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Introduction Definitions & Examples

Definition of QuasiConvexity

A metric space is quasiconvex iff it is bilipschitz equivalent to some length
space; each pair of points can be joined by a rectifiable path whose length
is comparable to the distance between its endpoints.

y

x

a quasiconvex path

Figure: Joining two points
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Definition of QuasiConvexity

A metric space is quasiconvex iff it is bilipschitz equivalent to some length
space; each pair of points can be joined by a rectifiable path whose length
is comparable to the distance between its endpoints.

Definition

A metric space is c-quasiconvex if each pair of points x , y can be joined
by a rectfiable path γ satisfying

ℓ(γ) ≤ c |x − y | .
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Introduction Definitions & Examples

Examples of QuasiConvex Spaces

upper regular Loewner spaces (this includes Carnot groups & certain
Riemannian manifolds with non-negative Ricci curvature)
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H Hakobyn & D A Herron (SUNY & UC) (SUNY at Stony Brook, University of Cincinnati)Euclidean QuasiConvexity C Dynamics & Fcn Thy 5 / 39



Introduction Definitions & Examples

Examples of QuasiConvex Spaces

upper regular Loewner spaces (this includes Carnot groups & certain
Riemannian manifolds with non-negative Ricci curvature)

doubling metric measure spaces supporting a Poincaré inequality
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Introduction Definitions & Examples

Examples of QuasiConvex Spaces

upper regular Loewner spaces (this includes Carnot groups & certain
Riemannian manifolds with non-negative Ricci curvature)

doubling metric measure spaces supporting a Poincaré inequality

Sobolev extension domains in Euclidean space

a John disk is a quasidisk if and only if it is quasiconvex
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Introduction Euclidean Domains

Main Questions & Outline of Talk

Which domains in Rn are quasiconvex?
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Introduction Euclidean Domains

Main Questions & Outline of Talk

Which domains in Rn are quasiconvex?

What do quasiconvexity obstacles look like?

If A ⊂ Rn is closed and totally disconnected, is Ac := Rn \ A

quasiconvex? (Ac is connected, hence rectifiably connected)

First, examine plane domains. Can characterize finitely connected
quasiconvex plane domains.

Next, exhibit sufficient conditions for quasiconvexity of domains in Rn.

Last, present some especially relevant examples.
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Plane Domains Necessary Conditions

Notation

Call C ⊂ R2 a Jordan curve if it is a Jordan loop or a Jordan line:

a Jordan loop is homeomorphic image of a round circle,
so always compact;

a Jordan line is image of injective path R
λ→ R2 with
λ(t) → ∞ (in R̂2) as t → ±∞.
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Notation

Call C ⊂ R2 a Jordan curve if it is a Jordan loop or a Jordan line:

a Jordan loop is homeomorphic image of a round circle,
so always compact;

a Jordan line is image of injective path R
λ→ R2 with
λ(t) → ∞ (in R̂2) as t → ±∞.

Every Jordan line in R2 corresponds to a Jordan loop in R̂2.

All topology with respect to R2.

A Jordan curve domain is an open connected plane region each of whose
boundary components is either a single point or a Jordan curve.
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Plane Domains Necessary Conditions

A Simply Connected Jordan Curve Domain

b b b b b b

A simply connected Jordan curve domain

Figure: Infinitely many unbounded boundary components
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Plane Domains Necessary Conditions

Necessary Conditions for QuasiConvexity

Theorem

Suppose D ( R2 is a c-quasiconvex domain. Then:

(i) D is a Jordan curve domain,

Proof of (i)

H Hakobyn & D A Herron (SUNY & UC) (SUNY at Stony Brook, University of Cincinnati)Euclidean QuasiConvexity C Dynamics & Fcn Thy 10 / 39



Plane Domains Necessary Conditions

Necessary Conditions for QuasiConvexity

Theorem

Suppose D ( R2 is a c-quasiconvex domain. Then:

(i) D is a Jordan curve domain,

(ii) ∂D has at most π/ arcsin(1/c) unbounded components, and

Proof of (ii)

H Hakobyn & D A Herron (SUNY & UC) (SUNY at Stony Brook, University of Cincinnati)Euclidean QuasiConvexity C Dynamics & Fcn Thy 10 / 39



Plane Domains Necessary Conditions

Necessary Conditions for QuasiConvexity

Theorem

Suppose D ( R2 is a c-quasiconvex domain. Then:

(i) D is a Jordan curve domain,

(ii) ∂D has at most π/ arcsin(1/c) unbounded components, and

(iii) for any b > c, all pts ξ, η ∈ D̄ joinable by b-quasiconvex path in

D ∪ {ξ, η}; ∴ all pts of ∂D rectifiably accessible.

H Hakobyn & D A Herron (SUNY & UC) (SUNY at Stony Brook, University of Cincinnati)Euclidean QuasiConvexity C Dynamics & Fcn Thy 10 / 39



Plane Domains Necessary Conditions

Necessary Conditions for QuasiConvexity

Theorem

Suppose D ( R2 is a c-quasiconvex domain. Then:

(i) D is a Jordan curve domain,

(ii) ∂D has at most π/ arcsin(1/c) unbounded components, and

(iii) for any b > c, all pts ξ, η ∈ D̄ joinable by b-quasiconvex path in

D ∪ {ξ, η}; ∴ all pts of ∂D rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by c-quasiconvex paths

H Hakobyn & D A Herron (SUNY & UC) (SUNY at Stony Brook, University of Cincinnati)Euclidean QuasiConvexity C Dynamics & Fcn Thy 10 / 39



Plane Domains Necessary Conditions

Necessary Conditions for QuasiConvexity

Theorem

Suppose D ( R2 is a c-quasiconvex domain. Then:

(i) D is a Jordan curve domain,

(ii) ∂D has at most π/ arcsin(1/c) unbounded components, and

(iii) for any b > c, all pts ξ, η ∈ D̄ joinable by b-quasiconvex path in

D ∪ {ξ, η}; ∴ all pts of ∂D rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by c-quasiconvex paths

(ii) & c = 1 says a convex domain has at most two unbdd bdry cmpnts

H Hakobyn & D A Herron (SUNY & UC) (SUNY at Stony Brook, University of Cincinnati)Euclidean QuasiConvexity C Dynamics & Fcn Thy 10 / 39



Plane Domains Necessary Conditions

Necessary Conditions for QuasiConvexity

Theorem

Suppose D ( R2 is a c-quasiconvex domain. Then:

(i) D is a Jordan curve domain,

(ii) ∂D has at most π/ arcsin(1/c) unbounded components, and

(iii) for any b > c, all pts ξ, η ∈ D̄ joinable by b-quasiconvex path in

D ∪ {ξ, η}; ∴ all pts of ∂D rectifiably accessible.

(iii) is best possible: may be bdry pts not joinable by c-quasiconvex paths

(ii) & c = 1 says a convex domain has at most two unbdd bdry cmpnts

∀n ≥ 1, ∃ simply conn c-quasiconvex domain with c = 1/ sin(π/n) and n

unbdd bdry components

H Hakobyn & D A Herron (SUNY & UC) (SUNY at Stony Brook, University of Cincinnati)Euclidean QuasiConvexity C Dynamics & Fcn Thy 10 / 39



Plane Domains Necessary Conditions

Necessary Conditions for QuasiConvexity
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(iii) for any b > c, all pts ξ, η ∈ D̄ joinable by b-quasiconvex path in

D ∪ {ξ, η}; ∴ all pts of ∂D rectifiably accessible.
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Plane Domains Sufficient Conditions

Sufficient Conditions for QuasiConvexity

Theorem

D ( R2 a Jordan curve domain with finitely many boundary components
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Sufficient Conditions for QuasiConvexity

Theorem

D ( R2 a Jordan curve domain with finitely many boundary components

Suppose c > 1 and all rectifiably accessible pts ξ, η ∈ ∂D joinable by

c-quasiconvex path in D ∪ {ξ, η}.
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Sufficient Conditions for QuasiConvexity

Theorem

D ( R2 a Jordan curve domain with finitely many boundary components

Suppose c > 1 and all rectifiably accessible pts ξ, η ∈ ∂D joinable by

c-quasiconvex path in D ∪ {ξ, η}. Then D is c-quasiconvex.

Proof
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Plane Domains Sufficient Conditions

Sufficient Conditions for QuasiConvexity

Theorem

D ( R2 a Jordan curve domain with finitely many boundary components

Suppose c > 1 and all rectifiably accessible pts ξ, η ∈ ∂D joinable by

c-quasiconvex path in D ∪ {ξ, η}. Then D is c-quasiconvex.

E 6= ∅ closed totally disconn set of pts lying on some strictly convex curve
=⇒ E c satisfies all above hypotheses with c = 1, but is not convex.
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Plane Domains Sufficient Conditions

Sufficient Conditions for QuasiConvexity

Theorem

D ( R2 a Jordan curve domain with finitely many boundary components

Suppose c > 1 and all rectifiably accessible pts ξ, η ∈ ∂D joinable by

c-quasiconvex path in D ∪ {ξ, η}. Then D is c-quasiconvex.

E 6= ∅ closed totally disconn set of pts lying on some strictly convex curve
=⇒ E c satisfies all above hypotheses with c = 1, but is not convex.

Can weaken hypothesis finitely many boundary components if instead
require that all boundary points be joinable by quasiconvex paths.
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Plane Domains Finitely Connected Domains

QuasiConvexity Characterization

Corollary

A finitely connected D ( R2 is c-quasiconvex iff

(i) D is a Jordan curve domain, and

(ii) all pts ξ, η ∈ ∂D joinable by b-quasiconvex path in D ∪ {ξ, η}.
For necessity, can take any b > c; for sufficiency, c = b works.
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Plane Domains Finitely Connected Domains

QuasiConvexity Characterization

Corollary

A finitely connected D ( R2 is c-quasiconvex iff

(i) D is a Jordan curve domain, and

(ii) all pts ξ, η ∈ ∂D joinable by b-quasiconvex path in D ∪ {ξ, η}.
For necessity, can take any b > c; for sufficiency, c = b works.

Recall that there exist simply connected Jordan curve domains with
infinitely many boundary components.

See lotsa pix
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General Sufficient Conditions

General Sufficient Conditions

Fact

Suppose A ⊂ Rn is closed and each projection onto a coordinate

(n − 1)-plane has (n − 1)-measure zero. Then Ac is quasiconvex.

See Proof
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General Sufficient Conditions

Theorem

Suppose A ⊂ Rn is closed and each projection onto a coordinate

(n − 1)-plane has (n − 1)-measure zero or is nowhere dense.

Then Ac is quasiconvex.
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General Sufficient Conditions

General Sufficient Conditions

Theorem

Suppose A ⊂ Rn is closed and each projection onto a coordinate

(n − 1)-plane has (n − 1)-measure zero or is nowhere dense.

Then Ac is quasiconvex.

Thus Ac is quasiconvex if

dimH A < n − 1, or Hn−1(A) = 0, or

A is n-fold product of a positive measure nowhere dense subset of R.
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General Sufficient Conditions

General Sufficient Conditions

Theorem

Suppose A ⊂ Rn is closed and each projection onto a coordinate

(n − 1)-plane has (n − 1)-measure zero or is nowhere dense.

Then Ac is quasiconvex.

Thus Ac is quasiconvex if

dimH A < n − 1, or Hn−1(A) = 0, or

A is n-fold product of a positive measure nowhere dense subset of R.

So, there exists quasiconvex D ⊂ Rn with Hn(∂D) > 0.
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The Main Example The Result

Statements

Theorem

There exists a compact totally disconnected set A ⊂ Rn with Hausdorff

dimension dimH A = n − 1 and Ac non-quasiconvex.
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dimension dimH A = n − 1 and Ac non-quasiconvex.

Corollary

For closed A ⊂ Rn, Hn−1(A) = 0 =⇒ Ac quasiconvex. OTOH,

∀α ∈ (n − 1, n] ,∃ compact totally disconn A,B with positive finite

α-measure and such that Ac is not quasiconvex while Bc is quasiconvex.
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The Main Example The Result

Statements

Theorem

There exists a compact totally disconnected set A ⊂ Rn with Hausdorff

dimension dimH A = n − 1 and Ac non-quasiconvex.

Corollary

For closed A ⊂ Rn, Hn−1(A) = 0 =⇒ Ac quasiconvex. OTOH,

∀α ∈ (n − 1, n] ,∃ compact totally disconn A,B with positive finite

α-measure and such that Ac is not quasiconvex while Bc is quasiconvex.

When α = n − 1, still get such A,B but only know A has non-zero

(n − 1)-measure.
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The Main Example The Result

Key Tool

Proposition

∀M > 0,∃ compact totally disconn A ⊂ [−M,M]n−1 × [−1/2, 1/2] with

±e ∈ Ac , e = (0, . . . , 0, 1), dimH A ≤ n − 1, and st each rectifiable path γ
joining ±e in Ac has ℓ(γ) ≥ M.

b

e

b

b

−e

[−M,M]n−1
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The Main Example The Result

Proposition =⇒ Theorem
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Key Tool

Proposition

∀M > 0,∃ compact totally disconn A ⊂ [−M,M]n−1 × [−1/2, 1/2] with

±e ∈ Ac , e = (0, . . . , 0, 1), dimH A ≤ n − 1, and st each rectifiable path γ
joining ±e in Ac has ℓ(γ) ≥ M.

b

e

b

b

−e
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The Main Example The Result

Idea for Proof of Proposition

Use Cantor type construction:
get A := ∩iEi where E1 ⊃ E2 ⊃ . . . , Ei = ∪jBij compact, with Bij nested
closed rectangular boxes satisfying

lim
i→∞

sup
j

diamBij = 0 .

Thus A closed and totally disconnected.

H Hakobyn & D A Herron (SUNY & UC) (SUNY at Stony Brook, University of Cincinnati)Euclidean QuasiConvexity C Dynamics & Fcn Thy 20 / 39



The Main Example The Result

Idea for Proof of Proposition

Use Cantor type construction:
get A := ∩iEi where E1 ⊃ E2 ⊃ . . . , Ei = ∪jBij compact, with Bij nested
closed rectangular boxes satisfying

lim
i→∞

sup
j

diamBij = 0 .

Thus A closed and totally disconnected. Gotta describe sets Bij .
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The Main Example Picture Proof

Construction in R2

Start with thin flat [0, s] × [0, t] rectangle. Divide into four horizontal
corridors ([0, s] × [0, t/4], etc.). Place (2s/3) × (ε t) barriers into vertical
middles of each of these corridors. Alternate horizontal placement of
barriers.

s

t/4

ε t

s/3
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The Main Example Picture Proof

Construction in R2

Start with thin flat [0, s] × [0, t] rectangle. Divide into four horizontal
corridors ([0, s] × [0, t/4], etc.). Place (2s/3) × (ε t) barriers into vertical
middles of each of these corridors. Alternate horizontal placement of
barriers. Path in original rectangle joining horizontal edges and avoiding
barriers has ‘horizontal length’ at least s.

s

t/4

ε t

s/3

a ‘penetrating path’ traversing a plane maze
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The Main Example Picture Proof

Construction in R2

Start with thin flat [0, s] × [0, t] rectangle. Divide into four horizontal
corridors ([0, s] × [0, t/4], etc.). Place (2s/3) × (ε t) barriers into vertical
middles of each of these corridors. Alternate horizontal placement of
barriers. Path in original rectangle joining horizontal edges and avoiding
barriers has ‘horizontal length’ at least s. Such a ‘penetrating path’ can
be replaced—without increasing ‘horizontal length’—by ‘avoiding path’.

s

t/4

ε t

s/3

a ‘penetrating path’ traversing a plane maze
an ‘avoiding path’ traversing the boundary
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The Main Example Picture Proof

Key Tool

Proposition

∀M > 0,∃ compact totally disconn A ⊂ [−M,M]n−1 × [−1/2, 1/2] with

±e ∈ Ac , e = (0, . . . , 0, 1), dimH A ≤ n − 1, and st each rectifiable path γ
joining ±e in Ac has ℓ(γ) ≥ M.

b

e

b

b

−e

[−M,M]n−1
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The Main Example Picture Proof

B – a Thin Flat s × s × t Rectangular Box in R3

x

y

v

b(s, 0, t)

b

(s, s, 0)

b

b

b

b
(0, 0, t)

b(0, s, t)
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The Main Example Picture Proof

The Rectangular Box B Divided into 6 Layers

x

y

v

b(s, 0, t)

b

(s, s, 0)

b

b
(0, 0, t)

b(0, s, t)
b(s, 0, t/2)
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The Main Example Picture Proof

C – a Thin Flat s × s × (t/6) Layer of B

x y

v

b(s, 0, t/6)

b

(s, s, 0)

b

b b

b

(0, 0, t/6)

b

(0, s, t/6)
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The Main Example Picture Proof

A SubMaze in C with (2s/3)× (2s/3)× (ε t) Barriers
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The Main Example Picture Proof

A Box Maze in B Built with 6 Stacked SubMazes

x y

v
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The Main Example Picture Proof

A Box Maze in B Built with 6 Stacked SubMazes

x y

v
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The Main Example Picture Proof

A SubMaze in C with (2s/3)× (2s/3)× (ε t) Barriers
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Summary

Summary

Compact totally disconnected sets may not have quasiconvex
complements.
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Summary

Summary

Compact totally disconnected sets may not have quasiconvex
complements.

Altho true for ‘small’ sets (Hausdorff dimension below n − 1, or
zero-measure projections, or nowhere dense projections).
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Summary

Summary

Compact totally disconnected sets may not have quasiconvex
complements.

Altho true for ‘small’ sets (Hausdorff dimension below n − 1, or
zero-measure projections, or nowhere dense projections).

Is there an example with positive finite (n − 1)-measure?
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Summary

Summary

Compact totally disconnected sets may not have quasiconvex
complements.

Altho true for ‘small’ sets (Hausdorff dimension below n − 1, or
zero-measure projections, or nowhere dense projections).

Is there an example with positive finite (n − 1)-measure? (I guess no)

H Hakobyn & D A Herron (SUNY & UC) (SUNY at Stony Brook, University of Cincinnati)Euclidean QuasiConvexity C Dynamics & Fcn Thy 29 / 39



Summary

The End

(⌣̈)
===
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5 Appendix
Extremal Examples
Proof of Theorem A(i)
Proof of Theorem A(ii)
Proof of Theorem B
Proof of Theorem
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Appendix Extremal Examples

Complements of Sectors

θ = π/n, ζk = e2kiθ (1 ≤ k ≤ n), Ck = ζkCθ + ζk (closed convex sectors
obtained by rotating Cθ and then translating) =⇒ Dn = R2 \ ∪n

k=1Ck is
simply conn csc θ-quasicvx domain with n unbdd bdry cmpnts Go Back

D2

A convex domain

D4

A
√

2-quasiconvex domain
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Appendix Extremal Examples

Lots of Unbdd Boundary Components

Go Back

b b b b b b

A simply connected Jordan curve domain

Figure: Infinitely many unbounded boundary components
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Appendix Proof of Theorem A(i)

QuasiConvex Plane Domains are Jordan Curve Domains

a quasiconvex domain D
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QuasiConvex Plane Domains are Jordan Curve Domains

a quasiconvex domain D

B

a cmpnt of ∂D

H Hakobyn & D A Herron (SUNY & UC) (SUNY at Stony Brook, University of Cincinnati)Euclidean QuasiConvexity C Dynamics & Fcn Thy 36 / 39



Appendix Proof of Theorem A(i)

QuasiConvex Plane Domains are Jordan Curve Domains

a quasiconvex domain D

B

a cmpnt of ∂D
C

cmpnt of R2 \ D
containing B
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Appendix Proof of Theorem A(i)

QuasiConvex Plane Domains are Jordan Curve Domains

Go Back

a quasiconvex domain D

B

a cmpnt of ∂D
C

cmpnt of R2 \ D
containing B

G = R2 \ C
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Appendix Proof of Theorem A(ii)

Qcvx Have Finitely Many Unbdd Bdry Components

Basic Example Given 0 < θ ≤ π/2, Cθ = {z ∈ C : |Arg(z)| ≤ θ} is closed
convex sector and the concave sector Dθ = R2 \ Cθ is csc θ-quasiconvex.

2θ

Dθ is c-quasiconvex
where c = csc(θ)

Dθ = R2 \ Cθ

Cθ

Figure: A concave sector is quasiconvex.
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Appendix Proof of Theorem A(ii)

Qcvx Have Finitely Many Unbdd Bdry Components

θ = π/n, ζk = e2kiθ (1 ≤ k ≤ n), Ck = ζkCθ + ζk (closed convex sectors
obtained by rotating Cθ and then translating) =⇒

2θ

Dθ is c-quasiconvex
where c = csc(θ)

Dθ = R2 \ Cθ

Cθ

Figure: A concave sector is quasiconvex.
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Appendix Proof of Theorem A(ii)

Qcvx Have Finitely Many Unbdd Bdry Components

Go Back

θ = π/n, ζk = e2kiθ (1 ≤ k ≤ n), Ck = ζkCθ + ζk (closed convex sectors
obtained by rotating Cθ and then translating) =⇒ Dn = R2 \ ∪n

k=1Ck is
simply connected csc θ-quasiconvex domain with n unbdd bdry cmpnts

D2

A convex domain

D4

A
√

2-quasiconvex domain
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Appendix Proof of Theorem B

Suff Cond for Finitely Many Bdry Components
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Appendix Proof of Theorem B

Suff Cond for Finitely Many Bdry Components

x

y

b

b
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Appendix Proof of Theorem B

Suff Cond for Finitely Many Bdry Components

x

y

b

b
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Appendix Proof of Theorem B

Suff Cond for Finitely Many Bdry Components

x

y

b
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Appendix Proof of Theorem B

Suff Cond for Finitely Many Bdry Components

x

y

b

b
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Appendix Proof of Theorem B

Suff Cond for Finitely Many Bdry Components

Go Back

x

y

b

b
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Appendix Proof of Theorem

Complement of Plane Set with Zero Measure Projections

b

bdisks in Ac
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Appendix Proof of Theorem

Complement of Plane Set with Zero Measure Projections

b

bdisks in Ac

Lx

Ly
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Appendix Proof of Theorem

Complement of Plane Set with Zero Measure Projections

Go Back

b

bdisks in Ac

Lx

Lyjoining points in Ac via a PL path
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