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Introduction Definitions & Examples

Definition of QuasiConvexity

A metric space is quasiconvex iff it is bilipschitz equivalent to some length
space; each pair of points can be joined by a rectifiable path whose length
is comparable to the distance between its endpoints.
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Figure: Joining two points
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Definition of QuasiConvexity

A metric space is quasiconvex iff it is bilipschitz equivalent to some length
space; each pair of points can be joined by a rectifiable path whose length
is comparable to the distance between its endpoints.

Definition

A metric space is c-quasiconvex if each pair of points x , y can be joined
by a rectfiable path γ satisfying

ℓ(γ) ≤ c |x − y | .
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Examples of QuasiConvex Spaces

upper regular Loewner spaces (this includes Carnot groups & certain
Riemannian manifolds with non-negative Ricci curvature)
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Examples of QuasiConvex Spaces

upper regular Loewner spaces (this includes Carnot groups & certain
Riemannian manifolds with non-negative Ricci curvature)

doubling metric measure spaces supporting (1, p)-Poincaré inequality

Sobolev extension domains in Euclidean space

a John disk is a quasidisk if and only if it is quasiconvex
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Introduction Complements of Sectors

Basic Example

Given 0 < θ ≤ π/2, Cθ = {z ∈ C : |Arg(z)| ≤ θ} is closed convex sector
and the concave sector Dθ = R2 \ Cθ is csc θ-quasiconvex.

2θ

Dθ is c-quasiconvex
where c = csc(θ)

Dθ = R2 \ Cθ

Cθ

Figure: A concave sector is quasiconvex.
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Introduction Complements of Sectors

Extremal Examples

θ = π/n, ζk = e2kiθ (1 ≤ k ≤ n), Ck = ζkCθ + ζk (closed convex sectors
obtained by rotating Cθ and then translating) =⇒
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obtained by rotating Cθ and then translating) =⇒ Dn = R2 \ ∪n

k=1Ck is
simply connected csc θ-quasiconvex domain with n unbdd bdry cmpnts
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Introduction Euclidean Domains

Main Question

Which domains in Rn are quasiconvex?
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Introduction Euclidean Domains

Main Question

Which domains in Rn are quasiconvex?

If A ⊂ Rn is closed and totally disconnected, is Ac := Rn \ A

quasiconvex? Ac is connected (hence rectifiably connected).

Fact

Suppose A ⊂ Rn is closed and each projection onto a coordinate

(n − 1)-plane has (n − 1)-measure zero. Then Ac is quasiconvex.

See Proof
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Plane Domains Necessary Conditions

Notation

Call C ⊂ R2 a Jordan curve if it is a Jordan loop or a Jordan line:

a Jordan loop is homeomorphic image of a round circle,
so always compact;

a Jordan line is image of injective path R
λ→ R2 with
λ(t) → ∞ (in R̂2) as t → ±∞.
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Notation

Call C ⊂ R2 a Jordan curve if it is a Jordan loop or a Jordan line:

a Jordan loop is homeomorphic image of a round circle,
so always compact;

a Jordan line is image of injective path R
λ→ R2 with
λ(t) → ∞ (in R̂2) as t → ±∞.

Every Jordan line in R2 corresponds to a Jordan loop in R̂2.

All topology with respect to R2.

A Jordan curve domain is an open connected plane region each of whose
boundary components is either a single point or a Jordan curve.
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Plane Domains Necessary Conditions

Examples of Jordan Curve Domains

Every Jordan disk (simply connected plane domain bounded by a
single Jordan curve) is a Jordan curve domain.

David A Herron (University of Cincinnati) Quasiconvex Plane Domains Analysis and Potential Theory 11 / 31



Plane Domains Necessary Conditions

Examples of Jordan Curve Domains

Every Jordan disk (simply connected plane domain bounded by a
single Jordan curve) is a Jordan curve domain.

The domains Dn introduced above are simply connected Jordan curve
domains with exactly n unbounded boundary components. See Dn pix

David A Herron (University of Cincinnati) Quasiconvex Plane Domains Analysis and Potential Theory 11 / 31



Plane Domains Necessary Conditions

Examples of Jordan Curve Domains

Every Jordan disk (simply connected plane domain bounded by a
single Jordan curve) is a Jordan curve domain.

The domains Dn introduced above are simply connected Jordan curve
domains with exactly n unbounded boundary components.

There are simply connected Jordan curve domains having infinitely
many boundary components.
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Plane Domains Necessary Conditions

Examples of Jordan Curve Domains

b b b b b b

A simply connected Jordan curve domain

Figure: Infinitely many unbounded boundary components
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Theorem

Suppose D ( R2 is a c-quasiconvex domain. Then:

(i) D is a Jordan curve domain,
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Sufficient Conditions for QuasiConvexity

Theorem

D ( R2 a Jordan curve domain with finitely many boundary components

Suppose c > 1 and all rectifiably accessible pts ξ, η ∈ ∂D joinable by

c-quasiconvex path in D ∪ {ξ, η}. Then D is c-quasiconvex.

E 6= ∅ closed totally disconn set of pts lying on some strictly convex curve
=⇒ E c satisfies all above hypotheses with c = 1, but is not convex.

Can weaken hypothesis finitely many boundary components if instead
require that all boundary points be joinable by quasiconvex paths.
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Plane Domains Finitely Connected Domains

QuasiConvexity Characterization

Corollary

A finitely connected D ( R2 is c-quasiconvex iff

(i) D is a Jordan curve domain, and

(ii) all pts ξ, η ∈ ∂D joinable by b-quasiconvex path in D ∪ {ξ, η}.
For necessity, can take any b > c; for sufficiency, c = b works.
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The Main Example The Result

Statements

Theorem

∃ compact totally disconn set in R2 whose complement is not quasiconvex.
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The Main Example A Picture Proof

[x , y ] Long Broken Line Segment
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The Main Example A Picture Proof

An Irrigation Canal Based on [x , y ]

b b b b b

x y
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The Main Example A Picture Proof

Irrigating a Square
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The Main Example A Picture Proof

Irrigating a Bunch of Squares

Figure: H(∪S ; n)
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The Main Example A Picture Proof

Irrigating Squares and The First Generation of Fij

Figure: H(∪S ; n)
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The Main Example A Picture Proof

Irrigating Squares and The First Generation of Fij

b b
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Figure: H(∪S ; n)
David A Herron (University of Cincinnati) Quasiconvex Plane Domains Analysis and Potential Theory 21 / 31



The Main Example A Picture Proof

Taking a Closer Look

b b
−1 1

F1j
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The Main Example A Picture Proof

The Next Generation of Squares

b−1

F1j
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The Main Example A Picture Proof

The Next Generation of Squares

b−1
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Summary

Summary

Compact totally disconnected sets need not have quasiconvex
complements.
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Summary

Summary

Compact totally disconnected sets need not have quasiconvex
complements.

Although OK in many cases (sets with small dimension or nowhere
dense projections).

Are there similar examples in R3? In Rn? (I guess so)

Is there an example with Hausdorff dimension stricly less than n?
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Summary

The End

(⌣̈)
===
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Appendix Extremal Examples

Complements of Sectors

θ = π/n, ζk = e2kiθ (1 ≤ k ≤ n), Ck = ζkCθ + ζk (closed convex sectors
obtained by rotating Cθ and then translating) =⇒ Dn = R2 \ ∪n

k=1Ck is
simply conn csc θ-quasicvx domain with n unbdd bdry cmpnts Go Back

D2

A convex domain

D4

A
√

2-quasiconvex domain
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D2

A convex domain

D4

A
√

2-quasiconvex domain
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Appendix Extremal Examples

Lots of Unbdd Boundary Components

Go Back

b b b b b b

A simply connected Jordan curve domain

Figure: Infinitely many unbounded boundary components
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Appendix Proof of Theorem

Complement of Plane Set with Zero Measure Projections
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