Quasiconvex Plane Domains

David A Herron

University of Cincinnati

9:00AM 21 October 2006 AMS Special Session Analysis and Potential Theory on Metric Spaces UNIVERSITY OF Cincinnati

David A Herron (University of Cincinnati)

Introduction

- Definitions & Examples
- Complements of Sectors
- Euclidean Domains

Plane Domains

- Necessary Conditions
- Sufficient Conditions
- Finitely Connected Domains

The Main Example

- The Result
- A Picture Proof

Outline

Introduction

- Definitions & Examples
- Complements of Sectors
- Euclidean Domains

Plane Domains

- Necessary Conditions
- Sufficient Conditions
- Finitely Connected Domains

The Main Example

- The Result
- A Picture Proof

Definition of QuasiConvexity

A metric space is quasiconvex iff it is bilipschitz equivalent to some length space; each pair of points can be joined by a rectifiable path whose length is comparable to the distance between its endpoints.

Definition of QuasiConvexity

A metric space is quasiconvex iff it is bilipschitz equivalent to some length space; each pair of points can be joined by a rectifiable path whose length is comparable to the distance between its endpoints.

Definition

A metric space is *c*-*quasiconvex* if each pair of points x, y can be joined by a rectfiable path γ satisfying

$$\ell(\gamma) \leq c |x-y|.$$

• upper regular Loewner spaces (this includes Carnot groups & certain Riemannian manifolds with non-negative Ricci curvature)

- upper regular Loewner spaces (this includes Carnot groups & certain Riemannian manifolds with non-negative Ricci curvature)
- doubling metric measure spaces supporting (1, p)-Poincaré inequality

- upper regular Loewner spaces (this includes Carnot groups & certain Riemannian manifolds with non-negative Ricci curvature)
- doubling metric measure spaces supporting (1, p)-Poincaré inequality
- Sobolev extension domains in Euclidean space

- upper regular Loewner spaces (this includes Carnot groups & certain Riemannian manifolds with non-negative Ricci curvature)
- doubling metric measure spaces supporting (1, p)-Poincaré inequality
- Sobolev extension domains in Euclidean space
- a John disk is a quasidisk if and only if it is quasiconvex

Basic Example

Given $0 < \theta \le \pi/2$, $C_{\theta} = \{z \in \mathbb{C} : |\operatorname{Arg}(z)| \le \theta\}$ is closed convex sector and the concave sector $D_{\theta} = \mathbb{R}^2 \setminus C_{\theta}$ is $\csc \theta$ -quasiconvex.

Figure: A concave sector is quasiconvex.

Extremal Examples

 $\theta = \pi/n$, $\zeta_k = e^{2ki\theta}$ $(1 \le k \le n)$, $C_k = \zeta_k C_\theta + \zeta_k$ (closed convex sectors obtained by rotating C_θ and then translating) \Longrightarrow

Extremal Examples

 $\theta = \pi/n, \ \zeta_k = e^{2ki\theta} \ (1 \le k \le n), \ C_k = \zeta_k C_\theta + \zeta_k \ (\text{closed convex sectors})$ obtained by rotating C_θ and then translating) $\implies D_n = \mathbb{R}^2 \setminus \bigcup_{k=1}^n C_k$ is simply connected csc θ -quasiconvex domain with n unbdd bdry cmpnts

・ロト ・ 戸 ・ ・ ヨ ト ・ 三 ト ・ クタマ

Extremal Examples

 $\theta = \pi/n, \ \zeta_k = e^{2ki\theta} \ (1 \le k \le n), \ C_k = \zeta_k C_\theta + \zeta_k \ (\text{closed convex sectors})$ obtained by rotating C_θ and then translating) $\implies D_n = \mathbb{R}^2 \setminus \bigcup_{k=1}^n C_k$ is simply connected csc θ -quasiconvex domain with n unbdd bdry cmpnts

A convex domain

David A Herron (University of Cincinnati)

• Which domains in \mathbb{R}^n are quasiconvex?

★ 3 → 4 3

三日 のへの

- Which domains in \mathbb{R}^n are quasiconvex?
- If A ⊂ ℝⁿ is closed and totally disconnected, is A^c := ℝⁿ \ A quasiconvex?

= 200

- Which domains in \mathbb{R}^n are quasiconvex?
- If A ⊂ ℝⁿ is closed and totally disconnected, is A^c := ℝⁿ \ A quasiconvex? A^c is connected (hence rectifiably connected).

- Which domains in \mathbb{R}^n are quasiconvex?
- If A ⊂ ℝⁿ is closed and totally disconnected, is A^c := ℝⁿ \ A quasiconvex? A^c is connected (hence rectifiably connected).

Fact

Suppose $A \subset \mathbb{R}^n$ is closed and each projection onto a coordinate (n-1)-plane has (n-1)-measure zero. Then A^c is quasiconvex.

▶ See Proof

- Which domains in \mathbb{R}^n are quasiconvex?
- If A ⊂ ℝⁿ is closed and totally disconnected, is A^c := ℝⁿ \ A quasiconvex? A^c is connected (hence rectifiably connected).

Theorem

Suppose $A \subset \mathbb{R}^n$ is closed and each projection onto a coordinate (n-1)-plane is nowhere dense. Then A^c is quasiconvex.

- Which domains in \mathbb{R}^n are quasiconvex?
- If A ⊂ ℝⁿ is closed and totally disconnected, is A^c := ℝⁿ \ A quasiconvex? A^c is connected (hence rectifiably connected).

Theorem

Suppose $A \subset \mathbb{R}^n$ is closed and each projection onto a coordinate (n-1)-plane is nowhere dense. Then A^c is quasiconvex.

Thus A^c is quasiconvex if

- dim $_{\mathcal{H}} A < n-1$, or A itself has (n-1)-measure zero, or
- A is *n*-fold product of a positive measure nowhere dense subset of \mathbb{R} .

- Which domains in \mathbb{R}^n are quasiconvex?
- If A ⊂ ℝⁿ is closed and totally disconnected, is A^c := ℝⁿ \ A quasiconvex? A^c is connected (hence rectifiably connected).

Theorem

Suppose $A \subset \mathbb{R}^n$ is closed and each projection onto a coordinate (n-1)-plane is nowhere dense. Then A^c is quasiconvex.

Thus A^c is quasiconvex if

- dim $_{\mathcal{H}} A < n-1$, or A itself has (n-1)-measure zero, or
- A is *n*-fold product of a positive measure nowhere dense subset of \mathbb{R} .

- Which domains in \mathbb{R}^n are quasiconvex?
- If A ⊂ ℝⁿ is closed and totally disconnected, is A^c := ℝⁿ \ A quasiconvex? A^c is connected (hence rectifiably connected).

Theorem

Suppose $A \subset \mathbb{R}^n$ is closed and each projection onto a coordinate (n-1)-plane is nowhere dense. Then A^c is quasiconvex.

Thus A^c is quasiconvex if

- dim $_{\mathcal{H}} A < n-1$, or A itself has (n-1)-measure zero, or
- A is *n*-fold product of a positive measure nowhere dense subset of \mathbb{R} .

Outline

Introduction

- Definitions & Examples
- Complements of Sectors
- Euclidean Domains

Plane Domains

- Necessary Conditions
- Sufficient Conditions
- Finitely Connected Domains

The Main Example

- The Result
- A Picture Proof

Notation

Call $C \subset \mathbb{R}^2$ a *Jordan curve* if it is a Jordan loop or a Jordan line: a *Jordan loop* is homeomorphic image of a round circle,

so always compact;

a Jordan line is image of injective path $\mathbb{R} \xrightarrow{\lambda} \mathbb{R}^2$ with $\lambda(t) \to \infty$ (in $\hat{\mathbb{R}}^2$) as $t \to \pm \infty$.

Call $C \subset \mathbb{R}^2$ a *Jordan curve* if it is a Jordan loop or a Jordan line: a *Jordan loop* is homeomorphic image of a round circle,

so always compact;

a Jordan line is image of injective path $\mathbb{R} \xrightarrow{\lambda} \mathbb{R}^2$ with $\lambda(t) \to \infty$ (in $\hat{\mathbb{R}}^2$) as $t \to \pm \infty$. Every Jordan line in \mathbb{R}^2 corresponds to a Jordan loop in $\hat{\mathbb{R}}^2$. Call $C \subset \mathbb{R}^2$ a *Jordan curve* if it is a Jordan loop or a Jordan line: a *Jordan loop* is homeomorphic image of a round circle,

so always compact;

a Jordan line is image of injective path $\mathbb{R} \xrightarrow{\lambda} \mathbb{R}^2$ with $\lambda(t) \to \infty$ (in $\hat{\mathbb{R}}^2$) as $t \to \pm \infty$. Every Jordan line in \mathbb{R}^2 corresponds to a Jordan loop in $\hat{\mathbb{R}}^2$. All topology with respect to \mathbb{R}^2 . Call $C \subset \mathbb{R}^2$ a *Jordan curve* if it is a Jordan loop or a Jordan line: a *Jordan loop* is homeomorphic image of a round circle,

so always compact;

a Jordan line is image of injective path $\mathbb{R} \xrightarrow{\lambda} \mathbb{R}^2$ with $\lambda(t) \to \infty$ (in $\hat{\mathbb{R}}^2$) as $t \to \pm \infty$. Every Jordan line in \mathbb{R}^2 corresponds to a Jordan loop in $\hat{\mathbb{R}}^2$. All topology with respect to \mathbb{R}^2 .

A *Jordan curve domain* is an open connected plane region each of whose boundary components is either a single point or a Jordan curve.

• Every Jordan disk (simply connected plane domain bounded by a single Jordan curve) is a Jordan curve domain.

= nan

- Every Jordan disk (simply connected plane domain bounded by a single Jordan curve) is a Jordan curve domain.
- The domains D_n introduced above are simply connected Jordan curve domains with exactly n unbounded boundary components. See D_n pix

1 = nar

- Every Jordan disk (simply connected plane domain bounded by a single Jordan curve) is a Jordan curve domain.
- The domains D_n introduced above are simply connected Jordan curve domains with exactly *n* unbounded boundary components.
- There are simply connected Jordan curve domains having infinitely many boundary components.

ELE NOR

A simply connected Jordan curve domain

Figure: Infinitely many unbounded boundary components

= nan

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a *c*-quasiconvex domain. Then: (i) *D* is a Jordan curve domain,

Theorem

- Suppose $D \subsetneq \mathbb{R}^2$ is a c-quasiconvex domain. Then:
 - (i) D is a Jordan curve domain,
- (ii) ∂D has at most $\pi/\arcsin(1/c)$ unbounded components, and

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a c-quasiconvex domain. Then:

- (i) D is a Jordan curve domain,
- (ii) ∂D has at most $\pi/\arcsin(1/c)$ unbounded components, and
- (iii) for any b > c, all pts $\xi, \eta \in \overline{D}$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}; \therefore$ all pts of ∂D rectifiably accessible.

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a c-quasiconvex domain. Then:

- (i) D is a Jordan curve domain,
- (ii) ∂D has at most $\pi/\arcsin(1/c)$ unbounded components, and
- (iii) for any b > c, all pts $\xi, \eta \in \overline{D}$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$; \therefore all pts of ∂D rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by c-quasiconvex paths

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a c-quasiconvex domain. Then:

- (i) D is a Jordan curve domain,
- (ii) ∂D has at most $\pi/\arcsin(1/c)$ unbounded components, and
- (iii) for any b > c, all pts $\xi, \eta \in \overline{D}$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$; \therefore all pts of ∂D rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by c-quasiconvex paths (ii) & c = 1 says a convex domain has at most two unbdd bdry cmpnts

1 3 1 4 3 1 3 1 3 1 4 4 5 1 3 0 0 0

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a c-quasiconvex domain. Then:

- (i) D is a Jordan curve domain,
- (ii) ∂D has at most $\pi/\arcsin(1/c)$ unbounded components, and
- (iii) for any b > c, all pts $\xi, \eta \in \overline{D}$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$; \therefore all pts of ∂D rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by *c*-quasiconvex paths (ii) & c = 1 says a convex domain has at most two unbdd bdry cmpnts $\forall n \ge 1$, \exists simply conn *c*-quasiconvex domain with $c = 1/\sin(\pi/n)$ and *n* unbdd bdry components

A ∃ ► A ∃ ► ∃ ∃
Necessary Conditions for QuasiConvexity

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a c-quasiconvex domain. Then:

- (i) D is a Jordan curve domain,
- (ii) ∂D has at most $\pi/\arcsin(1/c)$ unbounded components, and
- (iii) for any b > c, all pts $\xi, \eta \in \overline{D}$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$; \therefore all pts of ∂D rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by *c*-quasiconvex paths (ii) & c = 1 says a convex domain has at most two unbdd bdry cmpnts $\forall n \ge 1, \exists$ simply conn *c*-quasiconvex domain with $c = 1/\sin(\pi/n)$ and *n* unbdd bdry components—namely, the domains $D_n \bowtie D_n$ pix

Necessary Conditions for QuasiConvexity

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a c-quasiconvex domain. Then:

- (i) D is a Jordan curve domain,
- (ii) ∂D has at most $\pi/\arcsin(1/c)$ unbounded components, and
- (iii) for any b > c, all pts $\xi, \eta \in \overline{D}$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$; \therefore all pts of ∂D rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by *c*-quasiconvex paths (ii) & c = 1 says a convex domain has at most two unbdd bdry cmpnts $\forall n \ge 1$, \exists simply conn *c*-quasiconvex domain with $c = 1/\sin(\pi/n)$ and *n* unbdd bdry components—namely, the domains D_n

A ∃ ► A ∃ ► ∃ ∃

Theorem

 $D \subsetneq \mathbb{R}^2$ a Jordan curve domain with finitely many boundary components

Theorem

 $D \subsetneq \mathbb{R}^2$ a Jordan curve domain with finitely many boundary components Suppose c > 1 and all rectifiably accessible pts $\xi, \eta \in \partial D$ joinable by c-quasiconvex path in $D \cup \{\xi, \eta\}$.

Theorem

 $D \subsetneq \mathbb{R}^2$ a Jordan curve domain with finitely many boundary components Suppose c > 1 and all rectifiably accessible pts $\xi, \eta \in \partial D$ joinable by c-quasiconvex path in $D \cup \{\xi, \eta\}$. Then D is c-quasiconvex.

Theorem

 $D \subseteq \mathbb{R}^2$ a Jordan curve domain with finitely many boundary components Suppose c > 1 and all rectifiably accessible pts $\xi, \eta \in \partial D$ joinable by c-quasiconvex path in $D \cup \{\xi, \eta\}$. Then D is c-quasiconvex.

 $E \neq \emptyset$ closed totally disconn set of pts lying on some strictly convex curve $\implies E^c$ satisfies all above hypotheses with c = 1, but is not convex.

Theorem

 $D \subsetneq \mathbb{R}^2$ a Jordan curve domain with finitely many boundary components Suppose c > 1 and all rectifiably accessible pts $\xi, \eta \in \partial D$ joinable by c-quasiconvex path in $D \cup \{\xi, \eta\}$. Then D is c-quasiconvex.

 $E \neq \emptyset$ closed totally disconn set of pts lying on some strictly convex curve $\implies E^c$ satisfies all above hypotheses with c = 1, but is not convex.

Can weaken hypothesis *finitely many boundary components* if instead require that all boundary points be joinable by quasiconvex paths.

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

QuasiConvexity Characterization

Corollary

A finitely connected $D \subsetneq \mathbb{R}^2$ is c-quasiconvex iff

- (i) D is a Jordan curve domain, and
- (ii) all pts $\xi, \eta \in \partial D$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$.

For necessity, can take any b > c; for sufficiency, c = b works.

QuasiConvexity Characterization

Corollary

A finitely connected $D \subsetneq \mathbb{R}^2$ is c-quasiconvex iff

- (i) D is a Jordan curve domain, and
- (ii) all pts $\xi, \eta \in \partial D$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$.

For necessity, can take any b > c; for sufficiency, c = b works.

 \exists simply conn Jordan curve domains with infinitely many bdry cmpnts.

▶ See lotsa pix

QuasiConvexity Characterization

Corollary

A finitely connected $D \subsetneq \mathbb{R}^2$ is c-quasiconvex iff

(i) D is a Jordan curve domain, and

(ii) all pts $\xi, \eta \in \partial D$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$.

For necessity, can take any b > c; for sufficiency, c = b works.

 \exists simply conn Jordan curve domains with infinitely many bdry cmpnts.

The Main Example

Outline

Introduction

- Definitions & Examples
- Complements of Sectors
- Euclidean Domains

Plane Domains

- Necessary Conditions
- Sufficient Conditions
- Finitely Connected Domains

3 The Main Example

- The Result
- A Picture Proof

-

Statements

Theorem

 \exists compact totally disconn set in \mathbb{R}^2 whose complement is not quasiconvex.

ъ

Statements

Theorem

 \exists compact totally disconn set in \mathbb{R}^2 whose complement is not quasiconvex.

Proposition

 $\forall M > 0, \exists$ closed totally disconn $A \subset \mathbb{R}^2$ with $-1, 1 \in A^c$ and st each rectifiable path γ joining -1, 1 in A^c has $\ell(\gamma) \geq M$.

Theorem

 \exists compact totally disconn set in \mathbb{R}^2 whose complement is not quasiconvex.

Proposition

 $\forall M > 0, \exists$ closed totally disconn $A \subset \mathbb{R}^2$ with $-1, 1 \in A^c$ and st each rectifiable path γ joining -1, 1 in A^c has $\ell(\gamma) \geq M$.

Construct $A := \bigcap_i E_i$ where $E_1 \supset E_2 \supset \ldots$ closed, $E_i = \bigcup_j F_{ij}$, with F_{ij} nested compact sets satisfying

 $\lim_{i\to\infty}\sup_j \operatorname{diam} F_{ij}=0\,.$

Thus A closed and totally disconnected.

Statements

Theorem

 \exists compact totally disconn set in \mathbb{R}^2 whose complement is not quasiconvex.

Proposition

 $\forall M > 0, \exists$ closed totally disconn $A \subset \mathbb{R}^2$ with $-1, 1 \in A^c$ and st each rectifiable path γ joining -1, 1 in A^c has $\ell(\gamma) > M$.

Construct $A := \bigcap_i E_i$ where $E_1 \supset E_2 \supset \ldots$ closed, $E_i = \bigcup_i F_{ii}$, with F_{ii} nested compact sets satisfying

$$\lim_{i\to\infty}\sup_j \operatorname{diam} F_{ij}=0\,.$$

Thus A closed and totally disconnected.

Gotta describe sets F_{ii} . A B F A B F

EL SQA

$[x, y] \rightsquigarrow$ Long Broken Line Segment

An Irrigation Canal Based on [x, y]

Irrigating a Square

Analysis and Potential Theory 19 / 31

三日 のへの

David A Herron (University of Cincinnati)

Irrigating a Bunch of Squares

Irrigating Squares and The First Generation of F_{ij}

Irrigating Squares and The First Generation of F_{ij}

Irrigating Squares and The First Generation of F_{ij}

Taking a Closer Look

The Next Generation of Squares

• Compact totally disconnected sets need not have quasiconvex complements.

= nac

- Compact totally disconnected sets need not have quasiconvex complements.
- Although OK in many cases (sets with small dimension or nowhere dense projections).

-

- Compact totally disconnected sets need not have quasiconvex complements.
- Although OK in many cases (sets with small dimension or nowhere dense projections).
- Are there similar examples in \mathbb{R}^3 ? In \mathbb{R}^n ?

- Compact totally disconnected sets need not have quasiconvex complements.
- Although OK in many cases (sets with small dimension or nowhere dense projections).
- Are there similar examples in \mathbb{R}^3 ? In \mathbb{R}^n ? (I guess so)
- Is there an example with Hausdorff dimension stricly less than n?

The End

David A Herron (University of Cincinnati	Quasiconvex Plane Domains	Analysis and Potential Theory	/ 25/3
--	---------------------------	-------------------------------	--------

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Appendix

- Extremal Examples
- Proof of Theorem

I= nan

Appendi

Outline

4 Appendix

- Extremal Examples
- Proof of Theorem

-

1= 9QC

Complements of Sectors

A convex domain

David A Herron (University of Cincinnati)

Complements of Sectors

A convex domain

David A Herron (University of Cincinnati)

xtremal Example

Lots of Unbdd Boundary Components

A simply connected Jordan curve domain

Figure: Infinitely many unbounded boundary components

David A Herron (University of Cincinnati)

٠

Quasiconvex Plane Domains

Analysis and Potential Theory

∃ →

30 / 31

ELE NOR

Complement of Plane Set with Zero Measure Projections

٠

٠

1.2
Complement of Plane Set with Zero Measure Projections

Complement of Plane Set with Zero Measure Projections

Complement of Plane Set with Zero Measure Projections

