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Introduction

Collaborators

Mostly joint work with:

Stephen M. Buckley at NUI,

Xiangdong Xie at Virginia Tech.

If time permits, will discuss recent related work of
S. Buckley, K. Falk, D. Wraith —all at NUI.
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Introduction

Things to Ponder

Show that
|x − y |
|x ||y |

determines a distance function on Rn \ {0}.

Find an example when this fails to be a distance function.

For which metric spaces will this quantity define a distance?

Start Talk
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Introduction Euclidean Inversions

Definition of Euclidean Inversion

Inversion wrt the origin (reflection across Sn−1(0; 1)):

self-homeo x 7→ x∗ = J(x) :=
x

|x |2
of Rn \ {0} OK in normed linear space

 x  =J(x)*

 o

■

 x
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Introduction Euclidean Inversions

Properties of Euclidean Inversion

J is Möbius transformation with J ◦ J = Id

J is a quasihyperbolic isometry of Rn \ {0}
J preserves uniform subspaces of Rn \ {0}
Can pullback Euclidean distance to get

‖x − y‖ := |J(x)− J(y)| =
∣∣∣∣ x

|x |2
− y

|y |2

∣∣∣∣ =
|x − y |
|x ||y |

a new distance on Rn \ {0}
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Introduction Euclidean Inversions

Euclidean Sphericalization

Stereographic Projection

is Inversion across Sn(N;
√

2) ⊂ Rn+1

N

x

● P

   
 ℝn

n
   
 ℝ ^
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Introduction Euclidean Inversions

Euclidean Sphericalization
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Introduction Notation

Metric Space Notation & Definitions

(X , d) metric; o ∈ X base point; Xo := X \ {o}; |x − y | = d(x , y);

X̂ = one pt ext of X =

{
X X bdd

X ∪ {∞} X unbdd
|x | := |x − o| = d(x , o)

X
f→ Y is bilipschitz if there is L ≥ 1 and

∀ x , y ∈ X : L−1|x − y | ≤ |fx − fy | ≤ L|x − y |

X̂ ⊃ Z
f→ Ŷ is ϑ-quasimöbius if [0,∞)

ϑ→ [0,∞) homeo and

|x , y , z ,w | ≤ t =⇒ |f (x), f (y), f (z), f (w)| ≤ ϑ(t)

where absolute cross ratio of distinct x , y , z ,w ∈ Z is

|x , y , z ,w | = |x − y ||z − w |
|x − z ||y − w |
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Metric Space Inversions Definitions

Definition of Distance

Definition

For x , y ∈ Xo := X \ {o} io(x , y) :=
|x − y |
|x ||y |

.

To force the triangle

inequality:

do(x , y) := inf

{
k∑

i=1

io(xi , xi−1) : x = x0, . . . , xk = y ∈ Xo

}
.

Get distance function because for all x , y ∈ Xo

1

4
io(x , y) ≤ do(x , y) ≤ io(x , y) =

|x − y |
|x ||y |

≤ 1

|x |
+

1

|y |
.
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Metric Space Inversions Definitions

Definition of Inverted Space

Know that for all pts x , y ∈ Xo

1

4
io(x , y) ≤ do(x , y) ≤ io(x , y) =

|x − y |
|x ||y |

≤ 1

|x |
+

1

|y |
.

If X unbdd, ∞ ∈ X̂ corresponds to

unique pt o ′ in the completion of (Xo , do).
Convenient to include o ′ in inverted space.

Definition

The inversion of (X , d) wrt o is

(Invo(X ), do) := (X̂o , do) = (X̂ \ {o}, do) .

David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 12 / 44
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Metric Space Inversions Properties

Elementary Properties

Y = Invo(X ) complete (proper) when X is complete (proper)

∀x , y ∈ Invo(X ) :
1

4
io(x , y) ≤ do(x , y) ≤ io(x , y) =

|x − y |
|x ||y |

Y = Invo(X ) bdd iff o is an isolated pt in X

(X̂ , d)
id→ (Ŷ , do) is 16t-quasimöbius (careful :-)

do-topology on Xo agrees with original subspace topology
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do-topology on Xo agrees with original subspace topology

David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 13 / 44



Metric Space Inversions Properties

Elementary Properties

Y = Invo(X ) complete (proper) when X is complete (proper)

∀x , y ∈ Invo(X ) :
1

4
io(x , y) ≤ do(x , y) ≤ io(x , y) =

|x − y |
|x ||y |

Y = Invo(X ) bdd iff o is an isolated pt in X

(X̂ , d)
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Metric Space Inversions Properties

Metric Space Sphericalization (Bonk-Kleiner)

This (Spho(X ), d̂o) := (X̂ , d̂o) where so(x , y) :=
|x − y |

(1 + |x |)(1 + |y |)
and

d̂o(x , y) := inf

{
k∑

i=1

so(xi , xi−1) : x = x0, . . . , xk = y ∈ X

}
.

For all x , y ∈ Spho(X ) get

1

4
so(x , y) ≤ d̂o(x , y) ≤ so(x , y) ≤ 1

1 + |x |
+

1

1 + |y |
.
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Metric Space Inversions Properties

Metric Space Sphericalization is Inversion

Recall that stereographic proj R̂n → Sn ⊂ Rn+1 is inversion.

N

x

● P

   
 ℝn

n
   
 ℝ ^

 S(N;√2)
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Metric Space Inversions Properties

Metric Space Sphericalization is Inversion

Phenomenon also true in metric space setting.

Get (Sphp(X ), d̂p) ≡ (Invq(X t {q}), d ′q) (isometric) where

d ′(y , x) := d ′(x , y) :=


0 if x = q = y

d(x , y) if x 6= q 6= y

d(x , p) + 1 if x 6= q = y .

 X

 p

 q

 x
 
1
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Metric Space Inversions Properties

Mapping Properties

Theorem

Natural identity maps associated with following processes are bilipschitz.

inversion followed by inversion: X
id→ Invo′(Invo X )

sphericalization followed by inversion: X
id→ Invô(Spho X )

inversion followed by sphericalization: X
id→ Sphq(Invp X )

Caution! E.g. X unbdd in first, second but bdd in third.
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Metric Space Inversions Properties

Inversion Followed by Inversion

Spp X , Y = Invo(X ) both unbdd. Let Z = Invo′(Y ). Get

(X , o,∞)
Invo (Y ,∞, o ′)

Inv′
o (Z , o ′′,∞) .

So have natural identity map

X
id→ Invo′(Invo X ) with o 7→ o ′′ .

Here is analogue of Euclidean inversions having order two.

Proposition

Suppose X unbdd and o non-isolated. Then

(X , d)
id→ (Invo′ Invo(X ), (do)o′) is 16-bilipschitz.
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Inversions and QuasiConvexity

Outline

1 Introduction
Euclidean Inversions
Notation

2 Metric Space Inversions
Definitions
Properties

3 Inversions and QuasiConvexity
Annular QuasiConvexity
Preservation of QuasiConvexity

4 Inversions and Uniformity
Uniform Spaces
Preservation of Uniform SubSpaces

5 Ptolemaic Spaces

David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 18 / 44



Inversions and QuasiConvexity Annular QuasiConvexity

QuasiConvex Spaces

Definition

A path γ with endpoints x , y is c-quasiconvex if `(γ) ≤ c |x − y |.
Call X c-quasiconvex if all pts joinable by c-quasiconvex paths.

  x 

  y
 

 a quasiconvex path
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Inversions and QuasiConvexity Annular QuasiConvexity

What is Annular QuasiConvexity?

 
 o

 x

 y

 r

 2r

 ●
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Inversions and QuasiConvexity Annular QuasiConvexity

What is Annular QuasiConvexity?

 x

 y

 ●
 
 o

 r

 2r

 2cr

 r/c
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Inversions and QuasiConvexity Annular QuasiConvexity

Annular QuasiConvex Spaces: Definition & Examples

Definition

X is c-annular quasiconvex if pts in A(o; r , 2r) joinable by c-quasiconvex
paths in A(o; r/c , 2cr) (alternatively, γ ∩ B(o; r/c) = ∅)
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Inversions and QuasiConvexity Annular QuasiConvexity

Using Annular QuasiConvexity

Proposition

Suppose X is connected and c-annular quasiconvex at o. Then
both X and Invo(X ) are quasiconvex.

This proof (and others) based on several properties of inversion.

Lemma

∀ x , y ∈ A(o; r ,R) :
|x − y |
4R2

≤ do(x , y) ≤ |x − y |
r2

(quasidilation)

`o(γ) =

∫
γ

|dx |
|x |2

(arclength diff’l is |dx |o = |dx |/|x |2)

for all rect γ ⊂ A(o; r ,R) :
`(γ)

R2
≤ `o(γ) ≤ `(γ)

r2

Recall that
1

4
io(x , y) ≤ do(x , y) ≤ io(x , y) =

|x − y |
|x ||y |

.
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Inversions and QuasiConvexity Annular QuasiConvexity

Ideas in Proof that Invo(X ) is Quasiconvex

Spp t = |x | ≤ |y |; even 2nt < |y | ≤ 2n+1t.

For 0 ≤ i ≤ n get pxd xi , γi .

See that `(γi ) ' |xi − xi+1| ' 2i t,

so `o(γi ) ' `(γi )/(2i t)2 ' 1/(2i t).

Recall: α ⊂ A(o; r/c , cr) =⇒ `o(α) ' `(α)/r2.
Therefore,

`o(γ) '
n∑
0

1

2i t
' 1

t
' |x − y |

|x ||y |
' do(x , y) .

 2t t  2  t i
 2  t n o

 x= x 0

 y= x n+1

David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 23 / 44



Inversions and QuasiConvexity Annular QuasiConvexity

Ideas in Proof that Invo(X ) is Quasiconvex

Spp t = |x | ≤ |y |; even 2nt < |y | ≤ 2n+1t.

For 0 ≤ i ≤ n get pxd xi , γi .

See that `(γi ) ' |xi − xi+1| ' 2i t,

so `o(γi ) ' `(γi )/(2i t)2 ' 1/(2i t).

Recall: α ⊂ A(o; r/c , cr) =⇒ `o(α) ' `(α)/r2.
Therefore,

`o(γ) '
n∑
0

1

2i t
' 1

t
' |x − y |

|x ||y |
' do(x , y) .

 2t t  2  t i
 2  t n o

 x= x 0

 x 1

 x i
 x i+1

 x n

 y= x n+1

David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 23 / 44



Inversions and QuasiConvexity Annular QuasiConvexity

Ideas in Proof that Invo(X ) is Quasiconvex

Spp t = |x | ≤ |y |; even 2nt < |y | ≤ 2n+1t. For 0 ≤ i ≤ n get pxd xi , γi .

See that `(γi ) ' |xi − xi+1| ' 2i t,

so `o(γi ) ' `(γi )/(2i t)2 ' 1/(2i t).

Recall: α ⊂ A(o; r/c , cr) =⇒ `o(α) ' `(α)/r2.
Therefore,

`o(γ) '
n∑
0

1

2i t
' 1

t
' |x − y |

|x ||y |
' do(x , y) .

 2t t  2  t i
 2  t n o

 x= x 0

 x 1

 x i
 x i+1

 x n

 y= x n+1

David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 23 / 44



Inversions and QuasiConvexity Annular QuasiConvexity

Ideas in Proof that Invo(X ) is Quasiconvex

Spp t = |x | ≤ |y |; even 2nt < |y | ≤ 2n+1t. For 0 ≤ i ≤ n get pxd xi , γi .

See that `(γi ) ' |xi − xi+1| ' 2i t,

so `o(γi ) ' `(γi )/(2i t)2 ' 1/(2i t).

Recall: α ⊂ A(o; r/c , cr) =⇒ `o(α) ' `(α)/r2.
Therefore,

`o(γ) '
n∑
0

1

2i t
' 1

t
' |x − y |

|x ||y |
' do(x , y) .

 2t t  2  t i
 2  t n o

 x= x 0

 x 1

 x i
 x i+1

 x n

 y= x n+1

David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 23 / 44



Inversions and QuasiConvexity Annular QuasiConvexity

Ideas in Proof that Invo(X ) is Quasiconvex

Spp t = |x | ≤ |y |; even 2nt < |y | ≤ 2n+1t. For 0 ≤ i ≤ n get pxd xi , γi .

See that `(γi ) ' |xi − xi+1| ' 2i t,

so `o(γi ) ' `(γi )/(2i t)2 ' 1/(2i t).

Recall: α ⊂ A(o; r/c , cr) =⇒ `o(α) ' `(α)/r2.

Therefore,

`o(γ) '
n∑
0

1

2i t
' 1

t
' |x − y |

|x ||y |
' do(x , y) .

 2t t  2  t i
 2  t n o

 x= x 0

 x 1

 x i
 x i+1

 x n

 y= x n+1

David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 23 / 44



Inversions and QuasiConvexity Annular QuasiConvexity

Ideas in Proof that Invo(X ) is Quasiconvex

Spp t = |x | ≤ |y |; even 2nt < |y | ≤ 2n+1t. For 0 ≤ i ≤ n get pxd xi , γi .

See that `(γi ) ' |xi − xi+1| ' 2i t, so `o(γi ) ' `(γi )/(2i t)2 ' 1/(2i t).

Recall: α ⊂ A(o; r/c , cr) =⇒ `o(α) ' `(α)/r2.

Therefore,

`o(γ) '
n∑
0

1

2i t
' 1

t
' |x − y |

|x ||y |
' do(x , y) .

 2t t  2  t i
 2  t n o

 x= x 0

 x 1

 x i
 x i+1

 x n

 y= x n+1

David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 23 / 44



Inversions and QuasiConvexity Annular QuasiConvexity

Ideas in Proof that Invo(X ) is Quasiconvex

Spp t = |x | ≤ |y |; even 2nt < |y | ≤ 2n+1t. For 0 ≤ i ≤ n get pxd xi , γi .

See that `(γi ) ' |xi − xi+1| ' 2i t, so `o(γi ) ' `(γi )/(2i t)2 ' 1/(2i t).

Recall: α ⊂ A(o; r/c , cr) =⇒ `o(α) ' `(α)/r2.

Therefore,

`o(γ) '
n∑
0

1

2i t
' 1

t
' |x − y |

|x ||y |
' do(x , y) .

 2t t  2  t i
 2  t n o

 x= x 0

 x 1

 x i
 x i+1

 x n

 y= x n+1

David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 23 / 44



Inversions and QuasiConvexity Preservation of QuasiConvexity

Main Result

Theorem

For any metric space X , these are quantitively equivalent:

(a) X is quasiconvex and annular quasiconvex

(b) Invo(X ) is quasiconvex and annular quasiconvex (o non-isolated)

(c) Spho(X ) is quasiconvex and annular quasiconvex (X unbounded)

The quasiconvexity constants depend only on each other.

Partial Proof of (b) =⇒ (a).

Assume shown (a) implies (b). (Similar arg for (a) implies (c).) Suppose
(b) holds, & also X unbdd. By first part, Invo′(Invo X ) qcx & ann qcx.

Done bcuz X
id→ Invo′(Invo X ) 16-bilipschitz.

Above theme employed repeatedly.
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Inversions and Uniformity

Outline

1 Introduction
Euclidean Inversions
Notation

2 Metric Space Inversions
Definitions
Properties

3 Inversions and QuasiConvexity
Annular QuasiConvexity
Preservation of QuasiConvexity

4 Inversions and Uniformity
Uniform Spaces
Preservation of Uniform SubSpaces

5 Ptolemaic Spaces
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Inversions and Uniformity Uniform Spaces

What is a Uniform Space?

One in which points can be joined by uniform paths.

  x 

  y
 

  z 
  δ(z)

  ∂Ω 
 

 A uniform path
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Inversions and Uniformity Uniform Spaces

Uniform Spaces: Definition & Examples

(Ω, d) non-complete locally complete rectifiably connected metric space
and δ(z) = dist(z , ∂Ω) where ∂Ω := Ω̄ \ Ω is metric boundary of Ω

Definition

(Ω, d) is c-uniform space if all pts joinable by c-uniform paths.
γ joining x , y in Ω is such if c-quasiconvex and c-double cone,
which means `(γ) ≤ c |x − y |, and

∀z ∈ γ : min{`(γ[x , z ]), `(γ[y , z ])} ≤ cδ(z) .

  x 

  y
 

  δ(z)
  z 

  ∂Ω 
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which means `(γ) ≤ c |x − y |, and

∀z ∈ γ : min{`(γ[x , z ]), `(γ[y , z ])} ≤ cδ(z) .

Examples

Euclidean balls and half-spaces (with hyperbolic geodesics)

Bounded Euclidean Lipschitz domains

Quasiballs—which can have fractal boundary

Not infinite cylinders nor infinite slabs
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Inversions and Uniformity Uniform Spaces

Gromov Hyperbolic Spaces

Every (unbounded proper geodesic) Gromov hyperbolic space can be
conformally dampened to a bounded uniform space.

If (Ω, h) is Gromov δ-hyperbolic, then for all ε ∈ (0, ε0] (ε0 = ε0(δ))
(Ω, dε) is 20-uniform. Here dε is the length distance given by

dε(x , y) := inf
γ

∫
γ
e−εh(z,o) |dz | .

  x 

  y
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Inversions and Uniformity Preservation of Uniform SubSpaces

Main Result

Theorem

X complete; Ω ⊂ Xo open locally compact with ∂Ω 6= ∅ 6= ∂oΩ
These are quantitively equivalent:

(a) Ω is uniform

(b) Io(Ω) is uniform

(c) So(Ω) is uniform

If X annular quasiconvex, uniformity constants depend only on each other
and the quasiconvexity constants. In general, constants also depend on
dist(o, ∂Ω), dist(o,Ω), diam Ω, diam ∂Ω.

Partial Proof of (b) =⇒ (a).

Assume shown (a) implies (b). (Same arg for (a) implies (c).) Spp (b)
holds and Ω unbdd. By first part, Io′ [Io(Ω)] is uniform. Done bcuz

X
id→ Invo′(Invo X ) 16-bilipschitz.
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Inversions and Uniformity Preservation of Uniform SubSpaces

Ideas in Proof of Ω Uniform =⇒ Io(Ω) Uniform

Skip Proof

Spp t = |x | ≤ |y |; even 2nt < |y | ≤ 2n+1t. For 0 ≤ i ≤ n get
pxd xi , γi .

See that `(γi ) ' |xi − xi+1| ' 2i t,

so `o(γi ) ' `(γi )/(2i t)2 ' 1/(2i t).

Recall: α ⊂ A(o; r/c , cr) =⇒ `o(α) ' `(α)/r2.
Therefore,

`o(γ) '
n∑
0

1

2i t
' 1

t
' |x − y |

|x ||y |
' do(x , y) .
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Inversions and Uniformity Preservation of Uniform SubSpaces

Ideas in Proof of Ω Uniform =⇒ Io(Ω) Uniform

Remains to show double cone condition for z ∈ γi .

Have |z | ' 2i t and

δ(z) & `(γ[x , z ]) ∧ `(γ[y , z ]) & 2i t , so δo(z) &
1

|z |
∧ δ(z)

|z |2
&

1

2i t
.

Then

`o(γ[x , z ]) ∧ `o(γ[y , z ]) ≤ `o(γ[y , z ]) .
n∑
i

1

2j t
' 1

2i t
. δo(z) .

 2t t  2  t i
 2  t n o

 x= x 0

 x 1

 x i
 x i+1

 x n

 y= x n+1

z
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Ptolemaic Spaces
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Ptolemaic Spaces

When is io a metric?

io(x , y) =
|x − y |
|x ||y |

always positive definite, symmetric; triangle inequality?

Look at X = R2 with `1 metric |(x1, y1)− (x2, y2)|1 = |x1− y1|+ |x2− y2|.
For o = (0, 0), x = (1, 0), y = (0, 1), z = (1, 1) get
io(x , y) = 2, but io(x , z) = 1

2 = io(y , z).

  z 

  x   o 

  y 
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Ptolemaic Spaces

Ptolemy’s Inequality

S. Buckley, K. Falk, and D. Wraith have investigated when io is itself a
metric. This holds iff

for all x , y , z ∈ X :

|x − y |
|x ||y |

= io(x , y) ≤ io(x , z) + io(y , z) =
|x − z |
|x ||z |

+
|y − z |
|y ||z |

.

Above true for all base pts o in X iff

∀x , y , z ,w ∈ X : |x − y ||z − w | ≤ |x − z ||y − w |+ |x − w ||y − z | .

Call X a Ptolemaic space in this setting; so X is Ptolemaic iff io is a
distance function for all base points o.
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Ptolemaic Spaces

CAT(0) Spaces

Ptolemaic and CAT(0) spaces are related.
(CAT(κ) named after Cartan-Alexandrov-Toponogov.)

A geodesic space is CAT(0) if every geodesic triangle is at least as thin as
a comparison triangle in the Euclidean plane: in below diagram

|u − v | ≤ |u′ − v ′|.

  x 

  y
 

  z
 

v
 ●

u
●

  x  

  y 
 

  z 
 

v 
●

u 
●
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Ptolemaic Spaces

Ptolemaic versus CAT(0) spaces

Here are results of Buckley, Falk and Wraith.

CAT(0) =⇒ Ptolemaic always holds

For normed spaces: Ptolemaic ⇐⇒ inner product [Schoenberg ’52]

For smooth Finsler manifolds: Ptolemaic ⇒ Riemannian

For Riemannian manifolds:
Ptolemaic ⇔ CAT(0) ⇔ simply conn. + sect. curv. ≤ 0

Moreover,
∀ o ∈ X : io is a length metric ⇐⇒ X is Euclidean .

So, in manifold setting,
inversion gives a simple characterization of Euclidean spaces.
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For smooth Finsler manifolds: Ptolemaic ⇒ Riemannian

For Riemannian manifolds:
Ptolemaic ⇔ CAT(0) ⇔ simply conn. + sect. curv. ≤ 0

Moreover,
∀ o ∈ X : io is a length metric ⇐⇒ X is Euclidean .

So, in manifold setting,
inversion gives a simple characterization of Euclidean spaces.
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Ptolemaic Spaces

Examples

There is a Ptolemaic space X that cannot be isometrically imbedded
into any CAT(0) space: Consider X = {(0, 0), (0, 1), (1, 1), (1, 2)}
with `∞ distance

|(x1, y1), (x2, y2)|∞ = max{|x1 − y1|, |x2 − y2|} .

BFW do not have an example of a geodesic Ptolemaic space that fails
to be CAT(0).
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Summary

Summary

In a general metric space, we can define inversion wrt a base pt.

This inversion preserves many nice geometric properties.

Inversion-Sphericalization provides a handy tool to transform
bdd/unbdd spaces to unbdd/bdd.
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Appendix Diameter Estimates

Diameters of Ino(X ) and Spho(X )

Recall that Y = Invo(X ) is bdd iff o is an isolated pt in X . In this case we
get

diam Xo

dist(o,Xo) + diam Xo

1

8 dist(o,Xo)
≤ diamo Invo(X ) ≤ 2

dist(o,Xo)
.

We also have

1

4
so(x , y) ≤ d̂o(x , y) ≤ so(x , y) ≤ 1

1 + |x |
+

1

1 + |y |
.

d̂iamo Spho(X ) ≤ 1 and d̂iamo Spho(X ) ≥


d̂o(o, ô) ≥ 1

4 X unbdd ,

1

4

diam X

2 + diam X
X bdd .
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Appendix Quasihyperbolic Distance Estimates

Basic Properties of QuasiHyperbolic Distance

Easy to check that for any rectifiable curve γ,

`k(γ) ≥ log

(
1 +

`(γ)

minz∈γ δ(z)

)
.

From this deduce basic (lower) estimates

k(x , y) ≥ log

(
1 +

`(x , y)

d(x) ∧ d(y)

)
≥ j(x , y)

≥ j(x , y) := log

(
1 +

|x − y |
d(x) ∧ d(y)

)
≥

∣∣∣∣log
d(x)

d(y)

∣∣∣∣ .

Fact

If (Ω, d) locally compact, then (Ω, k) proper and geodesic

provided (Ω, `)
id→ (Ω, d) is homeo.

David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 42 / 44



Appendix Quasihyperbolic Distance Estimates

Basic Properties of QuasiHyperbolic Distance

Easy to check that for any rectifiable curve γ,

`k(γ) ≥ log

(
1 +

`(γ)

minz∈γ δ(z)

)
.

From this deduce basic (lower) estimates

k(x , y) ≥ log

(
1 +

`(x , y)

d(x) ∧ d(y)

)
≥ j(x , y)

≥ j(x , y) := log

(
1 +

|x − y |
d(x) ∧ d(y)

)
≥

∣∣∣∣log
d(x)

d(y)

∣∣∣∣ .

Fact

If (Ω, d) locally compact, then (Ω, k) proper and geodesic

provided (Ω, `)
id→ (Ω, d) is homeo.

David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 42 / 44



Appendix Quasihyperbolic Distance Estimates

Basic Properties of QuasiHyperbolic Distance

Easy to check that for any rectifiable curve γ,

`k(γ) ≥ log

(
1 +

`(γ)

minz∈γ δ(z)

)
.

From this deduce basic (lower) estimates

k(x , y) ≥ log

(
1 +

`(x , y)

d(x) ∧ d(y)

)
≥ j(x , y)

≥ j(x , y) := log

(
1 +

|x − y |
d(x) ∧ d(y)

)
≥

∣∣∣∣log
d(x)

d(y)

∣∣∣∣ .

Fact

If (Ω, d) locally compact, then (Ω, k) proper and geodesic

provided (Ω, `)
id→ (Ω, d) is homeo.

David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 42 / 44



Appendix Quasihyperbolic Distance Estimates

Basic Properties of QuasiHyperbolic Distance

Easy to check that for any rectifiable curve γ,

`k(γ) ≥ log

(
1 +

`(γ)

minz∈γ δ(z)

)
.

From this deduce basic (lower) estimates

k(x , y) ≥ log

(
1 +

`(x , y)

d(x) ∧ d(y)

)
≥ j(x , y)

≥ j(x , y) := log

(
1 +

|x − y |
d(x) ∧ d(y)

)
≥

∣∣∣∣log
d(x)

d(y)

∣∣∣∣ .

Fact

If (Ω, d) locally compact, then (Ω, k) proper and geodesic

provided (Ω, `)
id→ (Ω, d) is homeo.

David A Herron (University of Cincinnati) Metric Space Inversions VA Tech 42 / 44



Appendix BiLipschitz Constants

The BiLipschitz Constants

For (Ω, k)
id→ (Ω, ko), get BL constant M = 2 c(a ∨ 20 b) where

a =

{
1 if Ω is unbounded ,

diam Ω/[dist(o, ∂Ω) ∨ (diam ∂Ω/2)] if Ω is bounded .

and

b =


b′ if X is b′-quasiconvex ,

1 if o ∈ ∂Ω ,

2 dist(o, ∂Ω)/ dist(o,Ω) if o 6∈ Ω̄ .

For (Ω, k)
id→ (Ω, k̂o), Ω unbounded and o ∈ ∂Ω, M = 40 c .

Examples illustrate M may depend on quantities indicated above.
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Appendix Uniformity Constants

General Uniformity Constants

For Ω and So(Ω):
C = C (A, o) = c(A)[1 + dist(o, ∂Ω] and A = A(C ) (Ω unbdd).

For Ω and Io(Ω):
B = B(A, o) = b(A)[1 + r ] and A = A(B, d) = a(B)d

where

r = r(o) =

{
dist(o, ∂Ω)/ dist(o,Ω) o ∈ X \ Ω̄

0 o ∈ ∂Ω

d =

{
1 Ω unbdd

diam Ω/ diam ∂Ω Ω bdd
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