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Definition of QuasiConvexity

A metric space is quasiconvex iff it is bilipschitz equivalent to some length

space; each pair of points can be joined by a rectifiable path whose length
is comparable to the distance between its endpoints.

Y.
a quasiconvex path .-~
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Definition of QuasiConvexity

A metric space is quasiconvex iff it is bilipschitz equivalent to some length

space; each pair of points can be joined by a rectifiable path whose length
is comparable to the distance between its endpoints.

Definition

A metric space is c-quasiconvex if each pair of points x, y can be joined
by a rectfiable path  satisfying

l(y) <clx—yl.

a quasiconvex path .-
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R Dcfinitions & Bxamples
Examples of QuasiConvex Spaces

@ upper regular Loewner spaces (this includes Carnot groups & certain
Riemannian manifolds with non-negative Ricci curvature)
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Examples of QuasiConvex Spaces

@ upper regular Loewner spaces (this includes Carnot groups & certain
Riemannian manifolds with non-negative Ricci curvature)

@ doubling metric measure spaces supporting (1, p)-Poincaré inequality

@ Sobolev extension domains in Euclidean space
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R Dcfinitions & Bxamples
Examples of QuasiConvex Spaces

@ upper regular Loewner spaces (this includes Carnot groups & certain
Riemannian manifolds with non-negative Ricci curvature)

@ doubling metric measure spaces supporting (1, p)-Poincaré inequality
@ Sobolev extension domains in Euclidean space

@ a John disk is a quasidisk if and only if it is quasiconvex
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R Complements of Sectors
Basic Example

Given 0 <0 <7/2, Gy ={z € C:|Arg(z)| <80} is closed convex sector
and the concave sector Dy = R? \ Gy is csc f-quasiconvex.

Dy =R?>\ G

Dy is c-quasiconvex
where ¢ = csc(6)

Figure: A concave sector is quasiconvex.
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R Complements of Sectors
Extremal Examples

0 =m/n, G =e* % (1< k<n), Ck=CkCo+ Cx (closed convex sectors
obtained by rotating Cy and then translating) —-
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Extremal Examples

0 =m/n, G =e* % (1< k<n), Ck=CkCo+ Cx (closed convex sectors
obtained by rotating Cy and then translating) = D, =R?*\ U7_,Cx is
simply connected csc §-quasiconvex domain with n unbdd bdry cmpnts
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Extremal Examples

0 =m/n, G =e* % (1< k<n), Ck=CkCo+ Cx (closed convex sectors
obtained by rotating Cy and then translating) = D, =R?*\ U7_,Cx is
simply connected csc §-quasiconvex domain with n unbdd bdry cmpnts

A convex domain A \/2-quasiconvex domain
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@ Which domains in R” are quasiconvex?



L Intreduetion | Euclidean Domains
Main Question

@ Which domains in R" are quasiconvex?

o If AC R" is closed and totally disconnected, is A€ :=R"\ A
quasiconvex?
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Main Question

@ Which domains in R" are quasiconvex?

o If AC R" is closed and totally disconnected, is A€ :=R"\ A
quasiconvex? A€ is connected (hence rectifiably connected).

Fact
Suppose A C R" is closed and each projection onto a coordinate
(n — 1)-plane has (n — 1)-measure zero. Then AC is quasiconvex.
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L Intreduetion | Euclidean Domains
Main Question

@ Which domains in R" are quasiconvex?

o If AC R" is closed and totally disconnected, is A€ :=R"\ A
quasiconvex? A€ is connected (hence rectifiably connected).

Theorem

Suppose A C R" is closed and each projection onto a coordinate
(n — 1)-plane is nowhere dense. Then A€ is quasiconvex.
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Main Question

@ Which domains in R" are quasiconvex?

o If AC R" is closed and totally disconnected, is A€ :=R"\ A
quasiconvex? A€ is connected (hence rectifiably connected).

Theorem

Suppose A C R" is closed and each projection onto a coordinate
(n — 1)-plane is nowhere dense. Then A€ is quasiconvex.

Thus A€ is quasiconvex if
@ dimy A < n—1, or Aitself has (n — 1)-measure zero, or

@ A is n-fold product of a nowhere dense subset of R.
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quasiconvex? A€ is connected (hence rectifiably connected).
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(n — 1)-plane is nowhere dense. Then A€ is quasiconvex.
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© Plane Domains
@ Necessary Conditions
o Sufficient Conditions
@ Finitely Connected Domains
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Notation

Call C ¢ R? a Jordan curve if it is a Jordan loop or a Jordan line:
a Jordan loop is homeomorphic image of a round circle,
so always compact;
a Jordan line is image of injective path R 2 R with
A(t) — oo (in R?) as t — 4o0.
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Notation

Call C ¢ R? a Jordan curve if it is a Jordan loop or a Jordan line:
a Jordan loop is homeomorphic image of a round circle,
so always compact;
a Jordan line is image of injective path R 2 R with A
A(t) — oo (in R?) as t — 4o0.
Every Jordan line in R? corresponds to a Jordan loop in R2.

All topology with respect to R2.
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L PlaneDomains | Necessary Conditions
Notation

Call C Cc R? a Jordan curve if it is a Jordan loop or a Jordan line:

a Jordan loop is homeomorphic image of a round circle,
so always compact;

a Jordan line is image of injective path R 2 R with

A(t) — oo (in R?) as t — 4o0.
Every Jordan line in R? corresponds to a Jordan loop in R2.
All topology with respect to R2.

A Jordan curve domain is an open connected plane region each of whose
boundary components is either a single point or a Jordan curve.
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R \\ecessary Conditions
Examples of Jordan Curve Domains

@ Every Jordan disk (simply connected plane domain bounded by a
single Jordan curve) is a Jordan curve domain.
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Examples of Jordan Curve Domains

@ Every Jordan disk (simply connected plane domain bounded by a
single Jordan curve) is a Jordan curve domain.

@ The domains D,, introduced above are simply connected Jordan curve
domains with exactly n unbounded boundary components.
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Examples of Jordan Curve Domains

@ Every Jordan disk (simply connected plane domain bounded by a
single Jordan curve) is a Jordan curve domain.

@ The domains D, introduced above are simply connected Jordan curve
domains with exactly n unbounded boundary components.

@ There are simply connected Jordan curve domains having infinitely
many boundary components.
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R \\ecessary Conditions
Examples of Jordan Curve Domains

A simply connected Jordan curve domain

Figure: Infinitely many unbounded boundary components
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Theorem

Suppose D C R? is a c-quasiconvex domain. Then:
(i) D is a Jordan curve domain,




Necessary Conditions for QuasiConvexity

Theorem

Suppose D C R? is a c-quasiconvex domain. Then:
(i) D is a Jordan curve domain,

(ii) OD has at most w/ arcsin(1/c) unbounded components, and
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Necessary Conditions for QuasiConvexity

Theorem
Suppose D C R? is a c-quasiconvex domain. Then:
(i) D is a Jordan curve domain,
(ii) OD has at most w/ arcsin(1/c) unbounded components, and

(iii) for any b > c, all pts &,n € D joinable by b-quasiconvex path in
D uU{¢&,n}; . all pts of OD rectifiably accessible.
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Necessary Conditions for QuasiConvexity

Theorem
Suppose D C R? is a c-quasiconvex domain. Then:
(i) D is a Jordan curve domain,
(ii) OD has at most m/ arcsin(1/c) unbounded components, and

(iii) for any b > c, all pts &,n € D joinable by b-quasiconvex path in
Du{¢,n}; . all pts of OD rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by c-quasiconvex paths
(i) & ¢ =1 says a convex domain has at most two unbdd bdry cmpnts
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Necessary Conditions for QuasiConvexity

Theorem
Suppose D C R? is a c-quasiconvex domain. Then:
(i) D is a Jordan curve domain,
(ii) OD has at most 7/ arcsin(1/c) unbounded components, and

(iii) for any b > c, all pts &,n € D joinable by b-quasiconvex path in
Du{¢,n}; . all pts of OD rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by c-quasiconvex paths
(i) & ¢ =1 says a convex domain has at most two unbdd bdry cmpnts

Vn > 1, 3 simply conn c-quasiconvex domain with ¢ = 1/sin(xw/n) and n
unbdd bdry components
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L PlanePomains | Sufficient Conditions
Sufficient Conditions for QuasiConvexity

Theorem

D C R? a Jordan curve domain with finitely many boundary components
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Sufficient Conditions for QuasiConvexity

Theorem

D C R? a Jordan curve domain with finitely many boundary components
Suppose ¢ > 1 and all rectifiably accessible pts £, € 0D joinable by
c-quasiconvex path in D U {&, n}.
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Sufficient Conditions for QuasiConvexity

Theorem

D C R? a Jordan curve domain with finitely many boundary components
Suppose ¢ > 1 and all rectifiably accessible pts £, € 0D joinable by
c-quasiconvex path in D U {{,n}. Then D is c-quasiconvex.
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Sufficient Conditions for QuasiConvexity

Theorem

D C R? a Jordan curve domain with finitely many boundary components
Suppose ¢ > 1 and all rectifiably accessible pts £, € OD joinable by
c-quasiconvex path in D U {&,n}. Then D is c-quasiconvex.

E # () closed totally disconn set of pts lying on some strictly convex curve
= E€ satisfies all above hypotheses with ¢ = 1, but is not convex.
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Sufficient Conditions for QuasiConvexity

Theorem

D C R? a Jordan curve domain with finitely many boundary components
Suppose ¢ > 1 and all rectifiably accessible pts £, € 0D joinable by
c-quasiconvex path in D U {&,n}. Then D is c-quasiconvex.

E # () closed totally disconn set of pts lying on some strictly convex curve
= E€ satisfies all above hypotheses with ¢ = 1, but is not convex.

Can weaken hypothesis finitely many boundary components if instead
require that all boundary points be joinable by quasiconvex paths.
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QuasiConvexity Characterization

Corollary
A finitely connected D C R? is c-quasiconvex iff

(i) D is a Jordan curve domain, and

(i1) all pts &, € OD joinable by b-quasiconvex path in D U {&, n}.

For necessity, can take any b > c, for sufficiency, c = b works.
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L PlaneDomains | Finitely Connected Domains
QuasiConvexity Characterization

Corollary
A finitely connected D C R? is c-quasiconvex iff
(i) D is a Jordan curve domain, and
(i1) all pts &, € OD joinable by b-quasiconvex path in D U {&, n}.

For necessity, can take any b > c, for sufficiency, c = b works.

3 simply conn Jordan curve domains with infinitely many bdry cmpnts.

» See lotsa pix
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QuasiConvexity Characterization

Corollary
A finitely connected D C R? is c-quasiconvex iff

(i) D is a Jordan curve domain, and
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Theorem

3 compact totally disconn set in R? whose complement is not quasiconvex.
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Statements

Theorem

3 compact totally disconn set in R?> whose complement is not quasiconvex.

Proposition

VM > 0,3 closed totally disconn A C R? with —1,1 € A and st each
rectifiable path «y joining —1,1 in A€ has {(v) > M.
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. TheMainBxample | The Resut
Statements

Theorem

3 compact totally disconn set in R?> whose complement is not quasiconvex.

Proposition

VM > 0,3 closed totally disconn A C R? with —1,1 € A and st each
rectifiable path «y joining —1,1 in A€ has {(v) > M.

Construct A := N;E; where E; D E; D ... closed, E; = U;jFj;, with Fj;
nested compact sets satisfying

lim supdiam F;; = 0.
1—00 J

Thus A closed and totally disconnected.
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. TheMainBxample | The Resut
Statements

Theorem

3 compact totally disconn set in R?> whose complement is not quasiconvex.

Proposition

VM > 0,3 closed totally disconn A C R? with —1,1 € A and st each
rectifiable path «y joining —1,1 in A€ has {(v) > M.

Construct A := N;E; where E; D E; D ... closed, E; = U;jFj;, with Fj;
nested compact sets satisfying

lim supdiam F;; = 0.
1—00 J

Thus A closed and totally disconnected. Gotta describe sets Fj;.
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I, A Picture Proof
[x,y] ~ Long Broken Line Segment

X y
3x+y X+y x4+ 3y
4 2 4
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Irrigating a Square







Irrigating Squares and The First Generation of F;j
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Irrigating Squares and The First Generation of F;j










I, A Picture Proof
The Next Generation of Squares

ok .
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complements.

@ Compact totally disconnected sets need not have quasiconvex
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Summary

@ Compact totally disconnected sets need not have quasiconvex
complements.

@ Although OK in many cases (sets with small dimension or nowhere
dense projections).
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N T
Summary

@ Compact totally disconnected sets need not have quasiconvex
complements.

@ Although OK in many cases (sets with small dimension or nowhere
dense projections).

@ Are there similar examples in R3? In R"? (I guess so)

@ Is there an example with Hausdorff dimension stricly less than n?
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0 Appendix
@ Extremal Examples
@ Proof of Theorem
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a Appendix
@ Extremal Examples
@ Proof of Theorem
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Complements of Sectors

0 =m/n, G =e* % (1< k<n), Ck=CkCo+ Cx (closed convex sectors
obtained by rotating Cy and then translating) = D, =R?\ U7_, Cx is
simply conn csc #-quasicvx domain with n unbdd bdry cmpnts

A convex domain A \/2-quasiconvex domain
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Complements of Sectors

0 =m/n, G =e* % (1< k<n), Ck=CkCo+ Cx (closed convex sectors
obtained by rotating Cy and then translating) = D, =R?\ U7_, Cx is
simply conn csc #-quasicvx domain with n unbdd bdry cmpnts

A convex domain A \/2-quasiconvex domain
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N ©tremal Examples
Lots of Unbdd Boundary Components

A simply connected Jordan curve domain

Figure: Infinitely many unbounded boundary components
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