Euclidean QuasiConvexity

Hrant Hakobyn¹ David A Herron²

¹SUNY at Stony Brook

²University of Cincinnati

9:00AM 16 March 2007 AMS Special Session Complex Dynamics and Complex Function Theory

UNIVERSITY OF Cincinnati

Outlin

Introduction

- Definitions & Examples
- Euclidean Domains

Plane Domains

- Necessary Conditions
- Sufficient Conditions
- Finitely Connected Domains

3 General Sufficient Conditions

The Main Example

- The Result
- Picture Proof

Outline

- Definitions & Examples
- Euclidean Domains

Plane Domains

- Necessary Conditions
- Sufficient Conditions
- Finitely Connected Domains

3 General Sufficient Conditions

4 The Main Example

- The Result
- Picture Proof

Definition of QuasiConvexity

A metric space is quasiconvex iff it is bilipschitz equivalent to some length space; each pair of points can be joined by a rectifiable path whose length is comparable to the distance between its endpoints.

Definition of QuasiConvexity

A metric space is quasiconvex iff it is bilipschitz equivalent to some length space; each pair of points can be joined by a rectifiable path whose length is comparable to the distance between its endpoints.

Definition

A metric space is *c*-*quasiconvex* if each pair of points x, y can be joined by a rectfiable path γ satisfying

$$\ell(\gamma) \leq c |x-y|.$$

• upper regular Loewner spaces (this includes Carnot groups & certain Riemannian manifolds with non-negative Ricci curvature)

- upper regular Loewner spaces (this includes Carnot groups & certain Riemannian manifolds with non-negative Ricci curvature)
- doubling metric measure spaces supporting a Poincaré inequality

- upper regular Loewner spaces (this includes Carnot groups & certain Riemannian manifolds with non-negative Ricci curvature)
- doubling metric measure spaces supporting a Poincaré inequality
- Sobolev extension domains in Euclidean space

- upper regular Loewner spaces (this includes Carnot groups & certain Riemannian manifolds with non-negative Ricci curvature)
- doubling metric measure spaces supporting a Poincaré inequality
- Sobolev extension domains in Euclidean space
- a John disk is a quasidisk if and only if it is quasiconvex

• Which domains in \mathbb{R}^n are quasiconvex?

-

- Which domains in \mathbb{R}^n are quasiconvex?
- What do quasiconvexity obstacles look like?

- Which domains in \mathbb{R}^n are quasiconvex?
- What do quasiconvexity obstacles look like?
- If A ⊂ ℝⁿ is closed and totally disconnected, is A^c := ℝⁿ \ A quasiconvex? (A^c is connected, hence rectifiably connected)

- Which domains in \mathbb{R}^n are quasiconvex?
- What do quasiconvexity obstacles look like?
- If A ⊂ ℝⁿ is closed and totally disconnected, is A^c := ℝⁿ \ A quasiconvex? (A^c is connected, hence rectifiably connected)
- First, examine plane domains. Can characterize finitely connected quasiconvex plane domains.

- Which domains in \mathbb{R}^n are quasiconvex?
- What do quasiconvexity obstacles look like?
- If A ⊂ ℝⁿ is closed and totally disconnected, is A^c := ℝⁿ \ A quasiconvex? (A^c is connected, hence rectifiably connected)
- First, examine plane domains. Can characterize finitely connected quasiconvex plane domains.
- Next, exhibit sufficient conditions for quasiconvexity of domains in \mathbb{R}^n .

- Which domains in \mathbb{R}^n are quasiconvex?
- What do quasiconvexity obstacles look like?
- If A ⊂ ℝⁿ is closed and totally disconnected, is A^c := ℝⁿ \ A quasiconvex? (A^c is connected, hence rectifiably connected)
- First, examine plane domains. Can characterize finitely connected quasiconvex plane domains.
- Next, exhibit sufficient conditions for quasiconvexity of domains in \mathbb{R}^n .
- Last, present some especially relevant examples.

5 1 SQA

Outline

- Definitions & Examples
- Euclidean Domains

Plane Domains

- Necessary Conditions
- Sufficient Conditions
- Finitely Connected Domains

General Sufficient Conditions

4 The Main Example

- The Result
- Picture Proof

Notation

Call $C \subset \mathbb{R}^2$ a *Jordan curve* if it is a Jordan loop or a Jordan line: a *Jordan loop* is homeomorphic image of a round circle,

so always compact;

a Jordan line is image of injective path $\mathbb{R} \xrightarrow{\lambda} \mathbb{R}^2$ with $\lambda(t) \to \infty$ (in $\hat{\mathbb{R}}^2$) as $t \to \pm \infty$.

Call $C \subset \mathbb{R}^2$ a *Jordan curve* if it is a Jordan loop or a Jordan line: a *Jordan loop* is homeomorphic image of a round circle,

so always compact;

a Jordan line is image of injective path $\mathbb{R} \xrightarrow{\lambda} \mathbb{R}^2$ with $\lambda(t) \to \infty$ (in $\hat{\mathbb{R}}^2$) as $t \to \pm \infty$. Every Jordan line in \mathbb{R}^2 corresponds to a Jordan loop in $\hat{\mathbb{R}}^2$. Call $C \subset \mathbb{R}^2$ a *Jordan curve* if it is a Jordan loop or a Jordan line: a *Jordan loop* is homeomorphic image of a round circle,

so always compact;

a Jordan line is image of injective path $\mathbb{R} \xrightarrow{\lambda} \mathbb{R}^2$ with $\lambda(t) \to \infty$ (in $\hat{\mathbb{R}}^2$) as $t \to \pm \infty$. Every Jordan line in \mathbb{R}^2 corresponds to a Jordan loop in $\hat{\mathbb{R}}^2$. All topology with respect to \mathbb{R}^2 . Call $C \subset \mathbb{R}^2$ a Jordan curve if it is a Jordan loop or a Jordan line: a Jordan loop is homeomorphic image of a round circle,

so always compact;

a Jordan line is image of injective path $\mathbb{R} \xrightarrow{\lambda} \mathbb{R}^2$ with $\lambda(t) \to \infty$ (in $\hat{\mathbb{R}}^2$) as $t \to \pm \infty$. Every Jordan line in \mathbb{R}^2 corresponds to a Jordan loop in $\hat{\mathbb{R}}^2$. All topology with respect to \mathbb{R}^2 .

A Jordan curve domain is an open connected plane region each of whose boundary components is either a single point or a Jordan curve.

51= 990

A Simply Connected Jordan Curve Domain

A simply connected Jordan curve domain

Figure: Infinitely many unbounded boundary components

H Hakobyn & D A Herron (SUNY & UC)

Euclidean QuasiConvexity

C Dynamics & Fcn Thy 9 / 39

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a *c*-quasiconvex domain. Then: (i) *D* is a Jordan curve domain,

1.5

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a *c*-quasiconvex domain. Then:

- (i) D is a Jordan curve domain,
- (ii) ∂D has at most $\pi/\arcsin(1/c)$ unbounded components, and

▶ Proof of (ii)

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a c-quasiconvex domain. Then:

- (i) D is a Jordan curve domain,
- (ii) ∂D has at most $\pi/\arcsin(1/c)$ unbounded components, and
- (iii) for any b > c, all pts $\xi, \eta \in \overline{D}$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}; \therefore$ all pts of ∂D rectifiably accessible.

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a c-quasiconvex domain. Then:

- (i) D is a Jordan curve domain,
- (ii) ∂D has at most $\pi/\arcsin(1/c)$ unbounded components, and
- (iii) for any b > c, all pts $\xi, \eta \in \overline{D}$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$; \therefore all pts of ∂D rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by c-quasiconvex paths

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a c-quasiconvex domain. Then:

- (i) D is a Jordan curve domain,
- (ii) ∂D has at most $\pi/\arcsin(1/c)$ unbounded components, and
- (iii) for any b > c, all pts $\xi, \eta \in \overline{D}$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$; \therefore all pts of ∂D rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by c-quasiconvex paths (ii) & c = 1 says a convex domain has at most two unbdd bdry cmpnts

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a c-quasiconvex domain. Then:

- (i) D is a Jordan curve domain,
- (ii) ∂D has at most $\pi/\arcsin(1/c)$ unbounded components, and
- (iii) for any b > c, all pts $\xi, \eta \in \overline{D}$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$; \therefore all pts of ∂D rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by *c*-quasiconvex paths (ii) & c = 1 says a convex domain has at most two unbdd bdry cmpnts $\forall n \ge 1$, \exists simply conn *c*-quasiconvex domain with $c = 1/\sin(\pi/n)$ and *n* unbdd bdry components

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a c-quasiconvex domain. Then:

- (i) D is a Jordan curve domain,
- (ii) ∂D has at most $\pi/\arcsin(1/c)$ unbounded components, and
- (iii) for any b > c, all pts $\xi, \eta \in \overline{D}$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$; \therefore all pts of ∂D rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by *c*-quasiconvex paths (ii) & c = 1 says a convex domain has at most two unbdd bdry cmpnts $\forall n \ge 1$, \exists simply conn *c*-quasiconvex domain with $c = 1/\sin(\pi/n)$ and *n* unbdd bdry components—namely, the domains $D_n \bowtie D_n$ pix

Theorem

Suppose $D \subsetneq \mathbb{R}^2$ is a c-quasiconvex domain. Then:

- (i) D is a Jordan curve domain,
- (ii) ∂D has at most $\pi/\arcsin(1/c)$ unbounded components, and
- (iii) for any b > c, all pts $\xi, \eta \in \overline{D}$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$; \therefore all pts of ∂D rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by *c*-quasiconvex paths (ii) & c = 1 says a convex domain has at most two unbdd bdry cmpnts $\forall n \ge 1$, \exists simply conn *c*-quasiconvex domain with $c = 1/\sin(\pi/n)$ and *n* unbdd bdry components—namely, the domains D_n

A = < A = < E = </p>

) / 39

Theorem

 $D \subsetneq \mathbb{R}^2$ a Jordan curve domain with finitely many boundary components

Theorem

 $D \subseteq \mathbb{R}^2$ a Jordan curve domain with finitely many boundary components Suppose c > 1 and all rectifiably accessible pts $\xi, \eta \in \partial D$ joinable by c-quasiconvex path in $D \cup \{\xi, \eta\}$.

Theorem

 $D \subsetneq \mathbb{R}^2$ a Jordan curve domain with finitely many boundary components Suppose c > 1 and all rectifiably accessible pts $\xi, \eta \in \partial D$ joinable by c-quasiconvex path in $D \cup \{\xi, \eta\}$. Then D is c-quasiconvex.

▶ Proof

Theorem

 $D \subsetneq \mathbb{R}^2$ a Jordan curve domain with finitely many boundary components Suppose c > 1 and all rectifiably accessible pts $\xi, \eta \in \partial D$ joinable by c-quasiconvex path in $D \cup \{\xi, \eta\}$. Then D is c-quasiconvex.

Theorem

 $D \subsetneq \mathbb{R}^2$ a Jordan curve domain with finitely many boundary components Suppose c > 1 and all rectifiably accessible pts $\xi, \eta \in \partial D$ joinable by c-quasiconvex path in $D \cup \{\xi, \eta\}$. Then D is c-quasiconvex.

 $E \neq \emptyset$ closed totally disconn set of pts lying on some strictly convex curve $\implies E^c$ satisfies all above hypotheses with c = 1, but is not convex.

Theorem

 $D \subsetneq \mathbb{R}^2$ a Jordan curve domain with finitely many boundary components Suppose c > 1 and all rectifiably accessible pts $\xi, \eta \in \partial D$ joinable by c-quasiconvex path in $D \cup \{\xi, \eta\}$. Then D is c-quasiconvex.

 $E \neq \emptyset$ closed totally disconn set of pts lying on some strictly convex curve $\implies E^c$ satisfies all above hypotheses with c = 1, but is not convex.

Can weaken hypothesis *finitely many boundary components* if instead require that all boundary points be joinable by quasiconvex paths.

QuasiConvexity Characterization

Corollary

A finitely connected $D \subsetneq \mathbb{R}^2$ is c-quasiconvex iff

- (i) D is a Jordan curve domain, and
- (ii) all pts $\xi, \eta \in \partial D$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$.

For necessity, can take any b > c; for sufficiency, c = b works.
QuasiConvexity Characterization

Corollary

- A finitely connected $D \subsetneq \mathbb{R}^2$ is c-quasiconvex iff
 - (i) D is a Jordan curve domain, and
- (ii) all pts $\xi, \eta \in \partial D$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$.

For necessity, can take any b > c; for sufficiency, c = b works.

Recall that there exist simply connected Jordan curve domains with infinitely many boundary components.

▶ See lotsa pix

QuasiConvexity Characterization

Corollary

A finitely connected $D \subsetneq \mathbb{R}^2$ is c-quasiconvex iff

- $(i) \ \ D$ is a Jordan curve domain, and
- (ii) all pts $\xi, \eta \in \partial D$ joinable by b-quasiconvex path in $D \cup \{\xi, \eta\}$.

For necessity, can take any b > c; for sufficiency, c = b works.

Recall that there exist simply connected Jordan curve domains with infinitely many boundary components.

Outline

- Definitions & Examples
- Euclidean Domains

Plane Domains

- Necessary Conditions
- Sufficient Conditions
- Finitely Connected Domains

3 General Sufficient Conditions

4 The Main Example

- The Result
- Picture Proof

-

Fact

Suppose $A \subset \mathbb{R}^n$ is closed and each projection onto a coordinate (n-1)-plane has (n-1)-measure zero. Then A^c is quasiconvex.

▶ See Proof

Theorem

Suppose $A \subset \mathbb{R}^n$ is closed and each projection onto a coordinate (n-1)-plane has (n-1)-measure zero or is nowhere dense. Then A^c is quasiconvex.

Theorem

Suppose $A \subset \mathbb{R}^n$ is closed and each projection onto a coordinate (n-1)-plane has (n-1)-measure zero or is nowhere dense. Then A^c is quasiconvex.

Thus A^c is quasiconvex if

- dim $_{\mathcal{H}} A < n-1$, or $\mathcal{H}^{n-1}(A) = 0$, or
- A is *n*-fold product of a positive measure nowhere dense subset of \mathbb{R} .

Theorem

Suppose $A \subset \mathbb{R}^n$ is closed and each projection onto a coordinate (n-1)-plane has (n-1)-measure zero or is nowhere dense. Then A^c is quasiconvex.

Thus A^c is quasiconvex if

- dim $_{\mathcal{H}} A < n-1$, or $\mathcal{H}^{n-1}(A) = 0$, or
- A is *n*-fold product of a positive measure nowhere dense subset of \mathbb{R} .

So, there exists quasiconvex $D \subset \mathbb{R}^n$ with $\mathcal{H}^n(\partial D) > 0$.

Outline

- Definitions & Examples
- Euclidean Domains

Plane Domains

- Necessary Conditions
- Sufficient Conditions
- Finitely Connected Domains

General Sufficient Conditions

4 The Main Example

- The Result
- Picture Proof

-

Theorem

There exists a compact totally disconnected set $A \subset \mathbb{R}^n$ with Hausdorff dimension dim_H A = n - 1 and A^c non-quasiconvex.

= 900

Theorem

There exists a compact totally disconnected set $A \subset \mathbb{R}^n$ with Hausdorff dimension dim_H A = n - 1 and A^c non-quasiconvex.

Corollary

For closed $A \subset \mathbb{R}^n$, $\mathcal{H}^{n-1}(A) = 0 \implies A^c$ quasiconvex. OTOH,

ELE NOR

Theorem

There exists a compact totally disconnected set $A \subset \mathbb{R}^n$ with Hausdorff dimension dim_{\mathcal{H}} A = n - 1 and A^c non-quasiconvex.

Corollary

For closed $A \subset \mathbb{R}^n$, $\mathcal{H}^{n-1}(A) = 0 \implies A^c$ quasiconvex. OTOH, $\forall \alpha \in (n-1, n], \exists$ compact totally disconn A, B with positive finite α -measure and such that A^c is not quasiconvex while B^c is quasiconvex.

5 1 SQC

Theorem

There exists a compact totally disconnected set $A \subset \mathbb{R}^n$ with Hausdorff dimension dim_H A = n - 1 and A^c non-quasiconvex.

Corollary

For closed $A \subset \mathbb{R}^n$, $\mathcal{H}^{n-1}(A) = 0 \implies A^c$ quasiconvex. OTOH, $\forall \alpha \in (n-1, n], \exists$ compact totally disconn A, B with positive finite α -measure and such that A^c is not quasiconvex while B^c is quasiconvex. When $\alpha = n - 1$, still get such A, B but only know A has non-zero (n-1)-measure.

H Hakobyn & D A Herron (SUNY & UC)

3 × 4 3 × 3 1 × 0 0 0

Proposition

Key Tool

$\mathsf{Proposition} \implies \mathsf{Theorem}$

H Hakobyn & D A Herron (SUNY & UC)

Key Tool

Proposition

The Result

Idea for Proof of Proposition

Use Cantor type construction:

get $A := \bigcap_i E_i$ where $E_1 \supset E_2 \supset \ldots$, $E_i = \bigcup_j B_{ij}$ compact, with B_{ij} nested closed rectangular boxes satisfying

 $\lim_{i\to\infty}\sup_j \operatorname{diam} B_{ij}=0\,.$

Thus A closed and totally disconnected.

5 1 SQC

Idea for Proof of Proposition

Use Cantor type construction:

get $A := \bigcap_i E_i$ where $E_1 \supset E_2 \supset \ldots$, $E_i = \bigcup_j B_{ij}$ compact, with B_{ij} nested closed rectangular boxes satisfying

 $\lim_{i\to\infty}\sup_j \operatorname{diam} B_{ij}=0\,.$

Thus A closed and totally disconnected.

Gotta describe sets B_{ij} .

SIN NOR

Construction in \mathbb{R}^2

Start with thin flat $[0, s] \times [0, t]$ rectangle. Divide into four horizontal corridors ($[0, s] \times [0, t/4]$, etc.). Place $(2s/3) \times (\varepsilon t)$ barriers into vertical middles of each of these corridors. Alternate horizontal placement of barriers.

Construction in \mathbb{R}^2

Start with thin flat $[0, s] \times [0, t]$ rectangle. Divide into four horizontal corridors ($[0, s] \times [0, t/4]$, etc.). Place $(2s/3) \times (\varepsilon t)$ barriers into vertical middles of each of these corridors. Alternate horizontal placement of barriers. Path in original rectangle joining horizontal edges and avoiding barriers has 'horizontal length' at least s.

a 'penetrating path' traversing a plane maze

Construction in \mathbb{R}^2

Start with thin flat $[0, s] \times [0, t]$ rectangle. Divide into four horizontal corridors ($[0, s] \times [0, t/4]$, etc.). Place $(2s/3) \times (\varepsilon t)$ barriers into vertical middles of each of these corridors. Alternate horizontal placement of barriers. Path in original rectangle joining horizontal edges and avoiding barriers has 'horizontal length' at least *s*. Such a 'penetrating path' can be replaced—without increasing 'horizontal length'—by 'avoiding path'.

an 'avoiding path' traversing the boundary a 'penetrating path' traversing a plane maze

Key Tool

Proposition

B – a Thin Flat $s \times s \times t$ Rectangular Box in \mathbb{R}^3

C – a Thin Flat $s \times s \times (t/6)$ Layer of B

ъ.

A SubMaze in C with $(2s/3) \times (2s/3) \times (\varepsilon t)$ Barriers

-

A SubMaze in C with $(2s/3) \times (2s/3) \times (\varepsilon t)$ Barriers

• Compact totally disconnected sets may not have quasiconvex complements.

= nac

Summary

- Compact totally disconnected sets may not have quasiconvex complements.
- Altho true for 'small' sets (Hausdorff dimension below n 1, or zero-measure projections, or nowhere dense projections).

I= nan

Summary

- Compact totally disconnected sets may not have quasiconvex complements.
- Altho true for 'small' sets (Hausdorff dimension below n 1, or zero-measure projections, or nowhere dense projections).
- Is there an example with positive finite (n-1)-measure?

ELE NOR

Summary

- Compact totally disconnected sets may not have quasiconvex complements.
- Altho true for 'small' sets (Hausdorff dimension below n-1, or zero-measure projections, or nowhere dense projections).
- Is there an example with positive finite (n-1)-measure? (I guess no)

EL SQA

Summar

The End

H Hakobyn & D A Herron (SUNY & UC)

Euclidean QuasiConvexity

5 Appendix

- Extremal Examples
- Proof of Theorem A(i)
- Proof of Theorem A(ii)
- Proof of Theorem B
- Proof of Theorem

-
Outline

5 Appendix

- Extremal Examples
- Proof of Theorem A(i)
- Proof of Theorem A(ii)
- Proof of Theorem B
- Proof of Theorem

-

Complements of Sectors

H Hakobyn & D A Herron (SUNY & UC)

Complements of Sectors

H Hakobyn & D A Herron (SUNY & UC)

xtremal Examples

Lots of Unbdd Boundary Components

A simply connected Jordan curve domain

Figure: Infinitely many unbounded boundary components

H Hakobyn & D A Herron (SUNY & UC)

٠

Euclidean QuasiConvexity

C Dynamics & Fcn Thy 35 / 39

ELE NOR

QuasiConvex Plane Domains are Jordan Curve Domains

H Hakobyn & D A Herron (SUNY & UC)

Euclidean QuasiConvexity

C Dynamics & Fcn Thy 36 / 39

Proof of Theorem A(i)

QuasiConvex Plane Domains are Jordan Curve Domains

H Hakobyn & D A Herron (SUNY & UC)

Euclidean QuasiConvexity

C Dynamics & Fcn Thy 36 / 39

Proof of Theorem A(i)

QuasiConvex Plane Domains are Jordan Curve Domains

H Hakobyn & D A Herron (SUNY & UC)

Euclidean QuasiConvexity

C Dynamics & Fcn Thy

36 / 39

QuasiConvex Plane Domains are Jordan Curve Domains

H Hakobyn & D A Herron (SUNY & UC)

Euclidean QuasiConvexity

© Dynamics & Fcn Thy 36 / 39

Qcvx Have Finitely Many Unbdd Bdry Components

Basic Example Given $0 < \theta \le \pi/2$, $C_{\theta} = \{z \in \mathbb{C} : |\operatorname{Arg}(z)| \le \theta\}$ is closed convex sector and the concave sector $D_{\theta} = \mathbb{R}^2 \setminus C_{\theta}$ is $\operatorname{csc} \theta$ -quasiconvex.

Figure: A concave sector is quasiconvex.

Qcvx Have Finitely Many Unbdd Bdry Components

 $\theta = \pi/n$, $\zeta_k = e^{2ki\theta}$ ($1 \le k \le n$), $C_k = \zeta_k C_\theta + \zeta_k$ (closed convex sectors obtained by rotating C_θ and then translating) \Longrightarrow

Figure: A concave sector is quasiconvex.

Qcvx Have Finitely Many Unbdd Bdry Components

◀ Go Back

 $\theta = \pi/n, \ \zeta_k = e^{2ki\theta} \ (1 \le k \le n), \ C_k = \zeta_k C_\theta + \zeta_k \ (\text{closed convex sectors})$ obtained by rotating C_θ and then translating) $\implies D_n = \mathbb{R}^2 \setminus \bigcup_{k=1}^n C_k$ is simply connected csc θ -quasiconvex domain with n unbdd bdry cmpnts

Proof of Theorem B

Suff Cond for Finitely Many Bdry Components

H Hakobyn & D A Herron (SUNY & UC)

Suff Cond for Finitely Many Bdry Components

H Hakobyn & D A Herron (SUNY & UC)

Suff Cond for Finitely Many Bdry Components

H Hakobyn & D A Herron (SUNY & UC)

Suff Cond for Finitely Many Bdry Components

H Hakobyn & D A Herron (SUNY & UC)

Proof of Theorem B

Suff Cond for Finitely Many Bdry Components

H Hakobyn & D A Herron (SUNY & UC)

Euclidean QuasiConvexity

© Dynamics & Fcn Thy 38 / 39

Proof of Theorem B

Suff Cond for Finitely Many Bdry Components

H Hakobyn & D A Herron (SUNY & UC)

Euclidean QuasiConvexity

© Dynamics & Fcn Thy 38 / 39

H Hakobyn & D A Herron (SU<u>NY & UC)</u>

