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Conformal Deformations

Ω ⊂ R̂n := Rn ∪ {∞} (n ≥ 2) is a quasihyperbolic domain, meaning that
Ωc := R̂n \Ω contains at least 2 points.
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Ω ⊂ R̂n := Rn ∪ {∞} (n ≥ 2) is a quasihyperbolic domain, meaning that
Ωc := R̂n \Ω contains at least 2 points. A conformal metric ρ ds on Ω
induces a conformal deformation Ωρ of Ω:

Ωρ := (Ω, dρ)

where dρ is length distance given via

dρ(x , y) := inf
γ
ℓρ(γ) := inf

γ

∫

γ

ρ ds ;

here the infimum is taken over all paths γ in
Ω that join the points x , y .

Ω
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Call γ a ρ-geodesic if dρ(x , y) = ℓρ(γ); sometimes write [x , y ]ρ, but these
need not be unique!
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Geodesic Convexity

Say that A ⊂ Ω is ρ-convex if geodesically convex in Ωρ; this means that
for all points x , y in A, every ρ-geodesic [x , y ]ρ lies in A.
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Introduction

Geodesic Convexity

Say that A ⊂ Ω is ρ-convex if geodesically convex in Ωρ; this means that
for all points x , y in A, every ρ-geodesic [x , y ]ρ lies in A.

Question

When is a ball in Ω convex in Ωρ?

Recall that an open ball in R̂n is an open Euclidean ball or an open
half-space (both in Rn) or the complement of a closed Euclidean ball.
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Ball Convexity

Consider hyperbolic metric λ ds on hyperbolic plane domains in Ĉ.
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Ball Convexity

Consider hyperbolic metric λ ds on hyperbolic plane domains in Ĉ.

Jørgensen (1956)

If D is a disk (in Ĉ) and D ⊂ Ω, then D is h-convex in Ω.

Consider quasihyperbolic metric δ−1ds on quasihyperbolic domains in Rn.

Martin (1984)

If B is a ball (in Rn) and B ⊂ Ω, then B is k-convex in Ω.
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Universal Convexity

M = {ρΩds}Ω∈O a class of conformal metrics defined on domains Ω in
some collection O of quasihyperbolic domains in R̂n.
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M = {ρΩds}Ω∈O a class of conformal metrics defined on domains Ω in
some collection O of quasihyperbolic domains in R̂n.

A non-empty open set U is universally convex with respect to M (or,
ρ-UC), provided U ⊂ Ω ∈ O =⇒ U is convex in Ωρ.
Usually ignore trivial cases U = R̂n, U = Rn, etc.
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M = {ρΩds}Ω∈O a class of conformal metrics defined on domains Ω in
some collection O of quasihyperbolic domains in R̂n.

A non-empty open set U is universally convex with respect to M (or,
ρ-UC), provided U ⊂ Ω ∈ O =⇒ U is convex in Ωρ.

Example

Jørgensen: Disks (in Ĉ) are universally hyperbolically convex.
Martin: Balls (in Rn) are universally quasi-hyperbolically convex.

David Herron (University of Cincinnati) Universal Convexity Red Raider at Texas Tech 7 / 18



Introduction

Universal Convexity

M = {ρΩds}Ω∈O a class of conformal metrics defined on domains Ω in
some collection O of quasihyperbolic domains in R̂n.

A non-empty open set U is universally convex with respect to M (or,
ρ-UC), provided U ⊂ Ω ∈ O =⇒ U is convex in Ωρ.

Brown (1982)

Disks (in Ĉ) are the only universally hyperbolically convex objects.
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Hyperbolic Metric
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constant curvature -1 conformal metric λ ds; this is called Poincaré’s
hyperbolic metric in Ω.
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constant curvature -1 conformal metric λ ds; this is called Poincaré’s
hyperbolic metric in Ω. This metric is characterized by the property that
for any holomorphic covering D
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−→ Ω, the pullback
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Hyperbolic Metric

For any hyperbolic domain Ω in Ĉ, there is a unique maximal complete
constant curvature -1 conformal metric λ ds; this is called Poincaré’s
hyperbolic metric in Ω. This metric is characterized by the property that
for any holomorphic covering D

p
−→ Ω, the pullback

p∗[λΩds] = λDds where λD(z)|dz | =
2|dz |

1− |z |2
.

Most domains in space do not support such a metric, but do have for balls
in R̂n. E.g., for Euclidean ball B(a; r),

λ ds = λ(x)|dx | =
2r |dx |

r2 − |x − a|2
.

David Herron (University of Cincinnati) Universal Convexity Red Raider at Texas Tech 9 / 18



Examples of Metrics

QuasiHyperbolic Metrics

The quasihyperbolic metric in a domain Ω ( Rn is δ−1ds where
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δ(x) := dist(x , ∂Ω).

E.g., in the punctured space Rn
∗ := Rn \ {0}, this is just

|dx |

|x |
.

Can define Möb invariant analog of |dx |/|x | in regions R̂n
ab := R̂n \ {a, b}

by

τab(x)|dx | :=
|a − b|

|x − a||x − b|
|dx | ,

with standard interpretation if one of a or b is the point at infinity.
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The quasihyperbolic metric in a domain Ω ( Rn is δ−1ds where
δ(x) := dist(x , ∂Ω).

E.g., in the punctured space Rn
∗ := Rn \ {0}, this is just

|dx |

|x |
.

Can define Möb invariant analog of |dx |/|x | in regions R̂n
ab := R̂n \ {a, b}

by

τab(x)|dx | :=
|a − b|

|x − a||x − b|
|dx | ,

with standard interpretation if one of a or b is the point at infinity. In fact,
τabds is the unique metric on R̂n

ab with the property that for any Möbius

tfm T with T (R̂n
ab) = Rn

∗,

τab(x)|dx | = T ∗

[

|dy |

|y |

]

=
|T ′(x)||dx |

|T (x)|
.
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Here Ω is a quasihyperbolic domain in R̂n.
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Examples of Metrics

Ferrand & Kulkarni-Pinkhall Metrics

Here Ω is a quasihyperbolic domain in R̂n. The Ferrand metric ϕ ds is
defined by

ϕ(x) = ϕΩ(x) := sup
a,b∈Ωc

|a − b|

|x − a||x − b|
= sup

a,b∈Ωc

τab(x) .

The Kulkarni-Pinkhall metric µ ds is defined by

µ(x) = µΩ(x) := inf{λB(x) | x ∈ B ⊂ Ω, B a ball} .

These are Möbius invariant metrics that are bilipschitz equivalent to the
quasihyperbolic metric (in finite domains).
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Theorems

Characterizing Uniform Convexity

Theorem

For non-empty open U ⊂ R̂n, TAE:

David Herron (University of Cincinnati) Universal Convexity Red Raider at Texas Tech 13 / 18



Theorems

Characterizing Uniform Convexity

Theorem

For non-empty open U ⊂ R̂n, TAE:
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Theorem

For non-empty open U ⊂ R̂n, TAE:

(a) U is universally ϕ-convex.

(b) U is universally µ-convex.

(c) U is universally τ -convex.

(d) U is an open ball in R̂n.

Proof via pictured implications:
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For non-empty open U ⊂ R̂n, TAE:
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Theorems

Characterizing Uniform Convexity

Theorem

For non-empty open U ⊂ R̂n, TAE:

(a) U is universally ϕ-convex.

(b) U is universally µ-convex.

(c) U is universally τ -convex.

(d) U is an open ball in R̂n.

Proof via pictured implications:

(a) X
$,

QQQ

QQQ
(a)

(c)
?

+3 (d)
X

$,
QQQ
QQQ

X 2:mmm mmm

(b) X
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Easy! Not Hard. The Work.

Corollary

For ρ = ϕ, µ, τ , the only non-trivial universally ρ-convex objects are balls.
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Theorems

Characterizing Uniform Convexity

Theorem

For non-empty open U ⊂ R̂n, TAE:

(a) U is universally ϕ-convex.

(b) U is universally µ-convex.

(c) U is universally τ -convex.

(d) U is an open ball in R̂n.

Proof via pictured implications:

(a) X
$,

QQQ

QQQ
(a)

(c)
?

+3 (d)
X

$,
QQQ
QQQ

X 2:mmm mmm

(b) X

2:mmm mmm

(b)

Easy! Not Hard. The Work.

Corollary

Spp M = {ρΩds}Ω∈O is Möb invariant class of metrics with Rn
∗ ∈ O.

If U is ρ-UC and non-trivial, then U is an open ball.
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Möbius Invariant Classes–A Question

Spp M = {ρΩds}Ω∈O is Möb invariant class of conformal metrics.
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Theorems

Möbius Invariant Classes–A Question

Spp M = {ρΩds}Ω∈O is Möb invariant class of conformal metrics.

Question

Are open balls universally convex with respect to M?

Example

There are large Möbius invariant classes M of conformal metrics with the
property that
∀ Ω ∈ O ,∀ r > 0 , ∃ balls in Ω with radius ≤ r which are not ρ-convex.

What if Rn
∗ ∈ O?
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Theorems

Circle Convexity–Useful Tool for Proof of (c) =⇒ (d)

Call A circle convex provided for all circles C in R̂n, C ∩ A is connected.

David Herron (University of Cincinnati) Universal Convexity Red Raider at Texas Tech 15 / 18



Theorems

Circle Convexity–Useful Tool for Proof of (c) =⇒ (d)

Call A circle convex provided for all circles C in R̂n, C ∩ A is connected.
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Call A circle convex provided for all circles C in R̂n, C ∩ A is connected.
Clearly this Möb invariant; A circle convex =⇒ so is T (A) for any Möb
tfm T . Easy to check that
A is circle convex ⇐⇒ ∀ Möb tfms T with T (A) ⊂ Rn, T (A) is
Euclidean convex.

Theorem

For a non-empty closed set A ⊂ R̂n,

A is circle convex ⇐⇒ either A = R̂n or A is a closed ball.
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Circle Convexity–Useful Tool for Proof of (c) =⇒ (d)

Call A circle convex provided for all circles C in R̂n, C ∩ A is connected.
Clearly this Möb invariant; A circle convex =⇒ so is T (A) for any Möb
tfm T . Easy to check that
A is circle convex ⇐⇒ ∀ Möb tfms T with T (A) ⊂ Rn, T (A) is
Euclidean convex.

Theorem

For a non-empty closed set A ⊂ R̂n,

A is circle convex ⇐⇒ either A = R̂n or A is a closed ball.

Skip Proof
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Since B̄ is circumball, A ∩ ∂B = ∂A ∩ ∂B ⊃ {a, b} with a 6= b.
Since A is circle convex, if C is any circle thru a, b then C ∩ A connected.

Basic Circle Geometry: the intersection of two distinct circles contains
exactly 0 or 1 or 2 points.
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Circle Convex Sets are Balls

Spp A ( R̂n is circle convex. Assume A bounded. Let B̄ be the closed
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Theorems

Circle Convex Sets are Balls

Spp A ( R̂n is circle convex. Assume A bounded. Let B̄ be the closed
circumball containing A. We show that A = B̄ . Know that A ⊂ B̄.
Since B̄ is circumball, A ∩ ∂B = ∂A ∩ ∂B ⊃ {a, b} with a 6= b.
Since A is circle convex, if C is any circle thru a, b then C ∩ A connected.

Basic Circle Geometry: the intersection of two distinct circles contains
exactly 0 or 1 or 2 points.

Let p ∈ B . Get unique circle C thru p, a, b. Evidently, C ∩ ∂B = {a, b},
so must get C ∩ A = C ∩ B̄ which is the closed subarc of C that contains
p and has endpts a, b. See that p ∈ A. Thus, B ⊂ A ⊂ B̄, so A = B̄.
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Summary

The End

(⌣̈)
===
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