z is within ¢ (which is less than €) of at least two
consecutive integral multiples of §. We can thus choose one integral multiple of
6 that is not 0 and is within € of z. We now have that z is within € of a number
of the form kpr — kq where p and ¢ are integers and p is not 0. This completes

the lemma. O

Now back to the line L in R? of irrational slope r. Let its equation be
y = rz+c. The distance from a point (a, b) in R? to L is no more than b— (ra+c)
since this is the vertical distance from L to (a,b). If m and n are integers, then
(a+m,b+n) projects to the same point in S x S! as (a,b) does. The distance
from such a point to L is less than b+n— (ra+rm+c) = (b—ra—c)—(rm—n).
From the lemma above, we know that we can make (rm—n) as close to (b—ra—c)
as we like and we can do it with arbitrarily large values of |m|. It is now easy
to create a sequence of points in L that is discrete in L but whose images under
projection to S! x S converge to the image of (a,b). This allows us to make two
conclusions. The first is that the image of L is dense in ' x S!. The second is
that the projection restricted to L does not carry L homeomorphically onto its
image. For let = be a point of L and let z; be a sequence of discrete points in L
whose image converges in S' x S! to the image of z. The inverse map from the
image of L to L cannot be continuous since it will not preserve the limit of the
convergent sequence. The problem with the projection restricted to L is that

while it is a one to one continuous map, it is not open.
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To argue that the image of L is not a submanifold of S! x S! we note that
any open set around a point in the image has its intersection with the image
dense in the open set. But the definition of submanifold would demand a chart
(0,U) in which the intersection of the image of L with U would definitely not
be dense in U.

We have constructed an example of an injective immersion that is not a
homeomorphism onto its image and whose image is not a submanifold. A much
easier example is an injective immersion of the open unit interval into the open
unit disk in R? so that its image is homeomorphic to the numeral “6.” These
examples lead to a definition and a lemma. We say that an immersion that is a

homeomorphism onto its image is an embedding.

LEMMA 2.6.2. Let N be a C" manifold, r > 1. A subset A of N is a C”
submanifold if and only if A is the image of a C" embedding.

PROOF. The forward direction has been argued above. We consider the
reverse direction. Let A be the image of the C" embedding f : M — N. A point
z in A has an open neighborhood U which is the image of an open V in M. The
set U is of the form U'N A where U’ is open in N. From the Immersion Theorem,
there is an expression of f in local coordinates based on charts contained in U’
and V that gives exactly the structure needed for a submanifold chart around

x. O

In the above, we exploited the fact that the expression in local coordinates
guaranteed by the Immersion Theorem gives a structure that fits the definition
of a submanifold chart. We can also look at the expression in local coordinates
that is guaranteed by the Submersion Theorem. Here we are looking at the
projection of R™ onto the subspace spanned by a subset of its coordiante axes.

The preimage of 0 under this projection (the kernel) lies in R™ exactly as required
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by the definition of a submanifold chart. That makes the next lemma an easy

exercise.

LEMMA 2.6.3. Let f: M — N be a C" map, r > 1. Ify € f(M) is a regular
value, then f~'(y) is a C" submanifold of M.

There is no “only if” in the above. There are submanifolds that are not the
inverse images of regular values under any map. The center line L of the M&bius
band M does not separate any neighborhood of itself in M. (We have not dealt
with manifolds with boundary, so we consider M to be the open Mdbius band.)
For L to be the inverse image of a regular value, there has to be a submersion
to a manifold of dimension 1. But every point in a manifold of dimension 1
separates some neighborhood of itself. [Exercise: the centerline L of the M&bius
band M is the inverse image of a critical value of a function f : M — R.]

It should be noted that there is nothing in the definition of a submanifold
that requires it be a closed subset of the manifold that contains it. Some like
to include a requirement that submanifolds be closed subsets. Exercise: find an
example of a submanifold of R? that is not a closed subset.

Note that an immersion ¢ : M — N takes each T'M, isomorphically onto
a linear subspace of T'Nj;;). When the immersion is just the inclusion of a
submanifold M C N, then i(z) = z and we have a linear injection TM, — TN,.
In fact, the sets TM,, and Di,(T'M,) C TN, are rather hard to distinguish since
they are equivalence classes of functions that are equal from the set theory point
of view. (A function from A to B is a subset of A x B, and from this point of view,
a function does not change when its range changes.) The equivalence relation
on the functions is the same when viewed in TM,, or TN,, (a consequence of the
immersion), and so in some sense it is correct to write T M, = Di,(T'M,). Not

only is it technically correct, but it is notationally painful to distinguish them. If
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it ever becomes important to make the distinction, we will take the pains to do
so. However whenever we have a submanifold M C N, it is usually convenient
to think of the tangent bundle TM of M as a “subbundle” of the tangent bundle
TN of N.
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CHAPTER 3

Extra topics

Possible topics for inclusion after going through Milnor’s book.

10.

. vector fields, differential equations, flows,

. Partitions of unity and some applications,

. Normal bundles,

. Exponential maps and tubular neighborhoods (sprays),

1
2
3
4
5.
6
7
8
9

Isotopy extension theorem,

. Approximations, increasing differentiability,
. Approximations, transversality,
. Manfiolds with boundary,

. Connected sums,

Embedding theorems (easy and hard Whitney theorems).
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