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Conformal Deformations

Q CcR":=R"U{oo} (n>2)is a quasihyperbolic domain, meaning that
Q¢ :=R"\ Q contains at least 2 points.
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where d, is length distance given via

dy(x,y) :=infl,(y) = inf/pds;
v v

v

David Herron (University of Cincinnati) Universal Convexity Red Raider at Texas Tech 4/18



Introduction

Conformal Deformations

Q CcR":=R"U{oo} (n>2)is a quasihyperbolic domain, meaning that
Q¢ :=R"\ Q contains at least 2 points. A conformal metric p ds on Q
induces a conformal deformation €2, of €2:

QP = (Qv dp)

where d, is length distance given via

dy(x,y) :=infl,(y) = inf/pds;
v v

v

here the infimum is taken over all paths 7 in R
Q that join the points x, y.

David Herron (University of Cincinnati) Universal Convexity Red Raider at Texas Tech 4/18



Conformal Deformations

Q CcR":=R"U{oo} (n>2)is a quasihyperbolic domain, meaning that
Q¢ :=R"\ Q contains at least 2 points. A conformal metric p ds on Q
induces a conformal deformation €2, of €2:

QP = (Qv dp)

where d, is length distance given via

dy(x,y) :=infl,(y) = inf/pds;
v W Y

here the infimum is taken over all paths ~ in
Q that join the points x, y.

Call v a p-geodesic if d,(x,y) = £,(7); sometimes write [x, y],, but these
need not be unique!
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Geodesic Convexity

Say that A C Q is p-convex if geodesically convex in €,; this means that
for all points x,y in A, every p-geodesic [x, y], lies in A.
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Geodesic Convexity

Say that A C Q is p-convex if geodesically convex in ,; this means that
for all points x,y in A, every p-geodesic [x, y], lies in A.

When is a ball in £ convex in €7

Recall that an open ball in R™ is an open Euclidean ball or an open
half-space (both in R") or the complement of a closed Euclidean ball.
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Ball Convexity

Consider hyperbolic metric A ds on hyperbolic plane domains in C.
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Jorgensen (1956)

If D is a disk (in €) and D C Q, then D is h-convex in Q.
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Introduction

Ball Convexity

Consider hyperbolic metric A ds on hyperbolic plane domains in C.

Jorgensen (1956)

If D is a disk (in €) and D C Q, then D is h-convex in Q.

Consider quasihyperbolic metric 5~ 1ds on quasihyperbolic domains in R”.
Martin (1984)
If B is a ball (in R") and B C €, then B is k-convex in €.
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Universal Convexity

M = {pads}qco a class of conformal metrics defined on domains Q in
some collection O of quasihyperbolic domains in R".
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Introduction

Universal Convexity

M = {pads}qco a class of conformal metrics defined on domains Q in
some collection O of quasihyperbolic domains in R".

A non-empty open set U is universally convex with respect to M (or,

p-UC), provided U C Q € O = U is convex in §,,.
Usually ignore trivial cases U = R", U = R", etc.
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Introduction

Universal Convexity

M = {pads}qco a class of conformal metrics defined on domains Q in
some collection O of quasihyperbolic domains in R".

A non-empty open set U is universally convex with respect to M (or,
p-UC), provided U C Q € O = U is convex in §,,.

Brown (1982
Disks (in

)
®

) are the only universally hyperbolically convex objects.
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Examples of Metrics

Hyperbolic Metric

For any hyperbolic domain € in C, there is a unique maximal complete

constant curvature -1 conformal metric A ds; this is called Poincaré's
hyperbolic metric in Q.
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Examples of Metrics

Hyperbolic Metric

For any hyperbolic domain € in C, there is a unique maximal complete
constant curvature -1 conformal metric A ds; this is called Poincaré's
hyperbolic metric in Q. This metric is characterized by the property that
for any holomorphic covering D 2, Q, the pullback

2
p*[Aads] = Apds where A\p(z)|dz| = 1\7d‘z\’2
— |z
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Hyperbolic Metric

For any hyperbolic domain € in C, there is a unique maximal complete
constant curvature -1 conformal metric A ds; this is called Poincaré's
hyperbolic metric in Q. This metric is characterized by the property that

for any holomorphic covering D 2, Q, the pullback

2|d.

p*[Mads] = A\nds  where \p(z)|dz| = 1‘7‘2"2
— |z

Most domains in space do not support such a metric, but do have for balls
in R". E.g., for Euclidean ball B(a; r),

2r |dx
Ads = )\(X)|dX| = ﬁ
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QuasiHyperbolic Metrics

The quasihyperbolic metric in a domain Q C R" is 6~ 'ds where
0(x) = dist(x, 09Q).
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QuasiHyperbolic Metrics
The quasihyperbolic metric in a domain Q C R" is 6~ 'ds where
0(x) = dist(x, 09Q).

d
E.g., in the punctured space R? := R"\ {0}, this is just lox|

x|
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Examples of Metrics

QuasiHyperbolic Metrics

The quasihyperbolic metric in a domain Q C R" is 6~ 'ds where
0(x) = dist(x, 09Q).

x|
Can define M&b invariant analog of |dx|/|x| in regions ]f%’a’b =R\ {a, b}
by

d
E.g., in the punctured space R? := R"\ {0}, this is just [

la— b
Tap(X)|dx| := Bl |dx|,

|x — a||x —

with standard interpretation if one of a or b is the point at infinity.
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QuasiHyperbolic Metrics

The quasihyperbolic metric in a domain Q C R" is 6~ 'ds where
0(x) = dist(x, 09Q).
d
E.g., in the punctured space R? := R"\ {0}, this is just %
X
Can define M&b invariant analog of |dx|/|x| in regions ]f%’a’b =R\ {a, b}

by
la— b

—|d
\x—aHx—b\‘ X

Tap(X)|dx| :=
with standard interpretation if one of a or b is the point at infinity. In fact,
Tapds is the unique metric on R), with the property that for any Mobius

tfm T with T(R2,) = R7,

ol = 7 [141] LT

vl ] 1T )l
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Ferrand & Kulkarni-Pinkhall Metrics

Here Q is a quasihyperbolic domain in Rn.
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Ferrand & Kulkarni-Pinkhall Metrics

Here Q is a quasihyperbolic domain in R". The Ferrand metric pds is
defined by

|a — b
o(x) = pa(x) := sup ——————— = sup Tap(x).
abcae |x —a|lx — b ;heqe
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Examples of Metrics

Ferrand & Kulkarni-Pinkhall Metrics

Here Q is a quasihyperbolic domain in R". The Ferrand metric pds is
defined by

|a — b
o(x) = pa(x) := sup ——————— = sup Tap(x).
abcae |x —a|lx — b ;heqe

The Kulkarni-Pinkhall metric 1 ds is defined by

w(x) = pa(x) :=inf{\g(x) | x € BC Q, B aball}.

These are Mobius invariant metrics that are bilipschitz equivalent to the
quasihyperbolic metric (in finite domains).
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Characterizing Uniform Convexity

For non-empty open U C R" TAE:
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For non-empty open U C R" TAE:
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Characterizing Uniform Convexity

For non-empty open U C R" TAE:
(a) U is universally @-convex.

(b) U is universally ji-convex.
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Characterizing Uniform Convexity

For non-empty open U C R" TAE:
(a) U is universally @-convex.
(b) U is universally pi-convex.

(c) U is universally T-convex.
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Theorems

Characterizing Uniform Convexity

For non-empty open U C R" TAE:
(a) U is universally @-convex.

b) U is universally p-convex.

(b)
(c) U is universally T-convex.
(d)

d) U is an open ball in R,
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Characterizing Uniform Convexity

Proof va pictured implications

For non-empty open U C R" TAE: (a) (a)
(a) U is universally p-convex. = ¢ S

b) U is universally p-convex.

d) U is an open ball in R

(b)
(c) U is universally T-convex.
(d)
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(a) U is universally @-convex.

b

(b) (b)

U is universally p-convex.

2 |
d) U is an open ball in R". ik
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Characterizing Uniform Convexity

Proof va pictured implications
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U is universally p-convex. (c) = (d)
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Characterizing Uniform Convexity

Proof va pictured implications

For non-empty open U C R", TAE: (a) \/ \//7 (a)
S

a
?
(a) U is universally p-convex. = (c)==(d)
(b) v (b)
b) U is universally p-convex.

N |
d) U is an open ball in R". Easy! Not Hard. The Work.

(b)
(c) U is universally T-convex.
(d)

For p = @, u, T, the only non-trivial universally p-convex objects are balls.
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Characterizing Uniform Convexity

Proof va pictured implications

For non-empty open U C R", TAE: (a) \/ . \//7 (a)

U is universally p-convex. (c) = (d)
(la)) is universally p-convex. (b)/f7 \/\&(b)

U is universally p-convex.

Easy! Not Hard. The Work.

(b)
(c) U is universally T-convex.
(d)

d) U is an open ball in R

Spp M = {pads}aco is Méb invariant class of metrics with R € O.
If U is p-UC and non-trivial, then U is an open ball.
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Mobius Invariant Classes—A Question

Spp M = {pads}aco is M&b invariant class of conformal metrics.
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Mobius Invariant Classes—A Question

Spp M = {pads}aco is M&b invariant class of conformal metrics.

Are open balls universally convex with respect to M?

There are large Mobius invariant classes M of conformal metrics with the
property that
VQeO,Vr>0, dballsin Q with radius < r which are not p-convex.
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Theorems

Mobius Invariant Classes—A Question

Spp M = {pads}aco is M&b invariant class of conformal metrics.

Are open balls universally convex with respect to M?

There are large Mobius invariant classes M of conformal metrics with the

property that
VQeO,Vr>0, dballsin Q with radius < r which are not p-convex.

What if R} € O?
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Circle Convexity—Useful Tool for Proof of (¢) = (d)

Call A circle convex provided for all circles C in R”, C N A is connected.
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Call A circle convex provided for all circles C in R”, C N A is connected.
Clearly this M&b invariant; A circle convex = so is T(A) for any Mab
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A is circle convex <= VY Mob tfms T with T(A) C R", T(A) is
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Circle Convex Sets are Balls

Spp A C IR" is circle convex. Assume A bounded.
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Circle Convex Sets are Balls

Spp A C IR" is circle convex. Assume A bounged. Let B be the c_Iosed
circumball containing A. We show that A= B. Know that A C B.
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Circle Convex Sets are Balls

Spp A C R" is circle convex. Assume A bounded. Let B be the closed
circumball containing A. We show that A = B. Know that A C B.
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circumball containing A. We show that A = B. Know that A C B.

Since B is circumball, AN 9B = dAN OB D {a, b} with a # b.

Since A is circle convex, if C is any circle thru a, b then C N A connected.

Basic Circle Geometry: the intersection of two distinct circles contains
exactly 0 or 1 or 2 points.
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Theorems

Circle Convex Sets are Balls

Spp A C R" is circle convex. Assume A bounded. Let B be the closed
circumball containing A. We show that A = B. Know that A C B.

Since B is circumball, AN 9B = dAN OB D {a, b} with a # b.

Since A is circle convex, if C is any circle thru a, b then C N A connected.

Basic Circle Geometry: the intersection of two distinct circles contains
exactly 0 or 1 or 2 points.

Let p € B. Get unique circle C thru p, a, b. Evidently, CN 9B = {a, b},

so must get C N A= C N B which is the closed subarc of C that contains
p and has endpts a, b. See that p € A. Thus, BC AC B, so A= B.
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The End
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Proof that Balls are Universally Ferrand Convex

WTS
Lo(7y) > Lo(v*) . or,

<pds>/<p*ds
g gl

X
X

But, ¢,(y) = / @ds and £,(7*) =Ly (7) = /ap* ds.
gl gl



Proof that Balls are Universally Ferrand Convex

WTS
Lo(7y) > Lo(v*) . or, .

>* ry X*

pds > /<p ds ,
Y y
or, Vx € 7,
P(x) > *(x) = p(x*).
X

X
X

But, ,(v) :/wds and £, (7*) = Lox(y) = /cp* ds.



Proof that Balls are Universally Ferrand Convex

WTS
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or, Vx € 7,
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Proof that Balls are Universally Ferrand Convex

WTS
Lo(7y) > Lo(v*) . or, .
/ * ry X*
pds> [ ¢ ds,
g g
or, Vx € 7,
p(x) > " (x) = p(x7).
X b
X g X
. c * * ’a — b‘
Fix x € 4. Pick a,b € 0Q st o(x*) = Tap(x*) = ———————. Then

|x* — a||x* — b

= b
= 2l = b

O(x) > Tap(x) = Tarpr (x*) =



Proof that Balls are Universally Ferrand Convex

WTS ar
Lo() > Lo(v*) | o, L b
*
pds > /«p* ds , { £
Y v
or, Vx € 7,
p(x) > " (x) = p(x7).
X b
X g X
—b
Fix x c e Pick d, b E 69 st @(X*) = Tab(X*) = m Then
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