QuasiHyperbolic Type Metrics and Universal Convexity

David A Herron

University of Cincinnati

11:00 Saturday November 8, 2014

Honoring Roger W. Barnard

3

・ロト ・聞ト ・ヨト ・ヨト

Outline

2 Examples of Metrics

David Herron (University of Cincinnati)

э

(日) (四) (日) (日) (日)

 $\Omega \subset \hat{\mathbb{R}}^n := \mathbb{R}^n \cup \{\infty\} \ (n \ge 2)$ is a *quasihyperbolic domain*, meaning that $\Omega^c := \hat{\mathbb{R}}^n \setminus \Omega$ contains at least 2 points.

 $\Omega \subset \hat{\mathbb{R}}^n := \mathbb{R}^n \cup \{\infty\}$ $(n \ge 2)$ is a quasihyperbolic domain, meaning that $\Omega^c := \hat{\mathbb{R}}^n \setminus \Omega$ contains at least 2 points. A conformal metric ρ ds on Ω induces a conformal deformation Ω_{ρ} of Ω :

$$\Omega_{
ho} := (\Omega, d_{
ho})$$

where d_{ρ} is length distance given via

$$d_
ho(x,y):= \inf_\gamma \ell_
ho(\gamma):= \inf_\gamma \int_\gamma
ho \, ds$$
 ;

 $\Omega \subset \hat{\mathbb{R}}^n := \mathbb{R}^n \cup \{\infty\}$ $(n \ge 2)$ is a quasihyperbolic domain, meaning that $\Omega^c := \hat{\mathbb{R}}^n \setminus \Omega$ contains at least 2 points. A conformal metric ρ ds on Ω induces a conformal deformation Ω_{ρ} of Ω :

$$\Omega_{
ho} := (\Omega, d_{
ho})$$

where d_{ρ} is length distance given via

$$d_
ho(x,y):=\inf_\gamma\ell_
ho(\gamma):=\inf_\gamma\int_\gamma
ho\,ds$$
 ;

here the infimum is taken over all paths γ in Ω that join the points *x*, *y*.

 $\Omega \subset \hat{\mathbb{R}}^n := \mathbb{R}^n \cup \{\infty\}$ $(n \ge 2)$ is a quasihyperbolic domain, meaning that $\Omega^c := \hat{\mathbb{R}}^n \setminus \Omega$ contains at least 2 points. A conformal metric ρ ds on Ω induces a conformal deformation Ω_{ρ} of Ω :

$$\Omega_{
ho} := (\Omega, d_{
ho})$$

where d_{ρ} is length distance given via

$$d_
ho(x,y):= \inf_\gamma \ell_
ho(\gamma):= \inf_\gamma \int_\gamma
ho \, ds$$
 ;

here the infimum is taken over all paths γ in Ω that join the points x,y.

Call γ a ρ -geodesic if $d_{\rho}(x, y) = \ell_{\rho}(\gamma)$; sometimes write $[x, y]_{\rho}$, but these need not be unique!

David Herron (University of Cincinnati)

Geodesic Convexity

Say that $A \subset \Omega$ is ρ -convex if geodesically convex in Ω_{ρ} ; this means that for all points x, y in A, every ρ -geodesic $[x, y]_{\rho}$ lies in A.

• • = • • = •

Image: Image:

Geodesic Convexity

Say that $A \subset \Omega$ is ρ -convex if geodesically convex in Ω_{ρ} ; this means that for all points x, y in A, every ρ -geodesic $[x, y]_{\rho}$ lies in A.

Question When is a ball in Ω convex in Ω_{ρ} ?

> < = > < = >

Say that $A \subset \Omega$ is ρ -convex if geodesically convex in Ω_{ρ} ; this means that for all points x, y in A, every ρ -geodesic $[x, y]_{\rho}$ lies in A.

Question		
	When is a ball in Ω convex in Ω_{ρ} ?	

Recall that an open ball in $\hat{\mathbb{R}}^n$ is an open Euclidean ball or an open half-space (both in \mathbb{R}^n) or the complement of a closed Euclidean ball.

Ball Convexity

Consider hyperbolic metric $\lambda \, ds$ on hyperbolic plane domains in $\hat{\mathbb{C}}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Ball Convexity

Consider hyperbolic metric λds on hyperbolic plane domains in $\hat{\mathbb{C}}$.

Jørgensen (1956)

If D is a disk (in $\hat{\mathbb{C}}$) and $D \subset \Omega$, then D is h-convex in Ω .

Consider hyperbolic metric λds on hyperbolic plane domains in $\hat{\mathbb{C}}$.

Jørgensen (1956)

If D is a disk (in $\hat{\mathbb{C}}$) and $D \subset \Omega$, then D is h-convex in Ω .

Consider quasihyperbolic metric $\delta^{-1}ds$ on quasihyperbolic domains in \mathbb{R}^n .

> < = > < = >

Consider hyperbolic metric λds on hyperbolic plane domains in $\hat{\mathbb{C}}$.

Jørgensen (1956)

If D is a disk (in $\hat{\mathbb{C}}$) and $D \subset \Omega$, then D is h-convex in Ω .

Consider quasihyperbolic metric $\delta^{-1}ds$ on quasihyperbolic domains in \mathbb{R}^n .

Martin (1984)

If B is a ball (in \mathbb{R}^n) and $B \subset \Omega$, then B is k-convex in Ω .

6 / 18

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\mathcal{M} = \{\rho_{\Omega} ds\}_{\Omega \in \mathcal{O}} \text{ a class of conformal metrics defined on domains } \Omega \text{ in some collection } \mathcal{O} \text{ of quasihyperbolic domains in } \hat{\mathbb{R}}^n.$

 $\mathcal{M} = \{\rho_{\Omega} ds\}_{\Omega \in \mathcal{O}} \text{ a class of conformal metrics defined on domains } \Omega \text{ in some collection } \mathcal{O} \text{ of quasihyperbolic domains in } \hat{\mathbb{R}}^n.$

A non-empty open set U is *universally convex with respect to* \mathcal{M} (or, ρ -UC), provided $U \subset \Omega \in \mathcal{O} \implies U$ is convex in Ω_{ρ} .

7 / 18

< ロ > < 同 > < 三 > < 三 > < 三 > <

 $\mathcal{M} = \{\rho_{\Omega} ds\}_{\Omega \in \mathcal{O}} \text{ a class of conformal metrics defined on domains } \Omega \text{ in some collection } \mathcal{O} \text{ of quasihyperbolic domains in } \hat{\mathbb{R}}^n.$

A non-empty open set U is *universally convex with respect to* \mathcal{M} (or, ρ -UC), provided $U \subset \Omega \in \mathcal{O} \implies U$ is convex in Ω_{ρ} . Usually ignore trivial cases $U = \mathbb{R}^n$, $U = \mathbb{R}^n$, etc.

 $\mathcal{M} = \{\rho_{\Omega} ds\}_{\Omega \in \mathcal{O}}$ a class of conformal metrics defined on domains Ω in some collection \mathcal{O} of quasihyperbolic domains in $\hat{\mathbb{R}}^n$.

A non-empty open set U is *universally convex with respect to* \mathcal{M} (or, ρ -UC), provided $U \subset \Omega \in \mathcal{O} \implies U$ is convex in Ω_{ρ} .

Example

Jørgensen: Disks (in $\hat{\mathbb{C}}$) are universally hyperbolically convex.

 $\mathcal{M} = \{\rho_{\Omega} ds\}_{\Omega \in \mathcal{O}}$ a class of conformal metrics defined on domains Ω in some collection \mathcal{O} of quasihyperbolic domains in $\hat{\mathbb{R}}^n$.

A non-empty open set U is *universally convex with respect to* \mathcal{M} (or, ρ -UC), provided $U \subset \Omega \in \mathcal{O} \implies U$ is convex in Ω_{ρ} .

Example

Jørgensen: Disks (in $\hat{\mathbb{C}}$) are universally hyperbolically convex. Martin: Balls (in \mathbb{R}^n) are universally quasi-hyperbolically convex.

 $\mathcal{M} = \{\rho_{\Omega} ds\}_{\Omega \in \mathcal{O}}$ a class of conformal metrics defined on domains Ω in some collection \mathcal{O} of quasihyperbolic domains in $\hat{\mathbb{R}}^n$.

A non-empty open set U is *universally convex with respect to* \mathcal{M} (or, ρ -UC), provided $U \subset \Omega \in \mathcal{O} \implies U$ is convex in Ω_{ρ} .

Brown (1982)

Disks (in $\hat{\mathbb{C}})$ are the only universally hyperbolically convex objects.

7 / 18

Outline

э

イロト イヨト イヨト イヨト

Hyperbolic Metric

For any hyperbolic domain Ω in $\hat{\mathbb{C}}$, there is a unique maximal complete constant curvature -1 conformal metric λds ; this is called Poincaré's *hyperbolic metric* in Ω .

Hyperbolic Metric

For any hyperbolic domain Ω in $\hat{\mathbb{C}}$, there is a unique maximal complete constant curvature -1 conformal metric λds ; this is called Poincaré's *hyperbolic metric* in Ω . This metric is characterized by the property that for any holomorphic covering $\mathbb{D} \xrightarrow{p} \Omega$, the pullback

$$p^*[\lambda_\Omega ds] = \lambda_\mathbb{D} ds \quad ext{where } \lambda_\mathbb{D}(z) |dz| = rac{2|dz|}{1-|z|^2}.$$

Hyperbolic Metric

For any hyperbolic domain Ω in $\hat{\mathbb{C}}$, there is a unique maximal complete constant curvature -1 conformal metric λds ; this is called Poincaré's *hyperbolic metric* in Ω . This metric is characterized by the property that for any holomorphic covering $\mathbb{D} \xrightarrow{p} \Omega$, the pullback

$$p^*[\lambda_\Omega ds] = \lambda_\mathbb{D} ds$$
 where $\lambda_\mathbb{D}(z)|dz| = rac{2|dz|}{1-|z|^2}.$

Most domains in space do not support such a metric, but do have for balls in $\hat{\mathbb{R}}^n$. E.g., for Euclidean ball B(*a*; *r*),

$$\lambda ds = \lambda(x)|dx| = rac{2r |dx|}{r^2 - |x - a|^2}.$$

The quasihyperbolic metric in a domain $\Omega \subsetneq \mathbb{R}^n$ is $\delta^{-1}ds$ where $\delta(x) := \operatorname{dist}(x, \partial \Omega)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The quasihyperbolic metric in a domain $\Omega \subsetneq \mathbb{R}^n$ is $\delta^{-1}ds$ where $\delta(x) := \operatorname{dist}(x, \partial \Omega)$.

E.g., in the punctured space $\mathbb{R}^n_* := \mathbb{R}^n \setminus \{0\}$, this is just $\frac{|dx|}{|x|}$.

The quasihyperbolic metric in a domain $\Omega \subsetneq \mathbb{R}^n$ is $\delta^{-1}ds$ where $\delta(x) := \operatorname{dist}(x, \partial \Omega)$.

E.g., in the punctured space $\mathbb{R}^n_* := \mathbb{R}^n \setminus \{0\}$, this is just $\frac{|dx|}{|x|}$.

Can define Möb invariant analog of |dx|/|x| in regions $\hat{\mathbb{R}}^n_{ab} := \hat{\mathbb{R}}^n \setminus \{a, b\}$ by

$$\tau_{ab}(x)|dx|:=\frac{|a-b|}{|x-a||x-b|}|dx|\,,$$

with standard interpretation if one of a or b is the point at infinity.

The quasihyperbolic metric in a domain $\Omega \subsetneq \mathbb{R}^n$ is $\delta^{-1}ds$ where $\delta(x) := \operatorname{dist}(x, \partial \Omega)$.

E.g., in the punctured space $\mathbb{R}^n_* := \mathbb{R}^n \setminus \{0\}$, this is just $\frac{|dx|}{|x|}$.

Can define Möb invariant analog of |dx|/|x| in regions $\hat{\mathbb{R}}^n_{ab} := \hat{\mathbb{R}}^n \setminus \{a, b\}$ by

$$\tau_{ab}(x)|dx| := \frac{|a-b|}{|x-a||x-b|}|dx|,$$

with standard interpretation if one of *a* or *b* is the point at infinity. In fact, $\tau_{ab}ds$ is the unique metric on $\hat{\mathbb{R}}^n_{ab}$ with the property that for any Möbius tfm T with $T(\hat{\mathbb{R}}^n_{ab}) = \mathbb{R}^n_*$,

$$\tau_{ab}(x)|dx| = T^*\left[\frac{|dy|}{|y|}\right] = \frac{|T'(x)||dx|}{|T(x)|}.$$

> < B > < B > < B > B

Here Ω is a quasihyperbolic domain in $\hat{\mathbb{R}}^n$.

∃ → < ∃ →</p>

Here Ω is a quasihyperbolic domain in $\hat{\mathbb{R}}^n$. The *Ferrand metric* φ *ds* is defined by

$$\varphi(x) = \varphi_{\Omega}(x) := \sup_{a,b\in\Omega^c} \frac{|a-b|}{|x-a||x-b|} = \sup_{a,b\in\Omega^c} \tau_{ab}(x).$$

프 🖌 🔺 프 🕨

Here Ω is a quasihyperbolic domain in $\hat{\mathbb{R}}^n$. The *Ferrand metric* φ *ds* is defined by

$$\varphi(x) = \varphi_{\Omega}(x) := \sup_{a,b\in\Omega^c} \frac{|a-b|}{|x-a||x-b|} = \sup_{a,b\in\Omega^c} \tau_{ab}(x).$$

The Kulkarni-Pinkhall metric μ ds is defined by

$$\mu(x) = \mu_{\Omega}(x) := \inf\{\lambda_B(x) \mid x \in B \subset \Omega, \ B \text{ a ball}\}.$$

当ち ふきち

Here Ω is a quasihyperbolic domain in $\hat{\mathbb{R}}^n$. The *Ferrand metric* φ *ds* is defined by

$$arphi(x) = arphi_\Omega(x) := \sup_{a,b\in\Omega^c} \; rac{|a-b|}{|x-a||x-b|} = \sup_{a,b\in\Omega^c} \; au_{ab}(x) \, .$$

The Kulkarni-Pinkhall metric μ ds is defined by

$$\mu(x) = \mu_{\Omega}(x) := \inf\{\lambda_B(x) \mid x \in B \subset \Omega, \ B \text{ a ball}\}.$$

These are Möbius invariant metrics that are bilipschitz equivalent to the quasihyperbolic metric (in finite domains).

11 / 18

< ロト < 同ト < ヨト < ヨト

Outline

・ロト ・聞ト ・ヨト ・ヨト

12 / 18

э

Characterizing Uniform Convexity

Theorem

For non-empty open $U \subset \hat{\mathbb{R}}^n$, TAE:

э

Characterizing Uniform Convexity

Theorem

- For non-empty open $U \subset \hat{\mathbb{R}}^n$, TAE:
- (a) U is universally φ -convex.

3

13 / 18

Characterizing Uniform Convexity

Theorem

For non-empty open $U \subset \hat{\mathbb{R}}^n$, TAE:

- (a) U is universally φ -convex.
- (b) U is universally μ -convex.

Image: Image:

3
Characterizing Uniform Convexity

Theorem

- For non-empty open $U \subset \hat{\mathbb{R}}^n$, TAE:
- (a) U is universally φ -convex.
- (b) U is universally μ -convex.
- (c) U is universally τ -convex.

Characterizing Uniform Convexity

Theorem

For non-empty open $U \subset \hat{\mathbb{R}}^n$, TAE:

- (a) U is universally φ -convex.
- (b) U is universally μ -convex.
- (c) U is universally τ -convex.
- (d) U is an open ball in $\hat{\mathbb{R}}^n$.

Characterizing Uniform Convexity

Theorem

For non-empty open $U \subset \hat{\mathbb{R}}^n$, TAE:

- (a) U is universally φ -convex.
- (b) U is universally μ -convex.
- (c) U is universally τ -convex.
- (d) U is an open ball in $\hat{\mathbb{R}}^n$.

Proof via pictured implications:

Characterizing Uniform Convexity

Theorem

For non-empty open $U \subset \hat{\mathbb{R}}^n$, TAE:

- (a) U is universally φ -convex.
- (b) U is universally μ -convex.
- (c) U is universally τ -convex.
- (d) U is an open ball in $\hat{\mathbb{R}}^n$.

Proof via pictured implications:

Easy!

Characterizing Uniform Convexity

Theorem

For non-empty open $U \subset \hat{\mathbb{R}}^n$, TAE:

- (a) U is universally φ -convex.
- (b) U is universally μ -convex.
- (c) U is universally τ -convex.
- (d) U is an open ball in $\hat{\mathbb{R}}^n$.

Proof via pictured implications:

Easy! Not Hard.

Characterizing Uniform Convexity

Theorem

For non-empty open $U \subset \hat{\mathbb{R}}^n$, TAE:

- (a) U is universally φ -convex.
- (b) U is universally μ -convex.
- (c) U is universally τ -convex.
- (d) U is an open ball in $\hat{\mathbb{R}}^n$.

Proof via pictured implications:

Easy! Not Hard. The Work.

Characterizing Uniform Convexity

Theorem

For non-empty open $U \subset \hat{\mathbb{R}}^n$, TAE:

- (a) U is universally φ -convex.
- (b) U is universally μ -convex.
- (c) U is universally τ -convex.
- (d) U is an open ball in $\hat{\mathbb{R}}^n$.

Proof via pictured implications:

Easy! Not Hard. The Work.

13 / 18

Characterizing Uniform Convexity

Theorem

For non-empty open $U \subset \hat{\mathbb{R}}^n$, TAE:

- (a) U is universally φ -convex.
- (b) U is universally μ -convex.
- (c) U is universally τ -convex.
- (d) U is an open ball in $\hat{\mathbb{R}}^n$.

Proof via pictured implications:

Easy! Not Hard. The Work.

Corollary

For $\rho = \varphi, \mu, \tau$, the only non-trivial universally ρ -convex objects are balls.

13 / 18

Characterizing Uniform Convexity

Theorem

For non-empty open $U \subset \hat{\mathbb{R}}^n$, TAE:

- (a) U is universally φ -convex.
- (b) U is universally μ -convex.
- (c) U is universally τ -convex.
- (d) U is an open ball in $\hat{\mathbb{R}}^n$.

Proof via pictured implications:

Easy! Not Hard. The Work.

Corollary

Spp $\mathcal{M} = \{\rho_{\Omega} ds\}_{\Omega \in \mathcal{O}}$ is Möb invariant class of metrics with $\mathbb{R}^{n}_{*} \in \mathcal{O}$. If U is ρ -UC and non-trivial, then U is an open ball.

13 / 18

Spp $\mathcal{M} = \{\rho_{\Omega} ds\}_{\Omega \in \mathcal{O}}$ is Möb invariant class of conformal metrics.

Spp $\mathcal{M} = \{\rho_{\Omega} ds\}_{\Omega \in \mathcal{O}}$ is Möb invariant class of conformal metrics.

Question

Are open balls universally convex with respect to \mathcal{M} ?

Spp $\mathcal{M} = \{\rho_{\Omega} ds\}_{\Omega \in \mathcal{O}}$ is Möb invariant class of conformal metrics.

Question

Are open balls universally convex with respect to \mathcal{M} ?

Example

There are large Möbius invariant classes \mathcal{M} of conformal metrics with the property that $\forall \ \Omega \in \mathcal{O}, \forall \ r > 0, \ \exists \text{ balls in } \Omega \text{ with radius } \leq r \text{ which are not } \rho\text{-convex.}$

Spp $\mathcal{M} = \{\rho_{\Omega} ds\}_{\Omega \in \mathcal{O}}$ is Möb invariant class of conformal metrics.

Question

Are open balls universally convex with respect to \mathcal{M} ?

Example

There are large Möbius invariant classes \mathcal{M} of conformal metrics with the property that $\forall \ \Omega \in \mathcal{O}, \forall \ r > 0, \ \exists \text{ balls in } \Omega \text{ with radius} \leq r \text{ which are not } \rho\text{-convex.}$

What if $\mathbb{R}^n_* \in \mathcal{O}$?

Call A *circle convex* provided for all circles C in $\hat{\mathbb{R}}^n$, $C \cap A$ is connected.

Call A circle convex provided for all circles C in $\hat{\mathbb{R}}^n$, $C \cap A$ is connected. Clearly this Möb invariant; A circle convex \implies so is T(A) for any Möb tfm T.

Call A circle convex provided for all circles C in $\hat{\mathbb{R}}^n$, $C \cap A$ is connected. Clearly this Möb invariant; A circle convex \implies so is T(A) for any Möb tfm T. Easy to check that A is circle convex $\iff \forall$ Möb tfms T with $T(A) \subset \mathbb{R}^n$, T(A) is Euclidean convex.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Call A circle convex provided for all circles C in $\hat{\mathbb{R}}^n$, $C \cap A$ is connected. Clearly this Möb invariant; A circle convex \implies so is T(A) for any Möb tfm T. Easy to check that A is circle convex $\iff \forall$ Möb tfms T with $T(A) \subset \mathbb{R}^n$, T(A) is Euclidean convex.

Theorem

For a non-empty closed set $A \subset \hat{\mathbb{R}}^n$, A is circle convex \iff either $A = \hat{\mathbb{R}}^n$ or A is a closed ball.

Call A circle convex provided for all circles C in $\hat{\mathbb{R}}^n$, $C \cap A$ is connected. Clearly this Möb invariant; A circle convex \implies so is T(A) for any Möb tfm T. Easy to check that A is circle convex $\iff \forall$ Möb tfms T with $T(A) \subset \mathbb{R}^n$, T(A) is Euclidean convex.

Theorem

For a non-empty closed set $A \subset \hat{\mathbb{R}}^n$, A is circle convex \iff either $A = \hat{\mathbb{R}}^n$ or A is a closed ball.

15 / 18

イロト イポト イヨト イヨト

Spp $A \subsetneq \hat{\mathbb{R}}^n$ is circle convex. Assume A bounded.

16 / 18

< ロト < 同ト < ヨト < ヨト : ヨ

Spp $A \subsetneq \hat{\mathbb{R}}^n$ is circle convex. Assume A bounded. Let \overline{B} be the closed circumball containing A. We show that $A = \overline{B}$. Know that $A \subset \overline{B}$.

Spp $A \subsetneq \hat{\mathbb{R}}^n$ is circle convex. Assume A bounded. Let \overline{B} be the closed circumball containing A. We show that $A = \overline{B}$. Know that $A \subset \overline{B}$. Since \overline{B} is circumball, $A \cap \partial B = \partial A \cap \partial B \supset \{a, b\}$ with $a \neq b$.

Spp $A \subsetneq \hat{\mathbb{R}}^n$ is circle convex. Assume A bounded. Let \overline{B} be the closed circumball containing A. We show that $A = \overline{B}$. Know that $A \subset \overline{B}$. Since \overline{B} is circumball, $A \cap \partial B = \partial A \cap \partial B \supset \{a, b\}$ with $a \neq b$. Since A is circle convex, if C is any circle thru a, b then $C \cap A$ connected.

Spp $A \subsetneq \hat{\mathbb{R}}^n$ is circle convex. Assume A bounded. Let \overline{B} be the closed circumball containing A. We show that $A = \overline{B}$. Know that $A \subset \overline{B}$. Since \overline{B} is circumball, $A \cap \partial B = \partial A \cap \partial B \supset \{a, b\}$ with $a \neq b$. Since A is circle convex, if C is any circle thru a, b then $C \cap A$ connected.

Basic Circle Geometry: the intersection of two distinct circles contains exactly 0 or 1 or 2 points.

Spp $A \subsetneq \hat{\mathbb{R}}^n$ is circle convex. Assume A bounded. Let \overline{B} be the closed circumball containing A. We show that $A = \overline{B}$. Know that $A \subset \overline{B}$. Since \overline{B} is circumball, $A \cap \partial B = \partial A \cap \partial B \supset \{a, b\}$ with $a \neq b$. Since A is circle convex, if C is any circle thru a, b then $C \cap A$ connected.

Basic Circle Geometry: the intersection of two distinct circles contains exactly 0 or 1 or 2 points.

Let $p \in B$. Get unique circle C thru p, a, b.

Spp $A \subsetneq \hat{\mathbb{R}}^n$ is circle convex. Assume A bounded. Let \overline{B} be the closed circumball containing A. We show that $A = \overline{B}$. Know that $A \subset \overline{B}$. Since \overline{B} is circumball, $A \cap \partial B = \partial A \cap \partial B \supset \{a, b\}$ with $a \neq b$. Since A is circle convex, if C is any circle thru a, b then $C \cap A$ connected.

Basic Circle Geometry: the intersection of two distinct circles contains exactly 0 or 1 or 2 points.

Let $p \in B$. Get unique circle C thru p, a, b. Evidently, $C \cap \partial B = \{a, b\}$, so must get $C \cap A = C \cap \overline{B}$ which is the closed subarc of C that contains p and has endpts a, b.

Spp $A \subsetneq \hat{\mathbb{R}}^n$ is circle convex. Assume A bounded. Let \overline{B} be the closed circumball containing A. We show that $A = \overline{B}$. Know that $A \subset \overline{B}$. Since \overline{B} is circumball, $A \cap \partial B = \partial A \cap \partial B \supset \{a, b\}$ with $a \neq b$. Since A is circle convex, if C is any circle thru a, b then $C \cap A$ connected.

Basic Circle Geometry: the intersection of two distinct circles contains exactly 0 or 1 or 2 points.

Let $p \in B$. Get unique circle C thru p, a, b. Evidently, $C \cap \partial B = \{a, b\}$, so must get $C \cap A = C \cap \overline{B}$ which is the closed subarc of C that contains p and has endpts a, b. See that $p \in A$.

Spp $A \subsetneq \hat{\mathbb{R}}^n$ is circle convex. Assume A bounded. Let \overline{B} be the closed circumball containing A. We show that $A = \overline{B}$. Know that $A \subset \overline{B}$. Since \overline{B} is circumball, $A \cap \partial B = \partial A \cap \partial B \supset \{a, b\}$ with $a \neq b$. Since A is circle convex, if C is any circle thru a, b then $C \cap A$ connected.

Basic Circle Geometry: the intersection of two distinct circles contains exactly 0 or 1 or 2 points.

Let $p \in B$. Get unique circle *C* thru p, a, b. Evidently, $C \cap \partial B = \{a, b\}$, so must get $C \cap A = C \cap \overline{B}$ which is the closed subarc of *C* that contains p and has endpts a, b. See that $p \in A$. Thus, $B \subset A \subset \overline{B}$, so $A = \overline{B}$.

Summary

The End

David Herron (University of	Cincinnati)
----------------	---------------	-------------

Universal Convexity

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
Red Raider at Texas Tech

х

х

×

×

◆□> ◆圖> ◆目> ◆目> 三目 のへで

×

◆□> ◆□> ◆三> ◆三> ● 三 のへで

オロト オポト オヨト オヨト ヨー うえで

◆□> ◆□> ◆三> ◆三> ● 三 のへで

◆□> ◆□> ◆三> ◆三> ● 三 のへで

◆□> ◆圖> ◆目> ◆目> 三目 のへで

$$= \frac{|a-b|}{|x^*-a||x^*-b|} \frac{|x^*-a|}{|x^*-a^*|} \frac{|x^*-b|}{|x^*-b^*|} > \tau_{ab}(x^*) = \varphi(x^*).$$