Metric Space Inversions

David A Herron

University of Cincinnati

29 September 2006 Virginia Polytechnic University

- Introduction
 - Euclidean Inversions
 - Notation
- Metric Space Inversions
 - Definitions
 - Properties
- 3 Inversions and QuasiConvexity
 - Annular QuasiConvexity
 - Preservation of QuasiConvexity
- Inversions and Uniformity
 - Uniform Spaces
 - Preservation of Uniform SubSpaces
- 5 Ptolemaic Spaces

Outline

- Introduction
 - Euclidean Inversions
 - Notation
- 2 Metric Space Inversions
 - Definitions
 - Properties
- Inversions and QuasiConvexity
 - Annular QuasiConvexity
 - Preservation of QuasiConvexity
- 4 Inversions and Uniformity
 - Uniform Spaces
 - Preservation of Uniform SubSpaces
- 5 Ptolemaic Spaces

Collaborators

Mostly joint work with:

- Stephen M. Buckley at NUI,
- Xiangdong Xie at Virginia Tech.

If time permits, will discuss recent related work of

S. Buckley, K. Falk, D. Wraith —all at NUI.

Things to Ponder

- Show that $\frac{|x-y|}{|x||y|}$ determines a distance function on $\mathbb{R}^n\setminus\{0\}$.
- Find an example when this fails to be a distance function.
- For which metric spaces will this quantity define a distance?

▶ Start Talk

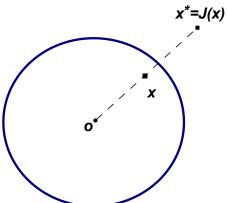
Things to Ponder

- Show that $\frac{|x-y|}{|x||y|}$ determines a distance function on $\mathbb{R}^n\setminus\{0\}$.
- Find an example when this fails to be a distance function.
- For which metric spaces will this quantity define a distance?

► Finish Talk ► Summary

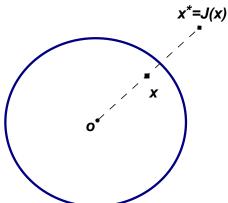
Definition of Euclidean Inversion

Inversion wrt the origin (reflection across $\mathbb{S}^{n-1}(0;1)$):



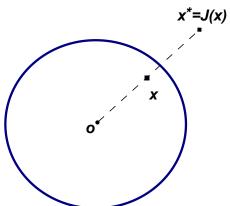
Definition of Euclidean Inversion

Inversion wrt the origin (reflection across $\mathbb{S}^{n-1}(0;1)$): self-homeo $x\mapsto x^*=J(x):=\frac{x}{|x|^2}$ of $\mathbb{R}^n\setminus\{0\}$



Definition of Euclidean Inversion

Inversion wrt the origin (reflection across $\mathbb{S}^{n-1}(0;1)$): self-homeo $x\mapsto x^*=J(x):=\frac{x}{|x|^2}$ of $\mathbb{R}^n\setminus\{0\}$ OK in normed linear space



• J is Möbius transformation with $J \circ J = Id$

- J is Möbius transformation with $J \circ J = Id$
- J is a quasihyperbolic isometry of $\mathbb{R}^n \setminus \{0\}$

- J is Möbius transformation with $J \circ J = Id$
- J is a quasihyperbolic isometry of $\mathbb{R}^n \setminus \{0\}$
- *J* preserves uniform subspaces of $\mathbb{R}^n \setminus \{0\}$

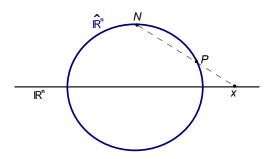
- J is Möbius transformation with $J \circ J = Id$
- J is a quasihyperbolic isometry of $\mathbb{R}^n \setminus \{0\}$
- *J* preserves uniform subspaces of $\mathbb{R}^n \setminus \{0\}$
- Can pullback Euclidean distance to get

$$||x - y|| := |J(x) - J(y)| = \left| \frac{x}{|x|^2} - \frac{y}{|y|^2} \right| = \frac{|x - y|}{|x||y|}$$

a new distance on $\mathbb{R}^n \setminus \{0\}$

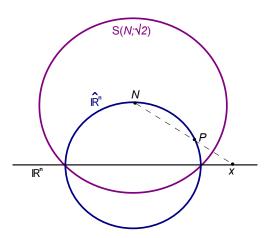
Euclidean Sphericalization

Stereographic Projection



Euclidean Sphericalization

Stereographic Projection is Inversion across $\mathbb{S}^n(N;\sqrt{2})\subset \mathbb{R}^{n+1}$



(X,d) metric; $o \in X$ base point; $X_o := X \setminus \{o\}$; |x - y| = d(x,y);

$$(X,d)$$
 metric; $o \in X$ base point; $X_o := X \setminus \{o\}$; $|x - y| = d(x,y)$;

$$|x|:=|x-o|=d(x,o)$$

$$(X,d)$$
 metric; $o \in X$ base point; $X_o := X \setminus \{o\}$; $|x - y| = d(x,y)$; $\hat{X} = \text{one pt ext of } X = \begin{cases} X & X \text{ bdd} \\ X \cup \{\infty\} & X \text{ unbdd} \end{cases}$ $|x| := |x - o| = d(x,o)$

$$(X,d)$$
 metric; $o \in X$ base point; $X_o := X \setminus \{o\}$; $|x - y| = d(x,y)$; $\hat{X} = \text{one pt ext of } X = \begin{cases} X & X \text{ bdd} \\ X \cup \{\infty\} & X \text{ unbdd} \end{cases}$ $|x| := |x - o| = d(x,o)$

 $X \xrightarrow{f} Y$ is bilipschitz if there is $L \ge 1$ and

$$\forall x, y \in X: \quad L^{-1}|x - y| \le |fx - fy| \le L|x - y|$$

$$(X,d)$$
 metric; $o \in X$ base point; $X_o := X \setminus \{o\}$; $|x - y| = d(x,y)$;

$$\hat{X} = \text{one pt ext of } X = \begin{cases} X & X \text{ bdd} \\ X \cup \{\infty\} & X \text{ unbdd} \end{cases}$$
 $|x| := |x - o| = d(x, o)$

 $X \xrightarrow{f} Y$ is bilipschitz if there is $L \ge 1$ and

$$\forall x, y \in X: \quad L^{-1}|x - y| \le |fx - fy| \le L|x - y|$$

$$\hat{X}\supset Z\stackrel{f}{
ightarrow}\hat{Y}$$
 is $artheta$ -quasimöbius if $[0,\infty)\stackrel{artheta}{
ightarrow}[0,\infty)$ homeo and

$$|x, y, z, w| \le t \implies |f(x), f(y), f(z), f(w)| \le \vartheta(t)$$

where absolute cross ratio of distinct $x, y, z, w \in Z$ is

$$|x, y, z, w| = \frac{|x - y||z - w|}{|x - z||y - w|}$$

◆母 ▶ ◆ 差 ▶ ◆ 差 | = り へ ○

9 / 44

Outline

- Introduction
 - Euclidean Inversions
 - Notation
- Metric Space Inversions
 - Definitions
 - Properties
- Inversions and QuasiConvexity
 - Annular QuasiConvexity
 - Preservation of QuasiConvexity
- 4 Inversions and Uniformity
 - Uniform Spaces
 - Preservation of Uniform SubSpaces
- 5 Ptolemaic Spaces

Definition of Distance

Definition

For
$$x, y \in X_o := X \setminus \{o\} \left| i_o(x, y) := \frac{|x - y|}{|x||y|} \right|$$
.

Definition of Distance

Definition

For
$$x, y \in X_o := X \setminus \{o\}$$
 $\left| i_o(x, y) := \frac{|x - y|}{|x||y|} \right|$. To force the triangle inequality:

$$d_o(x,y) := \inf \left\{ \sum_{i=1}^k i_o(x_i,x_{i-1}) : x = x_0,\ldots,x_k = y \in X_o \right\}.$$

Definition of Distance

Definition

For
$$x, y \in X_o := X \setminus \{o\}$$
 $i_o(x, y) := \frac{|x - y|}{|x||y|}$. To force the triangle inequality:

$$d_o(x,y) := \inf \left\{ \sum_{i=1}^k i_o(x_i,x_{i-1}) : x = x_0,\ldots,x_k = y \in X_o \right\}.$$

Get distance function because for all $x, y \in X_0$

$$\frac{1}{4}i_o(x,y) \le d_o(x,y) \le i_o(x,y) = \frac{|x-y|}{|x||y|} \le \frac{1}{|x|} + \frac{1}{|y|}.$$

Definition of Inverted Space

Know that for all pts $x, y \in X_0$

$$\frac{1}{4}i_o(x,y) \le d_o(x,y) \le i_o(x,y) = \frac{|x-y|}{|x||y|} \le \frac{1}{|x|} + \frac{1}{|y|}.$$

If X unbdd, $\infty \in \hat{X}$ corresponds to

Definition of Inverted Space

Know that for all pts $x, y \in X_0$

$$\frac{1}{4}i_o(x,y) \le d_o(x,y) \le i_o(x,y) = \frac{|x-y|}{|x||y|} \le \frac{1}{|x|} + \frac{1}{|y|}.$$

If X unbdd, $\infty \in \hat{X}$ corresponds to unique pt o' in the completion of (X_o, d_o) .

Convenient to include o' in inverted space.

Definition of Inverted Space

Know that for all pts $x, y \in X_o$

$$\frac{1}{4}i_o(x,y) \le d_o(x,y) \le i_o(x,y) = \frac{|x-y|}{|x||y|} \le \frac{1}{|x|} + \frac{1}{|y|}.$$

If X unbdd, $\infty \in \hat{X}$ corresponds to

unique pt o' in the completion of (X_o, d_o) .

Convenient to include o' in inverted space.

Definition

The inversion of (X, d) wrt o is

$$(\mathsf{Inv}_o(X), d_o) := (\hat{X}_o, d_o) = (\hat{X} \setminus \{o\}, d_o).$$

• $Y = Inv_o(X)$ complete (proper) when X is complete (proper)

- $Y = Inv_o(X)$ complete (proper) when X is complete (proper)
- $\forall x, y \in Inv_o(X)$: $\frac{1}{4}i_o(x, y) \le d_o(x, y) \le i_o(x, y) = \frac{|x y|}{|x||y|}$



- $Y = Inv_o(X)$ complete (proper) when X is complete (proper)
- $\forall x, y \in Inv_o(X)$: $\frac{1}{4}i_o(x, y) \le d_o(x, y) \le i_o(x, y) = \frac{|x y|}{|x||y|}$
- $Y = Inv_o(X)$ bdd iff o is an isolated pt in X

- $Y = Inv_o(X)$ complete (proper) when X is complete (proper)
- $\forall x, y \in Inv_o(X)$: $\frac{1}{4}i_o(x, y) \le d_o(x, y) \le i_o(x, y) = \frac{|x y|}{|x||y|}$
- $Y = Inv_o(X)$ bdd iff o is an isolated pt in X
- $(\hat{X}, d) \stackrel{\text{id}}{\rightarrow} (\hat{Y}, d_o)$ is 16t-quasimobius (careful :-)

- $Y = Inv_o(X)$ complete (proper) when X is complete (proper)
- $\forall x, y \in Inv_o(X)$: $\frac{1}{4}i_o(x, y) \le d_o(x, y) \le i_o(x, y) = \frac{|x y|}{|x||y|}$
- $Y = Inv_o(X)$ bdd iff o is an isolated pt in X
- $(\hat{X}, d) \stackrel{\text{id}}{\rightarrow} (\hat{Y}, d_0)$ is 16t-quasimobius (careful :-)
- d_o -topology on X_o agrees with original subspace topology

Metric Space Sphericalization (Bonk-Kleiner)

This
$$(\operatorname{\mathsf{Sph}}_o(X),\hat{d}_o) := (\hat{X},\hat{d}_o)$$
 where $s_o(x,y) := \frac{|x-y|}{(1+|x|)(1+|y|)}$

$$s_o(x,y) := \frac{|x-y|}{(1+|x|)(1+|y|)}$$

and

$$\hat{d}_o(x,y) := \inf \left\{ \sum_{i=1}^k s_o(x_i,x_{i-1}) : x = x_0,\ldots,x_k = y \in X \right\}.$$

Metric Space Sphericalization (Bonk-Kleiner)

This
$$(\operatorname{\mathsf{Sph}}_o(X),\hat{d}_o) := (\hat{X},\hat{d}_o)$$
 where $s_o(x,y) := \frac{|x-y|}{(1+|x|)(1+|y|)}$

$$s_o(x,y) := \frac{|x-y|}{(1+|x|)(1+|y|)}$$

and

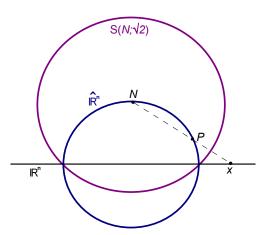
$$\hat{d}_o(x,y) := \inf \left\{ \sum_{i=1}^k s_o(x_i,x_{i-1}) : x = x_0,\ldots,x_k = y \in X \right\}.$$

For all $x, y \in Sph_{\alpha}(X)$ get

$$\frac{1}{4}s_o(x,y) \leq \hat{d}_o(x,y) \leq s_o(x,y) \leq \frac{1}{1+|x|} + \frac{1}{1+|y|}.$$

Metric Space Sphericalization is Inversion

Recall that stereographic proj $\hat{\mathbb{R}}^n \to \mathbb{S}^n \subset \mathbb{R}^{n+1}$ is inversion.

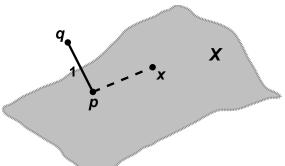


Metric Space Sphericalization is Inversion

Phenomenon also true in metric space setting.

Metric Space Sphericalization is Inversion

Phenomenon also true in metric space setting.

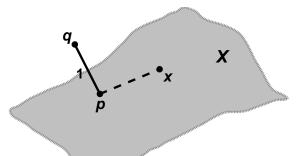


Metric Space Sphericalization is Inversion

Phenomenon also true in metric space setting.

Get
$$(\operatorname{\mathsf{Sph}}_p(X),\hat{d}_p) \equiv (\operatorname{\mathsf{Inv}}_q(X \sqcup \{q\}),d'_q)$$
 (isometric) where

$$d'(y,x) := d'(x,y) := \begin{cases} 0 & \text{if } x = q = y \\ d(x,y) & \text{if } x \neq q \neq y \\ d(x,p) + 1 & \text{if } x \neq q = y \end{cases}.$$



Mapping Properties

Theorem

Natural identity maps associated with following processes are bilipschitz.

• inversion followed by inversion: $X \stackrel{\text{id}}{\rightarrow} \text{Inv}_{o'}(\text{Inv}_o X)$

• sphericalization followed by inversion: $X \stackrel{\mathrm{id}}{\to} \operatorname{Inv}_{\hat{o}}(\operatorname{Sph}_{o} X)$

• inversion followed by sphericalization: $X \stackrel{\mathrm{id}}{\to} \mathrm{Sph}_{a}(\mathrm{Inv}_{p} X)$

Mapping Properties

Theorem

Natural identity maps associated with following processes are bilipschitz.

• inversion followed by inversion: $X \stackrel{\text{id}}{\rightarrow} \text{Inv}_{o'}(\text{Inv}_o X)$

• sphericalization followed by inversion: $X \stackrel{\mathrm{id}}{\to} \operatorname{Inv}_{\hat{o}}(\operatorname{Sph}_{o} X)$

• inversion followed by sphericalization: $X \stackrel{\mathrm{id}}{\to} \mathrm{Sph}_q(\mathrm{Inv}_p X)$

Caution! E.g. X unbdd in first, second but bdd in third.

Inversion Followed by Inversion

Spp
$$X$$
, $Y = Inv_o(X)$ both unbdd. Let $Z = Inv_{o'}(Y)$. Get
$$(X, o, \infty) \overset{Inv_o}{\leadsto} (Y, \infty, o') \overset{Inv'_o}{\leadsto} (Z, o'', \infty).$$

Inversion Followed by Inversion

Spp
$$X$$
, $Y = Inv_o(X)$ both unbdd. Let $Z = Inv_{o'}(Y)$. Get

$$(X, o, \infty) \stackrel{\mathsf{Inv}_o}{\leadsto} (Y, \infty, o') \stackrel{\mathsf{Inv}_o'}{\leadsto} (Z, o'', \infty).$$

So have natural identity map

$$X \stackrel{\mathrm{id}}{\to} \operatorname{Inv}_{o'}(\operatorname{Inv}_o X)$$
 with $o \mapsto o''$.

Inversion Followed by Inversion

Spp X, $Y = Inv_o(X)$ both unbdd. Let $Z = Inv_{o'}(Y)$. Get

$$(X, o, \infty) \stackrel{\mathsf{Inv}_o}{\leadsto} (Y, \infty, o') \stackrel{\mathsf{Inv}_o'}{\leadsto} (Z, o'', \infty).$$

So have natural identity map

$$X \stackrel{\mathrm{id}}{\to} \operatorname{Inv}_{o'}(\operatorname{Inv}_o X)$$
 with $o \mapsto o''$.

Here is analogue of Euclidean inversions having order two.

Proposition

Suppose X unbdd and o non-isolated. Then $(X,d) \stackrel{\mathrm{id}}{\to} (\operatorname{Inv}_{\alpha'} \operatorname{Inv}_{\alpha}(X), (d_{\alpha})_{\alpha'})$ is 16-bilipschitz.

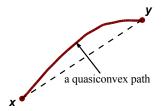
Outline

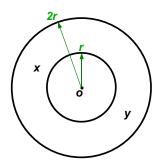
- Introduction
 - Euclidean Inversions
 - Notation
- Metric Space Inversions
 - Definitions
 - Properties
- Inversions and QuasiConvexity
 - Annular QuasiConvexity
 - Preservation of QuasiConvexity
- 4 Inversions and Uniformity
 - Uniform Spaces
 - Preservation of Uniform SubSpaces
- 5 Ptolemaic Spaces

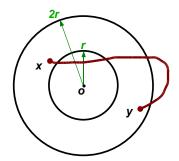
QuasiConvex Spaces

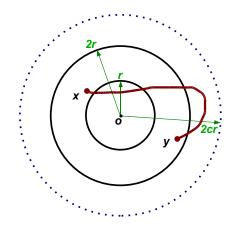
Definition

A path γ with endpoints x,y is c-quasiconvex if $\ell(\gamma) \leq c|x-y|$. Call X c-quasiconvex if all pts joinable by c-quasiconvex paths.





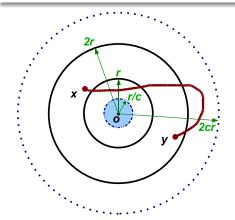






Definition

X is *c*-annular quasiconvex if pts in A(o; r, 2r) joinable by *c*-quasiconvex paths in A(o; r/c, 2cr) (alternatively, $\gamma \cap B(o; r/c) = \emptyset$)



Definition

X is *c*-annular quasiconvex if pts in A(o; r, 2r) joinable by *c*-quasiconvex paths in A(o; r/c, 2cr) (alternatively, $\gamma \cap B(o; r/c) = \emptyset$)

Examples

ullet Spheres in normed linear spaces of dimension ≥ 2 are 2-quasiconvex

Definition

X is c-annular quasiconvex if pts in A(o; r, 2r) joinable by c-quasiconvex paths in A(o; r/c, 2cr) (alternatively, $\gamma \cap B(o; r/c) = \emptyset$)

Examples

- ullet Spheres in normed linear spaces of dimension ≥ 2 are 2-quasiconvex
- Upper Ahlfors regular Loewner spaces (includes Carnot groups and certain Riemannian manifolds with non-negative Ricci curvature)

Definition

X is c-annular quasiconvex if pts in A(o; r, 2r) joinable by c-quasiconvex paths in A(o; r/c, 2cr) (alternatively, $\gamma \cap B(o; r/c) = \emptyset$)

Examples

- Spheres in normed linear spaces of dimension ≥ 2 are 2-quasiconvex
- Upper Ahlfors regular Loewner spaces (includes Carnot groups and certain Riemannian manifolds with non-negative Ricci curvature)
- Doubling metric measure spaces supporting a Poincaré inequality

Definition

X is c-annular quasiconvex if pts in A(o; r, 2r) joinable by c-quasiconvex paths in A(o; r/c, 2cr) (alternatively, $\gamma \cap B(o; r/c) = \emptyset$)

Examples

- Spheres in normed linear spaces of dimension ≥ 2 are 2-quasiconvex
- Upper Ahlfors regular Loewner spaces (includes Carnot groups and certain Riemannian manifolds with non-negative Ricci curvature)
- Doubling metric measure spaces supporting a Poincaré inequality
- Trees are not annular quasiconvex

Proposition

Suppose X is connected and c-annular quasiconvex at o. Then both X and $Inv_o(X)$ are quasiconvex.

Proposition

Suppose X is connected and c-annular quasiconvex at o. Then both X and $Inv_o(X)$ are quasiconvex.

This proof (and others) based on several properties of inversion.

22 / 44

Proposition

Suppose X is connected and c-annular quasiconvex at o. Then both X and $Inv_o(X)$ are quasiconvex.

This proof (and others) based on several properties of inversion.

Lemma

Recall that
$$\frac{1}{4}i_o(x,y) \leq d_o(x,y) \leq i_o(x,y) = \frac{|x-y|}{|x||y|}$$
.

Proposition

Suppose X is connected and c-annular quasiconvex at o. Then both X and $Inv_o(X)$ are quasiconvex.

This proof (and others) based on several properties of inversion.

Lemma

•
$$\forall x, y \in A(o; r, R)$$
: $\frac{|x - y|}{4R^2} \le d_o(x, y) \le \frac{|x - y|}{r^2}$ (quasidilation)

Recall that
$$\frac{1}{4}i_o(x,y) \leq d_o(x,y) \leq i_o(x,y) = \frac{|x-y|}{|x||y|}$$
.

Proposition

Suppose X is connected and c-annular quasiconvex at o. Then both X and $Inv_o(X)$ are quasiconvex.

This proof (and others) based on several properties of inversion.

Lemma

•
$$\forall x, y \in A(o; r, R)$$
: $\frac{|x - y|}{4R^2} \le d_o(x, y) \le \frac{|x - y|}{r^2}$ (quasidilation)

•
$$\ell_o(\gamma) = \int_{\gamma} \frac{|dx|}{|x|^2}$$
 (arclength diff'l is $|dx|_o = |dx|/|x|^2$)

Proposition

Suppose X is connected and c-annular quasiconvex at o. Then both X and $Inv_o(X)$ are quasiconvex.

This proof (and others) based on several properties of inversion.

Lemma

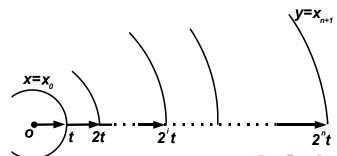
•
$$\forall x, y \in A(o; r, R)$$
: $\frac{|x - y|}{4R^2} \le d_o(x, y) \le \frac{|x - y|}{r^2}$ (quasidilation)

•
$$\ell_o(\gamma) = \int_{\gamma} \frac{|dx|}{|x|^2}$$
 (arclength diff'l is $|dx|_o = |dx|/|x|^2$)

• for all rect
$$\gamma \subset A(o; r, R)$$
: $\frac{\ell(\gamma)}{R^2} \le \ell_o(\gamma) \le \frac{\ell(\gamma)}{r^2}$

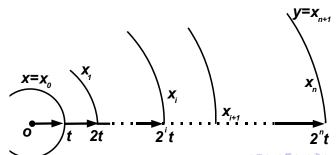
◆ロト ◆回ト ◆豆ト ◆豆ト 豆目 りく(*)

Spp $t = |x| \le |y|$; even $2^n t < |y| \le 2^{n+1} t$.

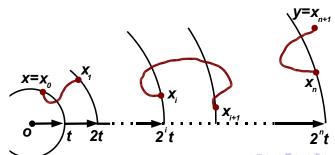


E > 4 E > -E|= *)4(*

Spp $t = |x| \le |y|$; even $2^n t < |y| \le 2^{n+1} t$.

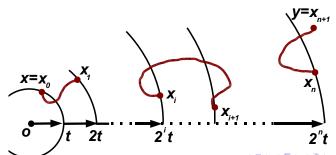


Spp $t = |x| \le |y|$; even $2^n t < |y| \le 2^{n+1} t$. For $0 \le i \le n$ get pxd x_i, γ_i .



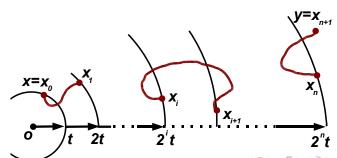
E ▶ ◀ E ▶ Æ| E ♥) Q (♥

Spp $t=|x|\leq |y|$; even $2^nt<|y|\leq 2^{n+1}t$. For $0\leq i\leq n$ get pxd x_i,γ_i . See that $\ell(\gamma_i)\simeq |x_i-x_{i+1}|\simeq 2^it$,



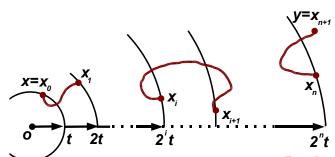
Spp $t = |x| \le |y|$; even $2^n t < |y| \le 2^{n+1} t$. For $0 \le i \le n$ get pxd x_i, γ_i . See that $\ell(\gamma_i) \simeq |x_i - x_{i+1}| \simeq 2^i t$,

Recall: $\alpha \subset A(o; r/c, cr) \implies \ell_o(\alpha) \simeq \ell(\alpha)/r^2$.



Spp $t = |x| \le |y|$; even $2^n t < |y| \le 2^{n+1} t$. For $0 \le i \le n$ get pxd x_i, γ_i . See that $\ell(\gamma_i) \simeq |x_i - x_{i+1}| \simeq 2^i t$, so $\ell_o(\gamma_i) \simeq \ell(\gamma_i)/(2^i t)^2 \simeq 1/(2^i t)$.

Recall: $\alpha \subset A(o; r/c, cr) \implies \ell_o(\alpha) \simeq \ell(\alpha)/r^2$.

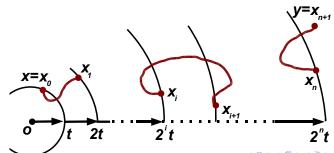


₹ ► ◀ ₹ ► | ₹|₹ \\ (*

Spp $t = |x| \le |y|$; even $2^n t < |y| \le 2^{n+1} t$. For $0 \le i \le n$ get pxd x_i, γ_i . See that $\ell(\gamma_i) \simeq |x_i - x_{i+1}| \simeq 2^i t$, so $\ell_o(\gamma_i) \simeq \ell(\gamma_i)/(2^i t)^2 \simeq 1/(2^i t)$.

Therefore.

$$\ell_o(\gamma) \simeq \sum_{0}^{n} \frac{1}{2^i t} \simeq \frac{1}{t} \simeq \frac{|x-y|}{|x||y|} \simeq d_o(x,y).$$



E ▶ ◀ E ▶ Æ|E ♥) Q (♥

Theorem

For any metric space X, these are quantitively equivalent:

- (a) X is quasiconvex and annular quasiconvex
- (b) $Inv_o(X)$ is quasiconvex and annular quasiconvex (o non-isolated)
- (c) $Sph_o(X)$ is quasiconvex and annular quasiconvex (X unbounded)

The quasiconvexity constants depend only on each other.

Theorem

For any metric space X, these are quantitively equivalent:

- (a) X is quasiconvex and annular quasiconvex
- (b) $Inv_o(X)$ is quasiconvex and annular quasiconvex (o non-isolated)
- (c) $Sph_o(X)$ is quasiconvex and annular quasiconvex (X unbounded)

The quasiconvexity constants depend only on each other.

Partial Proof of (b)
$$\implies$$
 (a).

Assume shown (a) implies (b). (Similar arg for (a) implies (c).)

Theorem

For any metric space X, these are quantitively equivalent:

- (a) X is quasiconvex and annular quasiconvex
- (b) $Inv_o(X)$ is quasiconvex and annular quasiconvex (o non-isolated)
- (c) $Sph_o(X)$ is quasiconvex and annular quasiconvex (X unbounded)

The quasiconvexity constants depend only on each other.

Partial Proof of (b) \implies (a).

Assume shown (a) implies (b). (Similar arg for (a) implies (c).) Suppose (b) holds, & also X unbdd.

_

Theorem

For any metric space X, these are quantitively equivalent:

- (a) X is quasiconvex and annular quasiconvex
- (b) $Inv_o(X)$ is quasiconvex and annular quasiconvex (o non-isolated)
- (c) $Sph_o(X)$ is quasiconvex and annular quasiconvex (X unbounded)

The quasiconvexity constants depend only on each other.

Partial Proof of (b) \implies (a).

Assume shown (a) implies (b). (Similar arg for (a) implies (c).) Suppose (b) holds, & also X unbdd. By first part, $Inv_{o'}(Inv_o X)$ qcx & ann qcx.

Theorem

For any metric space X, these are quantitively equivalent:

- (a) X is quasiconvex and annular quasiconvex
- (b) $Inv_o(X)$ is quasiconvex and annular quasiconvex (o non-isolated)
- (c) $Sph_o(X)$ is quasiconvex and annular quasiconvex (X unbounded)

The quasiconvexity constants depend only on each other.

```
Partial Proof of (b) \implies (a).
```

Assume shown (a) implies (b). (Similar arg for (a) implies (c).) Suppose

(b) holds, & also X unbdd. By first part, $Inv_{o'}(Inv_o X)$ qcx & ann qcx.

Done bcuz $X \stackrel{\text{id}}{\to} \text{Inv}_{o'}(\text{Inv}_o X)$ 16-bilipschitz.

Theorem

For any metric space X, these are quantitively equivalent:

- (a) X is quasiconvex and annular quasiconvex
- (b) $Inv_o(X)$ is quasiconvex and annular quasiconvex (o non-isolated)
- (c) $Sph_o(X)$ is quasiconvex and annular quasiconvex (X unbounded)

The quasiconvexity constants depend only on each other.

Partial Proof of (b) \implies (a).

Assume shown (a) implies (b). (Similar arg for (a) implies (c).) Suppose (b) holds, & also X unbdd. By first part, $Inv_{o'}(Inv_{o}X)$ qcx & ann qcx.

Done bcuz
$$X \stackrel{\text{id}}{\to} \text{Inv}_{\alpha'}(\text{Inv}_{\alpha} X)$$
 16-bilipschitz.

Above theme employed repeatedly.

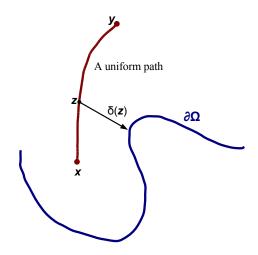
Outline

- Introduction
 - Euclidean Inversions
 - Notation
- 2 Metric Space Inversions
 - Definitions
 - Properties
- Inversions and QuasiConvexity
 - Annular QuasiConvexity
 - Preservation of QuasiConvexity
- Inversions and Uniformity
 - Uniform Spaces
 - Preservation of Uniform SubSpaces
- 5 Ptolemaic Spaces

What is a Uniform Space?

What is a Uniform Space?

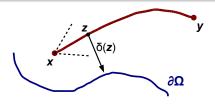
One in which points can be joined by uniform paths.



Definition

 (Ω,d) is c-uniform space if all pts joinable by c-uniform paths. γ joining x,y in Ω is such if c-quasiconvex and c-double cone, which means $\ell(\gamma) \leq c|x-y|$, and

$$\forall z \in \gamma : \min\{\ell(\gamma[x,z]), \ell(\gamma[y,z])\} \le c\delta(z).$$

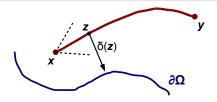


 (Ω,d) non-complete locally complete rectifiably connected metric space and $\delta(z)=\operatorname{dist}(z,\partial\Omega)$ where $\partial\Omega:=\bar\Omega\setminus\Omega$ is metric boundary of Ω

Definition

 (Ω,d) is c-uniform space if all pts joinable by c-uniform paths. γ joining x,y in Ω is such if c-quasiconvex and c-double cone, which means $\ell(\gamma) \leq c|x-y|$, and

$$\forall z \in \gamma : \min\{\ell(\gamma[x,z]), \ell(\gamma[y,z])\} \leq c\delta(z).$$



◄□▶◀圖▶◀불▶◀불▶ 불章 쒼٩만

 (Ω,d) non-complete locally complete rectifiably connected metric space and $\delta(z)=\operatorname{dist}(z,\partial\Omega)$ where $\partial\Omega:=\bar\Omega\setminus\Omega$ is metric boundary of Ω

Definition

 (Ω,d) is c-uniform space if all pts joinable by c-uniform paths. γ joining x,y in Ω is such if c-quasiconvex and c-double cone, which means $\ell(\gamma) \leq c|x-y|$, and

$$\forall z \in \gamma : \min\{\ell(\gamma[x,z]), \ell(\gamma[y,z])\} \leq c\delta(z).$$

 (Ω,d) non-complete locally complete rectifiably connected metric space and $\delta(z)=\operatorname{dist}(z,\partial\Omega)$ where $\partial\Omega:=\bar\Omega\setminus\Omega$ is metric boundary of Ω

Definition

 (Ω,d) is c-uniform space if all pts joinable by c-uniform paths. γ joining x,y in Ω is such if c-quasiconvex and c-double cone, which means $\ell(\gamma) \leq c|x-y|$, and

$$\forall z \in \gamma : \min\{\ell(\gamma[x,z]), \ell(\gamma[y,z])\} \leq c\delta(z).$$

Examples

• Euclidean balls and half-spaces (with hyperbolic geodesics)

 (Ω,d) non-complete locally complete rectifiably connected metric space and $\delta(z)=\operatorname{dist}(z,\partial\Omega)$ where $\partial\Omega:=\bar\Omega\setminus\Omega$ is metric boundary of Ω

Definition

 (Ω,d) is c-uniform space if all pts joinable by c-uniform paths. γ joining x,y in Ω is such if c-quasiconvex and c-double cone, which means $\ell(\gamma) \leq c|x-y|$, and

$$\forall z \in \gamma : \min\{\ell(\gamma[x,z]), \ell(\gamma[y,z])\} \leq c\delta(z).$$

- Euclidean balls and half-spaces (with hyperbolic geodesics)
- Bounded Euclidean Lipschitz domains

 (Ω,d) non-complete locally complete rectifiably connected metric space and $\delta(z)=\operatorname{dist}(z,\partial\Omega)$ where $\partial\Omega:=\bar\Omega\setminus\Omega$ is metric boundary of Ω

Definition

 (Ω,d) is c-uniform space if all pts joinable by c-uniform paths. γ joining x,y in Ω is such if c-quasiconvex and c-double cone, which means $\ell(\gamma) \leq c|x-y|$, and

$$\forall z \in \gamma : \min\{\ell(\gamma[x,z]), \ell(\gamma[y,z])\} \leq c\delta(z).$$

- Euclidean balls and half-spaces (with hyperbolic geodesics)
- Bounded Euclidean Lipschitz domains
- Quasiballs—which can have fractal boundary

 (Ω,d) non-complete locally complete rectifiably connected metric space and $\delta(z)=\operatorname{dist}(z,\partial\Omega)$ where $\partial\Omega:=\bar\Omega\setminus\Omega$ is metric boundary of Ω

Definition

 (Ω,d) is c-uniform space if all pts joinable by c-uniform paths. γ joining x,y in Ω is such if c-quasiconvex and c-double cone, which means $\ell(\gamma) \leq c|x-y|$, and

$$\forall z \in \gamma : \min\{\ell(\gamma[x,z]), \ell(\gamma[y,z])\} \le c\delta(z).$$

- Euclidean balls and half-spaces (with hyperbolic geodesics)
- Bounded Euclidean Lipschitz domains
- Quasiballs—which can have fractal boundary
- Not infinite cylinders nor infinite slabs

Gromov Hyperbolic Spaces

Every (unbounded proper geodesic) Gromov hyperbolic space can be conformally dampened to a bounded uniform space.

If (Ω, h) is Gromov δ -hyperbolic, then for all $\varepsilon \in (0, \varepsilon_0]$ $(\varepsilon_0 = \varepsilon_0(\delta))$ $(\Omega, d_{\varepsilon})$ is 20-uniform. Here d_{ε} is the length distance given by

$$d_{\varepsilon}(x,y) := \inf_{\gamma} \int_{\gamma} e^{-\varepsilon h(z,o)} |dz|.$$

Theorem

X complete; $\Omega \subset X_o$ open locally compact with $\partial \Omega \neq \emptyset \neq \partial_o \Omega$ These are quantitively equivalent:

- (a) Ω is uniform
- (b) $I_o(\Omega)$ is uniform
- (c) $S_o(\Omega)$ is uniform

Theorem

X complete; $\Omega \subset X_o$ open locally compact with $\partial \Omega \neq \emptyset \neq \partial_o \Omega$ These are quantitively equivalent:

- (a) Ω is uniform
- (b) $I_o(\Omega)$ is uniform
- (c) $S_o(\Omega)$ is uniform

If X annular quasiconvex, uniformity constants depend only on each other and the quasiconvexity constants.

Theorem

X complete; $\Omega \subset X_o$ open locally compact with $\partial \Omega \neq \emptyset \neq \partial_o \Omega$ These are quantitively equivalent:

- (a) Ω is uniform
- (b) $I_o(\Omega)$ is uniform
- (c) $S_o(\Omega)$ is uniform

If X annular quasiconvex, uniformity constants depend only on each other and the quasiconvexity constants. In general, constants also depend on $\operatorname{dist}(o,\partial\Omega)$, $\operatorname{dist}(o,\Omega)$, $\operatorname{diam}\Omega$, $\operatorname{diam}\partial\Omega$.

Theorem

X complete; $\Omega \subset X_o$ open locally compact with $\partial \Omega \neq \emptyset \neq \partial_o \Omega$ These are quantitively equivalent:

- (a) Ω is uniform
- (b) $I_o(\Omega)$ is uniform
- (c) $S_o(\Omega)$ is uniform

If X annular quasiconvex, uniformity constants depend only on each other and the quasiconvexity constants. In general, constants also depend on $\operatorname{dist}(o,\partial\Omega)$, $\operatorname{dist}(o,\Omega)$, $\operatorname{diam}\Omega$, $\operatorname{diam}\partial\Omega$.

Partial Proof of (b) \implies (a).

Assume shown (a) implies (b). (Same arg for (a) implies (c).) Spp (b) holds and Ω unbdd.

Theorem

X complete; $\Omega \subset X_o$ open locally compact with $\partial \Omega \neq \emptyset \neq \partial_o \Omega$ These are quantitively equivalent:

- (a) Ω is uniform
- (b) $I_o(\Omega)$ is uniform
- (c) $S_o(\Omega)$ is uniform

If X annular quasiconvex, uniformity constants depend only on each other and the quasiconvexity constants. In general, constants also depend on $\operatorname{dist}(o,\partial\Omega)$, $\operatorname{dist}(o,\Omega)$, $\operatorname{diam}\Omega$, $\operatorname{diam}\partial\Omega$.

Partial Proof of (b) \implies (a).

Assume shown (a) implies (b). (Same arg for (a) implies (c).) Spp (b) holds and Ω unbdd. By first part, $I_{o'}[I_o(\Omega)]$ is uniform.

Theorem

X complete; $\Omega \subset X_o$ open locally compact with $\partial \Omega \neq \emptyset \neq \partial_o \Omega$ These are quantitively equivalent:

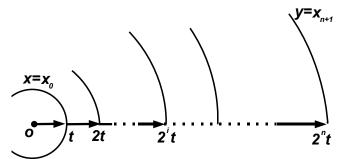
- (a) Ω is uniform
- (b) $I_o(\Omega)$ is uniform
- (c) $S_o(\Omega)$ is uniform

If X annular quasiconvex, uniformity constants depend only on each other and the quasiconvexity constants. In general, constants also depend on $\operatorname{dist}(o,\partial\Omega)$, $\operatorname{dist}(o,\Omega)$, $\operatorname{diam}\Omega$, $\operatorname{diam}\partial\Omega$.

Partial Proof of (b) \implies (a).

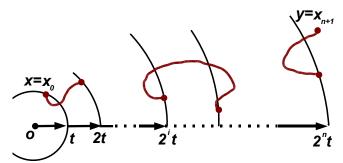
Assume shown (a) implies (b). (Same arg for (a) implies (c).) Spp (b) holds and Ω unbdd. By first part, $I_{o'}[I_o(\Omega)]$ is uniform. Done bcuz $X \xrightarrow{\operatorname{id}} \operatorname{Inv}_{o'}(\operatorname{Inv}_o X)$ 16-bilipschitz.

Spp
$$t = |x| \le |y|$$
; even $2^n t < |y| \le 2^{n+1} t$.



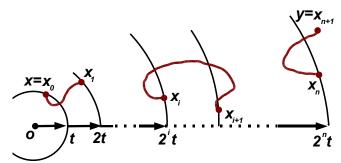
→ロ → ◆回 → ◆ き → を き を つ へ ○

Spp $t = |x| \le |y|$; even $2^n t < |y| \le 2^{n+1} t$.



▶ ◀圖 ▶ ◀돌 ▶ ∢돌 ▶ 토⊫ 쒸٩@

Spp $t = |x| \le |y|$; even $2^n t < |y| \le 2^{n+1} t$. For $0 \le i \le n$ get pxd x_i, γ_i .



] ▶ ◀♬ ▶ ◀돌 ▶ ◀돌 ▶ 필급 쒼요@

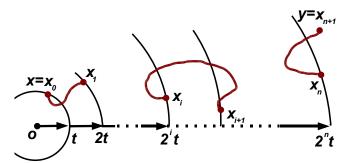
Spp $t=|x|\leq |y|$; even $2^nt<|y|\leq 2^{n+1}t$. For $0\leq i\leq n$ get pxd x_i,γ_i . See that $\ell(\gamma_i)\simeq |x_i-x_{i+1}|\simeq 2^it$,



→ 4個 > 4 差 > 4 差 > 差 | 重 の Q @

Spp $t = |x| \le |y|$; even $2^n t < |y| \le 2^{n+1} t$. For $0 \le i \le n$ get pxd x_i, γ_i . See that $\ell(\gamma_i) \simeq |x_i - x_{i+1}| \simeq 2^i t$,

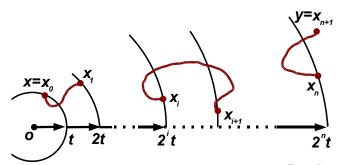
Recall: $\alpha \subset A(o; r/c, cr) \implies \ell_o(\alpha) \simeq \ell(\alpha)/r^2$.



· 《문》 《문》 -문(로 《) 역()

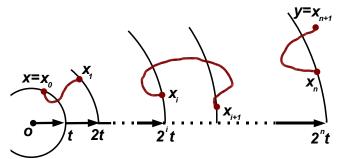
Spp $t = |x| \le |y|$; even $2^n t < |y| \le 2^{n+1} t$. For $0 \le i \le n$ get pxd x_i, γ_i . See that $\ell(\gamma_i) \simeq |x_i - x_{i+1}| \simeq 2^i t$, so $\ell_o(\gamma_i) \simeq \ell(\gamma_i)/(2^i t)^2 \simeq 1/(2^i t)$.

Recall: $\alpha \subset A(o; r/c, cr) \implies \ell_o(\alpha) \simeq \ell(\alpha)/r^2$.



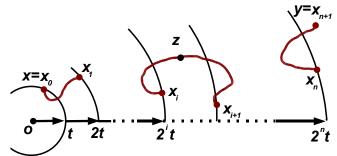
Spp $t=|x|\leq |y|$; even $2^nt<|y|\leq 2^{n+1}t$. For $0\leq i\leq n$ get pxd x_i,γ_i . See that $\ell(\gamma_i)\simeq |x_i-x_{i+1}|\simeq 2^it$, so $\ell_o(\gamma_i)\simeq \ell(\gamma_i)/(2^it)^2\simeq 1/(2^it)$. Therefore,

$$\ell_o(\gamma) \simeq \sum_{0}^n \frac{1}{2^i t} \simeq \frac{1}{t} \simeq \frac{|x-y|}{|x||y|} \simeq d_o(x,y).$$

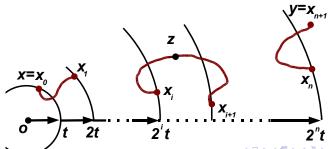


Spp $t = |x| \le |y|$; even $2^n t < |y| \le 2^{n+1} t$. For $0 \le i \le n$ get pxd x_i, γ_i . See that $\ell(\gamma_i) \simeq |x_i - x_{i+1}| \simeq 2^i t$, so $\ell_o(\gamma_i) \simeq \ell(\gamma_i)/(2^i t)^2 \simeq 1/(2^i t)$. Therefore,

$$\ell_o(\gamma) \simeq \sum_{0}^{n} \frac{1}{2^i t} \simeq \frac{1}{t} \simeq \frac{|x-y|}{|x||y|} \simeq d_o(x,y).$$



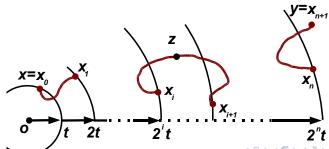
Remains to show double cone condition for $z \in \gamma_i$.



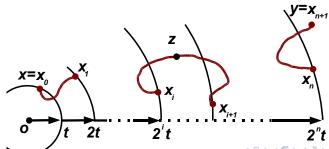
David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 31 / 44

Ideas in Proof of Ω Uniform $\Longrightarrow I_o(\Omega)$ Uniform

Remains to show double cone condition for $z \in \gamma_i$. Have $|z| \simeq 2^i t$ and $\delta(z) \geq \ell(\gamma[x,z]) \wedge \ell(\gamma[y,z]) \geq 2^{i}t$

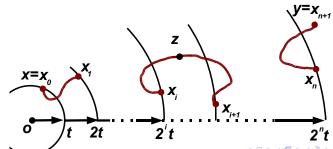


Remains to show double cone condition for $z \in \gamma_i$. Have $|z| \simeq 2^i t$ and $\delta(z) \gtrsim \ell(\gamma[x,z]) \wedge \ell(\gamma[y,z]) \gtrsim 2^i t$, so $\delta_o(z) \gtrsim \frac{1}{|z|} \wedge \frac{\delta(z)}{|z|^2} \gtrsim \frac{1}{2^i t}$.



Remains to show double cone condition for $z \in \gamma_i$. Have $|z| \simeq 2^i t$ and $\delta(z) \gtrsim \ell(\gamma[x,z]) \wedge \ell(\gamma[y,z]) \gtrsim 2^i t$, so $\delta_o(z) \gtrsim \frac{1}{|z|} \wedge \frac{\delta(z)}{|z|^2} \gtrsim \frac{1}{2^i t}$. Then

$$\ell_o(\gamma[x,z]) \wedge \ell_o(\gamma[y,z]) \leq \ell_o(\gamma[y,z]) \lesssim \sum_i^n \frac{1}{2^j t} \simeq \frac{1}{2^i t} \lesssim \delta_o(z).$$



E P 4 E P - E I = 10 4

Outline

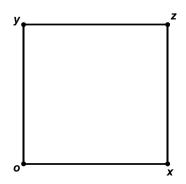
- Introduction
 - Euclidean Inversions
 - Notation
- Metric Space Inversions
 - Definitions
 - Properties
- Inversions and QuasiConvexity
 - Annular QuasiConvexity
 - Preservation of QuasiConvexity
- 4 Inversions and Uniformity
 - Uniform Spaces
 - Preservation of Uniform SubSpaces
- 5 Ptolemaic Spaces

When is i_0 a metric?

$$i_o(x,y) = \frac{|x-y|}{|x||y|}$$
 always positive definite, symmetric; triangle inequality?

When is i_o a metric?

$$i_o(x,y)=rac{|x-y|}{|x||y|}$$
 always positive definite, symmetric; triangle inequality? Look at $X=\mathbb{R}^2$ with ℓ^1 metric $|(x_1,y_1)-(x_2,y_2)|_1=|x_1-y_1|+|x_2-y_2|$. For $o=(0,0)$, $x=(1,0)$, $y=(0,1)$, $z=(1,1)$ get $i_o(x,y)=2$, but $i_o(x,z)=rac{1}{2}=i_o(y,z)$.



Ptolemy's Inequality

S. Buckley, K. Falk, and D. Wraith have investigated when i_o is itself a metric. This holds iff

Ptolemy's Inequality

S. Buckley, K. Falk, and D. Wraith have investigated when i_0 is itself a metric. This holds iff for all $x, y, z \in X$:

$$\frac{|x-y|}{|x||y|} = i_o(x,y) \le i_o(x,z) + i_o(y,z) = \frac{|x-z|}{|x||z|} + \frac{|y-z|}{|y||z|}.$$

Ptolemy's Inequality

S. Buckley, K. Falk, and D. Wraith have investigated when i_0 is itself a metric. This holds iff for all $x, y, z \in X$:

$$\frac{|x-y|}{|x||y|} = i_o(x,y) \le i_o(x,z) + i_o(y,z) = \frac{|x-z|}{|x||z|} + \frac{|y-z|}{|y||z|}.$$

Above true for all base pts o in X iff

$$\forall x, y, z, w \in X : |x - y||z - w| \le |x - z||y - w| + |x - w||y - z|.$$

Ptolemy's Inequality

S. Buckley, K. Falk, and D. Wraith have investigated when i_0 is itself a metric. This holds iff for all $x, y, z \in X$:

$$\frac{|x-y|}{|x||y|} = i_o(x,y) \le i_o(x,z) + i_o(y,z) = \frac{|x-z|}{|x||z|} + \frac{|y-z|}{|y||z|}.$$

Above true for all base pts o in X iff

$$\forall x, y, z, w \in X : |x - y||z - w| \le |x - z||y - w| + |x - w||y - z|.$$

Call X a Ptolemaic space in this setting; so X is Ptolemaic iff i_0 is a distance function for all base points o.

CAT(0) Spaces

Ptolemaic and CAT(0) spaces are related. $(CAT(\kappa))$ named after Cartan-Alexandrov-Toponogov.)

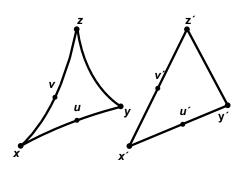
CAT(0) Spaces

Ptolemaic and CAT(0) spaces are related.

 $(CAT(\kappa))$ named after Cartan-Alexandrov-Toponogov.)

A geodesic space is CAT(0) if every geodesic triangle is at least as thin as a comparison triangle in the Euclidean plane: in below diagram

$$|u-v|\leq |u'-v'|.$$



Here are results of Buckley, Falk and Wraith.

• $CAT(0) \Longrightarrow Ptolemaic always holds$

Here are results of Buckley, Falk and Wraith.

- CAT(0) ⇒ Ptolemaic always holds
- For normed spaces: Ptolemaic ←⇒ inner product [Schoenberg '52]

Here are results of Buckley, Falk and Wraith.

- CAT(0) ⇒ Ptolemaic always holds
- For normed spaces: Ptolemaic ←⇒ inner product [Schoenberg '52]
- For smooth Finsler manifolds: Ptolemaic ⇒ Riemannian

Here are results of Buckley, Falk and Wraith.

- CAT(0) ⇒ Ptolemaic always holds
- For normed spaces: Ptolemaic ← inner product [Schoenberg '52]
- For smooth Finsler manifolds: Ptolemaic ⇒ Riemannian
- For Riemannian manifolds: Ptolemaic \Leftrightarrow CAT(0) \Leftrightarrow simply conn. + sect. curv. \leq 0

Here are results of Buckley, Falk and Wraith.

- CAT(0) ⇒ Ptolemaic always holds
- For normed spaces: Ptolemaic ←⇒ inner product [Schoenberg '52]
- For smooth Finsler manifolds: Ptolemaic ⇒ Riemannian
- For Riemannian manifolds:
 Ptolemaic ⇔ CAT(0) ⇔ simply conn. + sect. curv. ≤ 0
- Moreover,

```
\forall o \in X : i_o is a length metric \iff X is Euclidean . So, in manifold setting, inversion gives a simple characterization of Euclidean spaces.
```

4 D > 4 A > 4 B > 4 B > B B 9 Q O

Examples

• There is a Ptolemaic space X that cannot be isometrically imbedded into any CAT(0) space: Consider $X = \{(0,0), (0,1), (1,1), (1,2)\}$ with ℓ^{∞} distance

$$|(x_1,y_1),(x_2,y_2)|_{\infty}=\max\{|x_1-y_1|,|x_2-y_2|\}.$$

Examples

• There is a Ptolemaic space X that cannot be isometrically imbedded into any CAT(0) space: Consider $X = \{(0,0),(0,1),(1,1),(1,2)\}$ with ℓ^{∞} distance

$$|(x_1,y_1),(x_2,y_2)|_{\infty}=\max\{|x_1-y_1|,|x_2-y_2|\}.$$

• BFW do not have an example of a geodesic Ptolemaic space that fails to be CAT(0).

Summary

- In a general metric space, we can define inversion wrt a base pt.
- This inversion preserves many nice geometric properties.
- Inversion-Sphericalization provides a handy tool to transform bdd/unbdd spaces to unbdd/bdd.

- 6 Appendix
 - Diameter Estimates
 - Quasihyperbolic Distance Estimates
 - BiLipschitz Constants
 - Uniformity Constants

Outline

- 6 Appendix
 - Diameter Estimates
 - Quasihyperbolic Distance Estimates
 - BiLipschitz Constants
 - Uniformity Constants

Diameters of $In_o(X)$ and $Sph_o(X)$

Recall that $Y = Inv_o(X)$ is bdd iff o is an isolated pt in X. In this case we get

$$\frac{\operatorname{diam} X_o}{\operatorname{dist}(o,X_o) + \operatorname{diam} X_o} \, \frac{1}{8 \operatorname{dist}(o,X_o)} \leq \operatorname{diam}_o \operatorname{Inv}_o(X) \leq \frac{2}{\operatorname{dist}(o,X_o)} \, .$$

We also have

$$\begin{split} \frac{1}{4}s_o(x,y) & \leq \hat{d}_o(x,y) \leq s_o(x,y) \leq \frac{1}{1+|x|} + \frac{1}{1+|y|} \,. \\ \hat{\mathsf{diam}}_o \, \mathsf{Sph}_o(X) & \leq 1 \quad \mathsf{and} \quad \hat{\mathsf{diam}}_o \, \mathsf{Sph}_o(X) \geq \begin{cases} \hat{d}_o(o,\hat{o}) \geq \frac{1}{4} & X \text{ unbdd} \,, \\ \\ \frac{1}{4} \frac{\mathsf{diam} \, X}{2 + \mathsf{diam} \, X} & X \text{ bdd} \,. \end{cases} \end{split}$$

Easy to check that for any rectifiable curve γ ,

$$\ell_k(\gamma) \ge \log\left(1 + \frac{\ell(\gamma)}{\min_{z \in \gamma} \delta(z)}\right)$$
.

Easy to check that for any rectifiable curve γ ,

$$\ell_k(\gamma) \ge \log \left(1 + \frac{\ell(\gamma)}{\min_{z \in \gamma} \delta(z)}\right)$$
.

From this deduce basic (lower) estimates

$$k(x,y) \ge \log\left(1 + \frac{\ell(x,y)}{d(x) \land d(y)}\right) \ge j(x,y)$$
$$\ge j(x,y) := \log\left(1 + \frac{|x-y|}{d(x) \land d(y)}\right) \ge \left|\log\frac{d(x)}{d(y)}\right|.$$

Easy to check that for any rectifiable curve γ ,

$$\ell_k(\gamma) \ge \log \left(1 + \frac{\ell(\gamma)}{\min_{z \in \gamma} \delta(z)}\right)$$
.

From this deduce basic (lower) estimates

$$k(x,y) \ge \log\left(1 + \frac{\ell(x,y)}{d(x) \land d(y)}\right) \ge j(x,y)$$

$$\ge j(x,y) := \log\left(1 + \frac{|x-y|}{d(x) \land d(y)}\right) \ge \left|\log\frac{d(x)}{d(y)}\right|.$$

Fact

If (Ω, d) locally compact, then (Ω, k) proper and geodesic

Easy to check that for any rectifiable curve γ ,

$$\ell_k(\gamma) \ge \log \left(1 + \frac{\ell(\gamma)}{\min_{z \in \gamma} \delta(z)}\right)$$
.

From this deduce basic (lower) estimates

$$k(x,y) \ge \log\left(1 + \frac{\ell(x,y)}{d(x) \land d(y)}\right) \ge j(x,y)$$

$$\ge j(x,y) := \log\left(1 + \frac{|x-y|}{d(x) \land d(y)}\right) \ge \left|\log\frac{d(x)}{d(y)}\right|.$$

Fact

If (Ω, d) locally compact, then (Ω, k) proper and geodesic provided $(\Omega, \ell) \stackrel{\mathrm{id}}{\to} (\Omega, d)$ is homeo.

The BiLipschitz Constants

For
$$(\Omega, k) \stackrel{\mathrm{id}}{\to} (\Omega, k_o)$$
, get BL constant $M = 2 \, c (a \vee 20 \, b)$ where
$$a = \begin{cases} 1 & \text{if } \Omega \text{ is unbounded }, \\ \operatorname{diam} \Omega / [\operatorname{dist}(o, \partial \Omega) \vee (\operatorname{diam} \partial \Omega / 2)] & \text{if } \Omega \text{ is bounded }. \end{cases}$$

and

$$b = egin{cases} b' & ext{if } X ext{ is } b' ext{-quasiconvex}\,, \ 1 & ext{if } o \in \partial\Omega\,, \ 2 ext{ dist}(o,\partial\Omega)/\operatorname{dist}(o,\Omega) & ext{if } o
otin ar{\Omega}\,. \end{cases}$$

The BiLipschitz Constants

For $(\Omega, k) \stackrel{\mathrm{id}}{\to} (\Omega, k_o)$, get BL constant $M = 2 c(a \vee 20 b)$ where

$$\mathsf{a} = \begin{cases} 1 & \text{if } \Omega \text{ is unbounded }, \\ \mathsf{diam}\,\Omega/[\mathsf{dist}(o,\partial\Omega) \vee (\mathsf{diam}\,\partial\Omega/2)] & \text{if } \Omega \text{ is bounded }. \end{cases}$$

and

$$b = egin{cases} b' & ext{if } X ext{ is } b' ext{-quasiconvex}\,, \ 1 & ext{if } o \in \partial\Omega\,, \ 2 ext{ dist}(o,\partial\Omega)/\operatorname{dist}(o,\Omega) & ext{if } o
otin ar{\Omega}\,. \end{cases}$$

For $(\Omega, k) \stackrel{\mathrm{id}}{\to} (\Omega, \hat{k}_o)$, Ω unbounded and $o \in \partial \Omega$, M = 40 c.

Examples illustrate M may depend on quantities indicated above.

General Uniformity Constants

For Ω and $S_o(\Omega)$:

$$C=C(A,o)=c(A)[1+{\rm dist}(o,\partial\Omega] \quad {\rm and} \quad A=A(C) \ (\Omega \ {\rm unbdd}).$$
 For Ω and $I_o(\Omega)$:

For
$$\Omega$$
 and $I_o(\Omega)$:
$$B = B(A, o) = b(A)[1+r] \quad \text{and} \quad A = A(B, d) = a(B)d$$

where

$$r = r(o) = egin{cases} \operatorname{dist}(o,\partial\Omega)/\operatorname{dist}(o,\Omega) & o \in X \setminus ar{\Omega} \\ 0 & o \in \partial\Omega \end{cases}$$
 $d = egin{cases} 1 & \Omega \text{ unbdd} \\ \operatorname{diam}\Omega/\operatorname{diam}\partial\Omega & \Omega \text{ bdd} \end{cases}$