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Abstract. We confirm that certain circular arcs are geodesics for both the Ferrand and
Kulkarni-Pinkall metrics. We demonstrate that ‘most’ Kulkarni-Pinkall isometries are Möbius
transformations. We analyze the generalized Gaussian curvatures of these metrics. We ex-
hibit numerous illustrative examples.

1. Introduction

This article is a continuation of [HMM03] and [HMM06] wherein we studied a Möbius in-
variant metric µΩ(z)|dz| introduced by Kulkarni and Pinkhall [KP94] as a canonical metric
for Möbius structures on n-dimensional manifolds. In [HMM03] we employed the defini-
tion given below (see subsection §2.E) and corroborated various properties of this metric
using classical function theory. In [HMM06] we established pointwise and uniform estimates
between the Kulkarni-Pinkall metric and the hyperbolic and quasihyperbolic metrics.

Here we examine both the Kulkarni-Pinkall metric and a related metric first studied by
Ferrand in [Fer88]. We show that certain curves are always geodesics for these metrics,
confirm that many Kulkarni-Pinkall isometries are Möbius transformation, and investigate
the generalized Gaussian curvatures of both metrics. We also prove a number of basic facts
concerning the Kulkarni-Pinkall metric.

Throughout this paper Ω is a region on the Riemann sphere Ĉ with at least two boundary
points. Circular geodesics are one of the central objects of our study: we call Γ a circular
geodesic in Ω if there exists a disk D in Ĉ with D ⊂ Ω and such that Γ is a hyperbolic
geodesic line in D with endpoints in ∂D ∩ ∂Ω. (See below for all definitions.)

While it is rarely true that a circular geodesic in Ω is also a hyperbolic geodesic in Ω, we
will see that circular geodesics are actually geodesics for many natural metrics. In particular
we have the following.

Theorem A. Circular geodesics are both Kulkarni-Pinkall and Ferrand geodesics.

We can describe the Kulkarni-Pinkall isometries for many regions.

Theorem B. Every Kulkarni-Pinkall isometry between non-simply non-doubly connected
regions is a Möbius transformation.

In fact this conclusion also holds for most simply and doubly connected regions; the above
is just an easily stated consequence of Theorem 4.10 in conjunction with Theorem 4.11.

Both the Ferrand and Kulkarni-Pinkall metrics are negatively curved, and we have addi-
tional information in any region which is the Möbius image of a convex domain.
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Theorem C. The generalized Gaussian curvatures of the Kulkarni-Pinkall metric lie in
the interval [−1, 0]. For a Möbius convex region this improves to [−1,−1/2]. The upper
estimates also hold for the Ferrand metric, but not necessarily the lower bound.

We mention that the above result is sharp in several ways. First, there are simply con-
nected regions in which the Gaussian curvature takes on both values 0 and −1 (e.g., any
concave infinite sector); in fact this even holds for ‘nearly’ convex regions which are infinite
sectors with an angle opening just larger than π. Next, for a punctured disk the Gaussian
curvature assumes all values in (−1, 0), and for an infinite strip it takes on every value in
(−1,−1/2]. See subsections §3.B and §3.C.

Finally, the Gaussian curvature of these metrics can be constant only in special cases.

Theorem D. If the Gaussian curvature of the Ferrand or the Kulkarni-Pinkall metric is a
constant k in some quasihyperbolic region Ω, then either k = 0 and Ω is a twice punctured
sphere, or k = −1 and Ω is a disk on Ĉ. In the former case the metrics are both the
corresponding Möbius quasihyperbolic metric; in the latter case they are the hyperbolic metric.

This document is organized as follows: Section 2 contains preliminary information in-
cluding definitions and terminology as well as basic and/or well-known facts. We exhibit
fundamental examples in Section 3, but other examples appear throughout the article. A
Euclidean interpretation for the Ferrand and Kulkarni-Pinkall metrics is presented in §4.A
and the proofs of Theorems A, B, C and D appear in §4.B, §4.C, §4.D respectively.

We remark that the quantities 1/δ, τab and ϕ can be defined as below for appropriate
regions in Euclidean n-space (or on the n-sphere). Also, the hyperbolic metric can be defined
for balls, half-spaces, and the exterior of closed balls. Thus the quasihyperbolic, Ferrand,
and Kulkarni-Pinkall metrics can be defined for these regions. Many of our results (such as
Propositions 2.7 and 4.4) continue to hold in this setting although sometimes dimensional
constants must be included.

2. Preliminaries

2.A. General Information. Our notation is relatively standard. We work in the complex
plane C; stated results are valid for the Riemann sphere Ĉ = C ∪ {∞} in terms of local
coordinates as the reader may verify. Everywhere Ω is a domain (i.e., an open connected

set) and ∂Ω, Ωc denote the boundary, complement (respectively) of Ω with respect to Ĉ. The
Euclidean disk centered at the point a ∈ C of radius r is denoted by D(a; r) and D := D(0; 1)
is the unit disk. We also let H denote the right half-plane, H := {<(z) > 0}, and we define

C∗ := C \ {0} , Cab := C \ {a, b} , Ĉab := Ĉ \ {a, b};

the latter two definitions are for distinct points a, b in C or in Ĉ respectively.
The quantity δ(z) = δΩ(z) := dist(z, ∂Ω) = dist(z, ∂Ω∩C) is the Euclidean distance from

z ∈ C to the boundary of Ω, and 1/δ is the density for the so-called quasihyperbolic metric

|dz|/δ(z) when Ω ⊂ C. We call Ω ⊂ Ĉ a quasihyperbolic domain provided Ĉ \ Ω contains at
least two points (one of which may be the point at infinity). We make frequent use of the
notation

D(z) = DΩ(z) := D(z; δ(z)) = D(z; δΩ(z))
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for the maximal disk in Ω centered at z. The reader should take care not to confuse the two
disks D(z) and ∆(z) (the latter is defined below in §2.B) each associated with a point z ∈ Ω.

As our notation above suggests, we do not include Ω whenever the region is clear from
context. Often, if there are two regions in consideration, say Ω and Ω′, we will use a prime
(i.e., a ′) to indicate quantities associated with Ω′. For example, δ′(z) = δΩ′(z). We hope no
confusion arises!

2.B. Conformal Metrics and Geodesics. Recall that a conformal metric on a region
Ω ⊂ C has the form ρ(z)|dz| where ρ is some positive continuous function defined on Ω.
Here we consider several such metrics. We remind the reader that whenever f : Ω → Ω′ is
a (locally univalent) holomorphic map, every conformal metric σ(w)|dw| on Ω′ determines a
metric, the so-called pullback , ρ(z)|dz| := f∗[σ(w)|dw|] on Ω where

ρ(z)|dz| = σ(f(z))|f ′(z)||dz|.
We often abuse notation and abbreviate this by writing ρ = f∗[σ].

A geodesic in a metric space X is an isometric embedding γ : I → X where I ⊂ R is
an interval; we use the adjectives segment, ray, or line (respectively) to indicate that I is
bounded, semi-infinite, or all of R. We let |γ| := γ(I) denote the image of γ. A metric space
is geodesic if each pair of points can be joined by a geodesic segment.

Given a conformal metric ρ(z)|dz| on Ω, there is an associated distance function dρ ob-
tained in the usual way by letting

`ρ(γ) =

∫

γ

ρ(z) |dz|

denote the ρ-length of a rectifiable curve γ, and then defining the ρ-distance between two
points a, b as

dρ(a, b) = inf{`ρ(γ) : γ a rectifiable curve joining a, b in Ω}.
In this way we always obtain a length space (Ω, dρ) which is often a geodesic space.

In our setting we have the associated hyperbolic, quasihyperbolic, Kulkarni-Pinkall, and
Ferrand distances dλ, d1/δ, dµ, dϕ respectively. Since these distance functions all yield com-
plete locally compact metric spaces, the Hopf-Rinow theorem ensures we get geodesic spaces:
all points can be joined by geodesics. While we do not study these distances per se, we are
interested in their geodesics which we call, respectively, hyperbolic, quasihyperbolic, Kulkarni-
Pinkall, and Ferrand geodesics.

2.C. Quasihyperbolic Metrics. As alluded to above, for proper subdomains Ω ( C, the
so-called quasihyperbolic metric is given by |dz|/δ(z). This metric has proven useful in many
areas of modern analysis. We mention only the interesting articles by Martin and Osgood
[MO86] and Koskela [Kos98]; see these for additional references.

The quasihyperbolic metric in the punctured plane C∗ is simply |dz|/|z|, which classically
was called the logarithmic metric. Employing an auxiliary Möbius transformation, we can
define a Möbius invariant analog of this metric in the region Ĉab by

τab(z) =
|a− b|

|z − a||z − b| ,

with the standard interpretation if one of a or b is the point at infinity (in which case τab

reduces to the quasihyperbolic metric on the appropriate punctured plane).
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The density for the Ferrand metric ϕΩ(z)|dz|, introduced in [Fer88], is given for z ∈ Ω∩C
by

ϕ(z) = ϕΩ(z) := sup
a,b∈Ωc

τab(z).

In fact, there exist points a, b ∈ ∂Ω such that ϕ(z) = τab(z); cf. Proposition 4.4.

2.D. Hyperbolic Metric. When Ω ⊂ Ĉ has at least three boundary points, usually dubbed
a hyperbolic domain, there exists a universal covering projection p : D → Ω and the density
λ = λΩ of the Poincaré hyperbolic metric λΩ(z)|dz| is determined from

λ(z) = λΩ(z) = λ(p(ζ)) := 2(1 − |ζ|2)−1|p′(ζ)|−1;

of course this is only valid at points z ∈ Ω ∩ C. Alternatively, λ(z)|dz| is the unique metric
on Ω which enjoys the property that its pullback p∗[λ(z)|dz|] is the hyperbolic metric on D.
Yet another description is that λ(z)|dz| is the maximal constant curvature −1 metric on Ω.

We remind the reader that the hyperbolic geodesic lines in Euclidean disks and half planes
are subarcs of circles and lines orthogonal to the domain’s boundary.

Here is a perhaps surprising extension of Schwarz’ Lemma. A proof can be modeled on
the argument for [Min82, Theorem 1].

2.1. Fact. Let Ω and Ω′ be hyperbolic regions. Assume f is holomorphic in some neighborhood
of a ∈ Ω and takes values in Ω′. Suppose that for all z near a, f∗[λ′](z) = λ′(f(z))|f ′(z)| ≤
λ(z) with equality holding at z = a. Then f : Ω → Ω′ is a holomorphic covering projection;
in particular, f∗[λ′] = λ.

We require the following ‘folklore’ information. See, for example, [dC92, Theorem 4.1,p.163]

and note that any holomorphic covering C → Ω ⊂ Ĉ must be the exponential followed by a
Möbius transformation. See §2.F for the definition of Gaussian curvature.

2.2. Fact. Let ρ(z)|dz| be a conformal metric on some quasihyperbolic region Ω on Ĉ. Sup-
pose that ρ(z)|dz| is complete and has constant Gaussian curvature Kρ = k throughout Ω.

Then either k = 0 and Ω is a twice punctured sphere Ĉab with ρ = c τab for some constant
c > 0, or k < 0, Ω is a hyperbolic region, and ρ = (−k)−1/2λ.

The following hyperbolic geometric information will be useful.

2.3. Lemma. The hyperbolic geodesic line in D with Euclidean midpoint x ∈ [0, 1) has
endpoints

e−iθ , eiθ =
x + i

1 + ix
=

2x + i(1 − x2)

1 + x2
and 1 − x ≤ |x− eiθ| ≤

√
2 (1 − x).

Consequently, if Γ is a hyperbolic geodesic line in some disk D, z ∈ |Γ|, and ζ is an endpoint
of Γ closest to z, then

|z − ζ| ≤
√

2 δ(z) , where δ(z) = dist(z, ∂D).

Proof. The Möbius transformation w = T (z) = (z + x)/(1 + xz) is a hyperbolic isometry
of D which maps the Euclidean segment (−i, i) to the hyperbolic geodesic line in D with
Euclidean midpoint x, so eiθ = T (i). An easy calculation reveals that

|x − eiθ| = (1 − x)f(x) where f(x) =
1 + x√
1 + x2

.
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The distance inequalities now follow since f is increasing with f(0) = 1 and f(1) ≤
√

2.
It remains to confirm the last assertion. Suppose z ∈ |Γ| with ζ an endpoint of the

hyperbolic geodesic line Γ closest to z. Consider the hyperbolic geodesic line with Euclidean
midpoint z, and let η be one of its endpoints. According to what was just proved,

|z − ζ| ≤ |z − η| ≤
√

2 δ(z)

as desired. �
We require the following estimate concerning the values of certain hyperbolic metric-

densities.

2.4. Lemma. Given x ≥ 0, choose r = r(x) > x so that the hyperbolic geodesic line in
D(0; r) with Euclidean midpoint x has endpoints ξ, ξ̄ which satisfy |x − ξ| = 1. Then as x
increases, the values of λD(0;r)(x) decrease from 2 to

√
2.

Proof. Using Lemma 2.3 we find that

ξ = reiθ = r
2(x/r) + i(1 − (x/r)2)

1 + (x/r)2
= r

2xr + i(r2 − x2)

r2 + x2
;

the requirement |x − ξ| = 1 yields r2 + x2 = |x + ir|(r2 − x2), whence r2 + x2 = (r2 − x2)2.
From this we calculate r2 = x2 + 1

2
+ (2x2 + 1

4
)1/2, so (r/x)2 = f(1/2x2) where f(t) =

1+t+
√

4t + t2. Note that f monotonically increases from f(0) = 1 to ∞ as t → ∞. Finally,
λD(0;r)(x) = 2r/(r2 − x2) = 2r[r2 + x2]−1/2 = 2[1 + (x/r)2]−1/2 = 2[1 + f(1/2x2)−1]−1/2. �

2.E. Kulkarni-Pinkall Metric. The density for the Kulkarni-Pinkall metric µΩ(z)|dz| can
be defined for points z ∈ Ω ∩ C as

µ(z) = µΩ(z) := inf
{
λD(z) : z ∈ D ⊂ Ω,D is a disk on Ĉ

}
.

We follow the standard convention that a disk in Ĉ is either an open Euclidean disk, a
Euclidean half-plane, or the complement of a closed Euclidean disk together with the point
at infinity. Clearly, µΩ(z)|dz| is defined (and positive) for any quasihyperbolic domain Ω ⊂
Ĉ. The ‘infimum’ in this definition can be replaced by ‘minimum’; see [HMM03]. This
metric enjoys the usual domain monotonicity property, is Möbius invariant and complete
and bilipschitz equivalent to the quasihyperbolic metric. For precise statements of these
results, along with various other useful facts, we refer the interested reader to [HMM03],
[HMM06] and/or [KP94]; but, see below as well.

Notice that for the twice punctured sphere Ĉab we have

µ(z) = ϕ(z) = τab(z) for all z ∈ Ĉab.

For each z ∈ Ω (a quasihyperbolic domain in Ĉ) there is an associated unique extremal
disk ∆ = ∆(z) = ∆Ω(z) ⊂ Ω with the property that

µΩ(z) = λ∆(z).

The extremal disk ∆ = ∆(z) is either an open Euclidean disk, an open half-plane, or the
exterior of a closed disk, and is characterized by the property that K = K(z) = ∂∆ ∩ ∂Ω

contains two or more points and z belongs to the so-called hyperbolically convex hull K̂ (of
K in ∆) defined by

K̂ =
⋂

{H : H ⊂ ∆, the spherical closure of H contains K};
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here H is a closed (relative to hyperbolic geometry on ∆) hyperbolic half-plane in ∆. (As

examples: (i) If K = {a, b}, K̂ is the hyperbolic geodesic in ∆ ending at a and b. (ii) If

K = {a, b, c}, K̂ is the closed ideal hyperbolic triangle in ∆ with vertices a, b, c. (iii) If K

contains n points, n ≥ 3, then K̂ is the closed ideal hyperbolic n-gon in ∆ with vertices at
the points of K. (iv) When K = ∂∆, we let K̂ = ∆.) Moreover, it turns out that such a

disk ∆ is the extremal disk for each point of K̂.
Given an extremal disk ∆ and K = ∂∆∩ ∂Ω, we write Bd(K̂) = ∂K̂ ∩Ω. Thus Bd(K̂) is

a union of hyperbolic geodesic lines in ∆ (therefore circular geodesics in Ω) having endpoints

in K; of course there may be such a geodesic in Int(K̂) which is not in Bd(K̂). Note that

when K consists of precisely two points, Bd(K̂) = K̂ is precisely the circular geodesic in Ω
with these endpoints.

For convenience, below we collect some useful information regarding extremal disks. We
call a point of ∂Ω an extremal boundary point if it lies on the boundary of some extremal
disk in Ω. Each z ∈ Ω has at least two associated extremal boundary points, namely the
points of K(z) = ∂∆(z) ∩ ∂Ω. Note too that the endpoints of each circular geodesic are
extremal boundary points. For detailed information and proofs regarding extremal disks we
refer to [HMM03]. In particular, Theorems 3.4 and 4.2 therein provide explicit descriptions
for the extremal disks (and formulae for the Kulkarni-Pinkall metric thereof) in the regions
obtained by puncturing the Riemann sphere at two and three points, respectively.

2.5. Proposition. Let Ω be a quasihyperbolic domain in Ĉ. Then:
(a) For all z ∈ Ω there is a unique extremal disk ∆ = ∆(z) = ∆Ω(z) ⊂ Ω with the property

that µΩ(z) = λ∆(z), K = K(z) = ∂∆ ∩ ∂Ω contains two or more points, and z ∈ K̂.
(b) Each disk ∆ ⊂ Ω with K = ∂∆ ∩ ∂Ω containing at least two points is the extremal

disk for every point z ∈ K̂.
(c) Suppose ∆ = ∆(z) ⊂ C and let Γ be any hyperbolic geodesic line in ∆ with Euclidean

midpoint z (Γ is unique unless z is the center of ∆). Then either both endpoints of Γ belong
to K = K(z), or K contains a point in each of the components of ∂∆ \ |Γ̄|.

(d) If ∆(z) is the Euclidean disk D(c; r), then r ≥ δ(z).
(e) The extremal boundary points for Ω are dense in ∂Ω.

Proof. Parts (a) and (b) can be found in [HMM03, Theorems 3.5,4.1,4.6]; (c) is a consequence

of z ∈ K̂. To see that (d) holds we note that

2

δ(z)
≥ µ(z) = λ∆(z) ≥ λ∆(c) =

2

r
.

It remains to verify (e).
We start with an arbitrary point η ∈ ∂Ω. Since Möbius transformations preserve extremal

boundary points, we may suppose η ∈ ∂Ω∩C. There are ‘closest boundary points’ arbitrarily
close to η; if one of these is an extremal boundary point, then we are done. Thus we assume
ζ ∈ ∂Ω is near η with ζ non-extremal and ζ a closest boundary point for some z ∈ Ω; i.e.,
δ(z) = |z− ζ|. Making an affine change of variable, we further assume that z = 0 and ζ = 1.

We claim that for all a ∈ [0, 1) there is an x ∈ [a, 1) such that x lies on a circular geodesic

in Ω. If a ∈ Bd K̂(a), we can just take x = a; otherwise, since ζ = 1 /∈ K(a), we must have

(a, 1) ∩ Bd K̂(a) 6= ∅.
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Now we confirm that there are extremal boundary points arbitrarily close to ζ. Let ε > 0
and select x ∈ [1 − ε/3, 1) with x ∈ |Γ| for some circular geodesic Γ in Ω. Let ξ be an
endpoint of Γ closest to x. Since ∆ = ∆(x) ⊂ Ω, δ∆(x) ≤ δ(x) = |x − ζ| = 1 − x ≤ ε/3.
Thanks to Lemma 2.3 we now obtain

|x− ξ| ≤
√

2 δ∆(x) ≤ (
√

2/3)ε,

and thus |ξ − ζ| ≤ |x − ξ| + |x − ζ| < ε. �

Note that one consequence of (a) and (b) above is that for all points z1, z2 ∈ Ω, the

sets Ki = K(zi), and also K̂i, are either disjoint or identical. In particular, the sets K̂
form a partition of Ω into disjoint relatively closed 2-cells and 1-cells. A similar statement
about extremal disks is false; however, we can say something about how the extremal circles
intersect.

2.6. Proposition. Let Ω be a quasihyperbolic domain in Ĉ, fix a point a ∈ Ω, and put
∆ = ∆(a), K = K(a). (Then each component of ∂∆ \K is an open arc whose closure is the

‘outer’ boundary of a corresponding component of ∆ \ K̂.) Let U be a component of ∆ \ K̂.
For all z ∈ U , the arc A = ∂∆(z) ∩ ∆ separates z from ∂∆ \ Ū in ∆ and has endpoints on
∂∆ ∩ Ū .

Proof. Using a preliminary Möbius transformation, we assume a = 0, ∆ = D, ±i ∈ K,
and U = D ∩ H. Since ∂D and ∂∆(z) are distinct circles, they have 0, 1, or 2 points of
intersection. Since z ∈ D and ±i ∈ ∂Ω, it is not difficult to see that neither of the first two
cases can arise, so ∂D ∩ ∂∆(z) = {ξ, η} for some ξ 6= η.

Let us first check that A = ∂∆(z) ∩ D (the subarc of ∂∆(z) between ξ, η and inside D)
separates z from C = ∂D\Ū in D. Suppose that A does not separate z, C in D. Now, if one or
both of ξ, η lies in H, then we see that one of ±i lies in ∆(z) which cannot happen. Thus both

points ξ, η must lie in the closed left half-plane. We claim that this contradicts z ∈ K̂(z).
Indeed, a careful examination of the hyperbolic geodesics joining ξ and η, one in D and one in
∆(z), reveals that the D hyperbolic geodesic separates z from the ∆(z) hyperbolic geodesic.
In particular we see that the hyperbolic half-plane H in ∆(z), determined by the hyperbolic
geodesic joining ξ and η, and not containing z, enjoys the property that H ⊃ K(z). But

then K̂(z) ⊂ H̄ , yet z /∈ H̄.
We conclude that A does separate z from C in D. Once again we see that if both ξ, η fail

to lie in H̄, then one of ±i belongs to ∆(z) which cannot happen. Thus both endpoints ξ, η
of A must lie on ∂D ∩ H̄ as asserted. �

Next we record the following easy proof that the metric µ(z)|dz| is smooth. Kulkarni and
Pinkhall assert that the metric is C1,1; see [KP94, p.105].

2.7. Proposition. The Kulkarni-Pinkall metric is continuously differentiable. Moreover,
given a ∈ Ω, ∆ = ∆(a), K = K(a) we have

∀z ∈ K̂ ∩ C : µ(z) = λ∆(z) and Dµ(z) = Dλ∆(z),

where Dµ denotes the derivative of µ.

Proof. It suffices to examine the metric near a point a ∈ Ω∩C. If a ∈ Int(K̂) (K = K(a) =
∂∆∩ ∂Ω, ∆ = ∆(a)), then µ(z) = λ∆(z) for all z in an open neighborhood of a; therefore µ
is in fact real-analytic near such points.
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Thus we may assume that a ∈ Bd(K̂). In this situation, a lies on one of the circular

geodesics forming the boundary of K̂, so by employing a preliminary Möbius transformation
we may further assume that a = 0, ∆ = D and ±1 ∈ K. Then D ⊂ Ω ⊂ Ĉ−11, so by domain
monotonicity we obtain 2/|z2 − 1| ≤ µ(z) ≤ 2/(1 − |z|2), which holds for all points z ∈ D
with equality for z = x ∈ (−1, 1). Continuity at z = 0 is now evident.

In fact we have g(z) = 4/|z2 − 1|2 ≤ µ(z)2 ≤ 4/(1− |z|2)2 = h(z). It is easy to check that
the tangent planes for both g and h at z = 0 are the horizontal plane at height 4. This says
that µ2 (and hence µ) is differentiable at z = 0.

Notice that g, h—which are real analytic—are symmetric about (−1, 1); thus ∂g/∂y =
0 = ∂h/∂y along (−1, 1). Since g ≤ µ2 ≤ h everywhere in D with equality along (−1, 1), we
deduce that µ is differentiable at each point of (−1, 1) and Dg = D(µ2) = Dh on (−1, 1).

Our formula for Dµ, valid in K̂, now follows.
It remains to see that Dµ is continuous, at the point a. It is clear that Dµ(z) → Dµ(a)

when z → a with z ∈ Int(K̂). Using our formula for Dµ at points z /∈ Int(K̂), and the fact
that the extremal disks ∆(z) vary continuously (see Proposition 2.9), we conclude again that
Dµ(z) → Dµ(a) as z → a. �

There is an invariant way to understand the above. Suppose a ∈ |Γ| with Γ a circular
geodesic in Ω (so, a hyperbolic geodesic in some extremal disk ∆) and having endpoints

ξ, η ∈ ∂Ω. Then ∆ ⊂ Ω ⊂ Ĉξη, so

τξη(z) ≤ µ(z) ≤ λ∆(z) for all z ∈ ∆ with equality on Γ.

Thus the tangential derivatives of τξη, µ, λ∆ along Γ all exist and are equal. Since τξη and
λ∆ are symmetric about Γ, the normal derivatives, along Γ, of these three metrics also exist
and vanish there.

It is known that µ(z) ≤ 2/δ(z) with equality if and only if ∆(z) = D(z). Moreover, there
is even a geometric characterization for when the supremum of µδ is strictly less than 2. See
[HMM06, Theorems 2.1,2.2]. Here we provide quantitative estimates demonstrating that
when µ(z)δ(z) is close to 2, the extremal disk ∆(z) is close to the maximal disk D(z).

2.8. Proposition. Let Ω be a quasihyperbolic region on Ĉ. For each ε > 0 there exists
ϑ ∈ (0, 1) such that for all z ∈ Ω ∩ C: if µ(z)δ(z) ≥ 2ϑ, then ∆(z) = D(c; r) is a Euclidean
disk with |z − c| ≤ ε δ(z) and δ(z) ≤ r ≤ (1 + ε)δ(z).

Proof. According to [HMM06, Theorem 2.1] we know that ∆(z) must be a Euclidean disk
whenever µ(z)δ(z) >

√
2. Recall from Lemma 2.4 that λD(0;t)(x) decreases from 2 to

√
2 as

x increases: here t > x ≥ 0 with |ξ| = t, |x − ξ| = 1 and x is the Euclidean midpoint of
the hyperbolic geodesic line in D(0; t) with endpoints ξ, ξ̄. Let ε > 0 be given and select
τ ∈ (0, 1) so that λD(0;t)(x) ≥ 2τ implies 0 ≤ x < ε.

Put ϑ = max{(1 + ε)−1, τ, 0.8} and suppose a ∈ Ω ∩ C satisfies µ(a)δ(a) ≥ 2ϑ. Since
2ϑ ≥ 1.6 >

√
2, ∆(a) is a Euclidean disk. Using the affine change of variables w = (z −

a)/δ(a), followed by a rotation if necessary, we may assume that a = 0, D(0) = D, and
∆ = ∆(0) = D(c; r) with c ≥ 0. Of course, r ≥ c. By Proposition 2.5(d), r ≥ δ(0) = 1.
Also, 2ϑ ≤ µ(0) = λ∆(0) ≤ 2/(r − c), so r ≤ (1/ϑ) + c ≤ 1 + ε + c. Thus 1 ≤ r ≤ 1 + ε + c,
and therefore it remains to check that c ≤ ε.

We claim that there is a point x ∈ ∆ with x ≤ 0 and such that the hyperbolic geodesic line
in ∆ with Euclidean midpoint x has endpoints ξ, ξ̄ ∈ ∂∆ satisfying |x − ξ| = 1. Assuming
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this, and noting that 0 lies between x and c, we deduce that

λ∆(x) ≥ λ∆(0) = µ(0) = µ(0)δ(0) ≥ 2ϑ ≥ 2τ.

Because of our choice of τ , this means that c ≤ c − x ≤ ε as desired.
To see that our claim holds, consider the hyperbolic geodesic line Γ in ∆ with Euclidean

midpoint 0. According to Proposition 2.5(c), either both endpoints of Γ belong to K =
∂∆∩∂Ω or K contains a point in each of the components of ∂∆\ |Γ̄|. Since D ⊂ Ω, it follows
that the endpoints of Γ must lie outside D (although possibly on ∂D). The existence of the
point x as described above should now be transparent. �

Next we confirm that extremal disks vary continuously. Note that for points a ∈ Int(K̂)
(K = ∂∆ ∩ ∂Ω for some extremal disk ∆ ⊂ Ω) we have ∆(z) = ∆ for all z near a, so we

actually only need to examine points a ∈ Bd(K̂).

2.9. Proposition. Let Ω be a quasihyperbolic region on Ĉ. Then as z → a ∈ Ω, ∆(z) →
∆(a). (The latter convergence means distH(∆̄(z), ∆̄(a)) → 0 where distH denotes spherical

Hausdorff distance for closed subsets of Ĉ.)

Proof. Fix a point a ∈ Ω. Alternatively, by performing a preliminary Möbius transformation
we may assume that a = 0 and ∆(0) = D. Thus µ(0)δ(0) = µ(0) = λD(0) = 2. Now as
z → a = 0 we know that δ(z) → δ(0) = 1 and µ(z) → µ(0) = 2, so µ(z)δ(z) → 2. According
to Proposition 2.8, for such z we have ∆(z) = D(c(z); r(z)) with c(z) → 0 and r(z) → 1. �

Armed with the information from above we now examine how the sets K(z) of extremal
boundary points vary. Elementary examples reveal that it is not true that K(z) → K(a) as
z → a. However, it is easy to see that the points of K(z) will accumulate at points of K(a).

2.10. Lemma. Let < zn > be a sequence of points in a quasihyperbolic region Ω ⊂ Ĉ con-
verging to a ∈ Ω. Then any sequence of points ζn ∈ K(zn) subconverges to some point of
K(a), and every subsequential limit point belongs to K(a).

Proof. Since ∂Ω is a closed subset of the compact Ĉ, any sequence < ζn > of points in ∂Ω
subconverges to some point of ∂Ω. When ζn ∈ ∂∆(zn) → ∂∆(a), any such limit point must
also belong to ∂∆(a), hence to K(a). (Alternatively: We may assume that a = 0, ∆(a) = D
and ∆(zn) = D(cn; rn) with cn → 0 and rn → 1. Thus if ζn → ζ, then ζ ∈ ∂Ω and also
|ζ| = lim |ζn − cn| = lim rn = 1.) �

We continue our analysis of how the sets K(z) vary. Obviously, when a ∈ Int(K̂(a)),
then (by Proposition 2.5(b) we have) K(z) = K(a) for all z close to a. Thus we need only

examine what happens for z near a point a ∈ Bd(K̂(a)).

2.11. Proposition. Let Ω be a quasihyperbolic region on Ĉ. Fix a ∈ Ω and put ∆ = ∆(a),

K = K(a). Suppose that a ∈ |Γ| ⊂ Bd(K̂) where Γ is a circular geodesic with endpoints

ξ, η ∈ K. Then given ε > 0, there is a δ > 0 such that for z ∈ D(a; δ) \ K̂(a), K(z) ⊂
D(ξ; ε) ∪ D(η; ε) and K(z) ∩ D(ξ; ε) 6= ∅ 6= K(z) ∩ D(η; ε).

.

Proof. We assume a = 0, ∆(a) = D, |Γ| = (−i, i) (i.e., ξ = −i, η = i), and that K̂ ⊂ D \ H.
Recall from Proposition 2.9 that as z → 0 we get ∆(z) = D(c; r) with c → 0 and r → 1. Let
ε > 0 be given.
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Since K̂ ⊂ D \H, ∂D∩H ⊂ Ω. Thus T = {eiθ : |θ| ≤ (π/2)− ε} is a compact subset of Ω,
so d = dist(T, ∂Ω) > 0. Now ∂∆(z) → ∂D (as z → 0), so we can select δ > 0 so that for all
|z| < δ, ∂∆(z) ⊂ {w : 1 ≤ |w| < 1 + t} where t = min{ε, d}. Note however that no points of
K(z) = ∂∆(z) ∩ ∂Ω can lie in the t-neighborhood of T .

Now consider a point z with |z| < δ and z ∈ H. According to Proposition 2.6, the arc
A = ∂∆(z) ∩ D separates z from ∂D \ H in D and moreover has endpoints in H. Thus,
∂∆(z) \ H̄ ⊂ D ⊂ Ω, and therefore K(z) = ∂∆(z) ∩ ∂Ω ⊂ H̄ . Combining this with the
facts from the prior paragraph (that K(z) lies in 1 ≤ |w| < t but has no points in the
t-neighborhood of T ) we see that K(z) ⊂ D(−i; ε)∪D(i; ε) as desired. In this setting, with

z ∈ H, K(z) must contain points in each of the small disks because z ∈ K̂(z).

It is possible that K = K(a) = {i,−i} in which case K̂ = |Γ|. In this situation we must
also consider points z with |z| < δ and <(z) < 0. Here we have ∂D \ {i,−i} ⊂ Ω, so we can
argue as above replacing T with the compact set T ∪ T ′ ⊂ Ω where T ′ = {−ζ : ζ ∈ T}. �

One might conjecture that more can be said about the sets K(z) when z is near a point
a as above: For example, could it be that each such K(z) contains precisely two extremal
boundary points? The following example illustrates that, at least from a cardinality per-
spective, such conjectures are false. We start by putting an = 1/2n, rn = 1 + 1/10n,
and ∆n = D(an; rn); here we take n = 4, 5, . . . . Then 1 < rn < |an ± i| and rn → 1.
Straightforward calculations reveal that an ± i rn /∈ ∆̄n+1 ∪ ∆̄n−1. Hence there are subarcs
αn, βn = ᾱn of ∂∆n \

(
∆̄n+1 ∪ ∆̄n−1

)
; e.g., αn can be the component which joins ∂∆n+1

to ∂∆n−1 and contains an + i rn and βn its reflection across the real axis. Finally, we let

Ω = C \
[
{x ± i : x ≤ 0} ∪

⋃
n≥4(αn ∪ βn)

]
. Then a = 0 has K̂(a) = D \ H, K(a) = {i,−i},

and there exists points zn → a with zn > 0 and such that K(zn) = αn ∪ βn.

2.F. Gaussian Curvature. Recall that the Gaussian curvature of a C2 conformal metric
ρ(z)|dz| can be calculated via

Kρ(z) = −ρ−2(z)∆ log ρ(z),

where ∆ is the usual Laplacian operator. When u is C2 in a neighborhood of a,

∆u(a) = lim
r→0

4

r2

[
1

2π

∫ 2π

0

u(a + reiθ) dθ − u(a)

]
.

Heins [Hei62] defined the upper and lower Gaussian curvatures of a continuous (or upper
semicontinuous metric) ρ(z)|dz| by

Kρ(a) = −ρ−2(a) lim inf
r→0

4

r2

[
1

2π

∫ 2π

0

log ρ(a + reiθ) dθ − log ρ(a)

]

and

Kρ(a) = −ρ−2(a) lim sup
r→0

4

r2

[
1

2π

∫ 2π

0

log ρ(a + reiθ) dθ − log ρ(a)

]
.

When ρ is C2 in a neighborhood of a, Kρ(a) = Kρ(a) = Kρ(a) is just the (ordinary)

Gaussian curvature of ρ(z)|dz| at z = a. In general, Kρ(z) ≤ Kρ(z).
As a simple example we mention that Kτab

= 0. Additional examples are presented in
Section 3.

Next we prove a Comparison Lemma.
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2.12. Lemma. Let ρ and σ be metric densities on Ω. Suppose ρ ≤ σ in a neighborhood of
some point a ∈ Ω ∩ C with ρ(a) = σ(a). Then

Kσ(a) ≤ Kρ(a) and Kσ(a) ≤ Kρ(a).

Proof. For all sufficiently small r > 0,

1

2π

∫ 2π

0

log ρ(a + reiθ) dθ − log ρ(a) ≤ 1

2π

∫ 2π

0

log σ(a + reiθ) dθ − log σ(a),

so

lim inf
r→0

2

πr2

[∫ 2π

0

log ρ(a + reiθ) dθ − log ρ(a)

]
≤ lim inf

r→0

2

πr2

[∫ 2π

0

log σ(a + reiθ) dθ − log σ(a)

]
.

Therefore, −Kρ(a) ≤ −Kσ(a). The proof of the second inequality is similar. �

3. Examples

Here we mention a few special examples where one can calculate the hyperbolic, Kulkarni-
Pinkall, and Ferrand metrics as well as their curvatures. We also compute associated uni-
versal holomorphic covering maps (from the right half-plane H to the region) and indicate
certain special hyperbolic geodesics. The reader should note that these examples reveal
information about all Möbius images of these special regions.

Of course for any disk on Ĉ we know that these metrics agree with the hyperbolic metric,
the geodesics are subarcs of circles orthogonal to the boundary, and any covering map is a
Möbius transformation. Our first four examples share the property that ϕ = µ.

It is also of interest to consider the Gaussian curvature of the quasihyperbolic metric in
these examples. For the infinite strip and infinite sectors this is identically −1 except along
the ‘center-line’ (the so-called centered points which have two or more closest boundary
points) where it is identically −∞; see [MO86, Corollary 3.12]. For the punctured disk it is
0 in 0 < |z| < 1/2, −∞ on |z| = 1/2, and −1/|z| for 1/2 < |z| < 1.

3.A. The Strip Σ0. For the infinite strip Σ0 := {x + iy : |y| < π/2},

λ(x + iy) = sec(y) and µ(x + iy) =
π

(π/2)2 − y2
.

A conformal map f : H → Σ0 is given by f(ζ) = Log(ζ) (the principal branch of the
logarithm). Semi-circles centered at the origin in H are mapped to vertical segments in Σ0,
so these are (circular) hyperbolic geodesics in Σ0.

A straightforward calculation reveals that Kµ(x + iy) = −2(y/π)2 − 1/2. From this we
see that −1 < Kµ(x + iy) ≤ −1/2 with equality for y = 0 and with Kµ(x + iy) → −1 as
|y| → π/2.

3.B. Infinite Sectors Σα. Next, we consider the infinite sectors

Σt := {reiθ : r > 0, |θ| < α} where α = πt/2 and 0 < t ≤ 2.

Here f : H → Σt, f(ζ) = ζ t, is conformal and we have

λ(reiθ) =
sec(θ/t)

tr
and µ(reiθ) =

sin(α)

r[cos(θ) − cos(α)]
.

The conformal change of variables z = f(ζ) gives the first formula, which holds for all
0 < t ≤ 2. The right-hand formula is only valid for convex sectors (i.e., for 0 < t ≤ 1) and
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can be established using the fact that reiθ lies on the hyperbolic geodesic line through the
points re±iα. (See below for concave sectors.) Now semi-circles centered at the origin in
H are mapped to circular arcs centered at the origin in Σt; these are (circular) hyperbolic
geodesics in Σt.

To compute the Gaussian curvature of the Kulkarni-Pinkall metric we naturally employ
polar coordinates and so recall that ∆u = urr + r−1ur + r−2uθθ. Since log r is harmonic, we
obtain

Kµ(reiθ) =
cos(α) cos(θ) − 1

sin2(α)
.

For |θ| < α < π/2, cos(α) − 1 ≥ cos(α) cos(θ) − 1 > cos2(α) − 1 = − sin2(α), and thus

−1 < Kµ(re
iθ) =

cos(α) cos(θ) − 1

sin2(α)
≤ −1

1 + cos(α)
< −1

2
.

Of course Kµ(re
iθ) = −1 when α = π/2 (indeed, Σ1 = H) and as α → 0, the above upper

bound tends to −1/2 (the upper bound for the infinite strip Σ0).
For a concave sector Σt (with 1 ≤ t ≤ 2) we easily see that µ = 1/δ; e.g., the extremal

disk associated with each point is actually a Euclidean half-plane (cf. [HMM06, Theorem
2.1(c)]). A straightforward calculation (see [MO86, Proposition 3.8]) reveals that

Kµ(reiθ) = K1/δ(re
iθ) =





−1 for π(t− 1)/2 < |θ| < πt/2,

−1/2 for |θ| = π(t− 1)/2,

0 for |θ| < π(t− 1)/2.

3.C. Punctured Disk D∗. Another simple, although important, example is the punctured
unit disk D∗ := D \ {0} for which

λ(z) =
1

|z|| log |z|| and µ(z) =
1

|z| (1 − |z|).

In this case a holomorphic covering f : H → D∗ is provided by f(ζ) = e−ζ. We see that
horizontal rays in H are mapped to radial segments in D∗; of course these are (circular)
hyperbolic geodesics in D∗.

The curvature can again be calculated using polar coordinates and we readily find that
Kµ(re

iθ) = −r.

3.D. Annuli A(R). Finally, we take a look at the annulus A(R) := {z : 1/R < |z| < R}. A
holomorphic covering f : H → A(R) is obtained via f(ζ) = ζ it = eitLog ζ where log R = πt/2.
Then a routine computation produces

λA(R)(z) =
π/2

|z| log R
sec

(
π

2

log |z|
log R

)
and µA(R)(z) =

R − 1/R

(R − |z|)(|z| − 1/R)
.

Now semi-circles centered at the origin in H are mapped to radial segments in A(R), so these
are (circular) hyperbolic geodesics.
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3.E. Thrice Punctured Sphere. In all of the above examples ϕ = µ. This is also true for
any twice punctured sphere (in which case both metrics reduce to a Möbius quasihyperbolic

metric and hence are flat). For the three-times punctured sphere Ĉ−11 = Ĉ \ {−1, 1}, we

find that for each z ∈ Ĉ−11,

µ(z) =





2/|z2 − 1| if z ∈ D̄,

1/|z − 1| if <(z) ≥ 1,

1/|z + 1| if <(z) ≤ −1,

1/=(z) if z ∈ ∆,

−1/=(z) if z ∈ ∆∗,

and

ϕ(z) =





2/|z2 − 1| if z ∈ Λ,

1/|z − 1| if <(z) ≥ 0 and z /∈ Λ,

1/|z + 1| if <(z) ≤ 0 and z /∈ Λ.

Here ∆ = {z : |<(z)| < 1, =(z) > 0, and |z| > 1}, ∆∗ is the reflection of ∆ over the real
axis, and Λ = {z : |z−1| < 2 and |z+1| < 2}. The calculations for µ were given in [HMM03,
Theorem 4.2]; the interested reader can readily verify the formula for ϕ.

We note that Kµ is almost everywhere identically −1 or identically 0; in particular, Kµ

is not continuous. On the other hand, Kϕ is a.e. identically 0, but according to [MO86,
Corollary 3.12], Kϕ = −∞ on the rays <(z) = 0, |=(z)| ≥ 1 and also on ∂Λ by Möbius
invariance.

4. Proofs of Main Results

We first provide a Euclidean interpretation for the Ferrand and Kulkarni-Pinkall metrics.
Then we study their geodesics, isometries, and Gaussian curvatures.

4.A. Euclidean Eyes. Here we present a method for calculating the Ferrand and Kulkarni-
Pinkall metrics based on Euclidean diameters and circumdiameters.

Recall that for any compact set A ⊂ C, there is a unique smallest closed disk DA which
contains A; we call DA the circumdisk about A. Jung’s theorem (see [Ber87, 11.5.8,p.357])
provides the following information about circumdisks.

4.1. Fact. Let DA = D(a; r) be the circumdisk about a compact set A ⊂ C. Then:

(a) The center a of DA belongs to the convex hull of A ∩ ∂DA.
(b) For all subarcs α ⊂ ∂DA \ A, `(α) ≤ πr.
(c) There exist points b, c ∈ A ∩ ∂DA such that the shorter subarc β of ∂DA joining b, c

has (2π/3)r ≤ `(β) ≤ πr.

(d) diam(A) ≤ diam(DA) ≤ (2/
√

3) diam(A).

It is convenient to introduce the following notation. For z ∈ C, let Jz be the inversion

Jz(ζ) =
1

ζ − z
.

4.2. Lemma. Fix any set E ⊂ Ĉ and a point z ∈ C\E. Then for any Möbius transformation
T with T (z) ∈ C,

diamJz(E) = |T ′(z)|diamJT (z)(TE).
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Proof. Fix a point a ∈ C \E and let b = T (a), E′ = T (E). Consider F = Jb ◦T ◦J−1
a , which

is a Möbius transformation fixing the point at infinity, hence a complex linear map of the
form F (ζ) = Aζ + B for some A,B ∈ C. Clearly

diamJT (a)(TE) = diamJb(E
′) = diamF [Ja(E)] = |A|diamJa(E);

therefore it suffices to confirm that |A| = 1/|T ′(a)|.
Writing w = T (z) and ζ = Ja(z) we have

ζ(w − b) =
w − b

z − a
=

T (z) − T (a)

z − a
→ T ′(a) as z → a,

and thus

A = lim
ζ→∞

F ′(ζ) = lim
z→a

T ′(z)

[ζ(w − b)]2
=

1

T ′(a)

as desired. �

4.3. Corollary. For any disk D on Ĉ, λD(z) = diamJz(∂D) for all z ∈ D ∩ C.

Proof. Put E = ∂D and choose a Möbius transformation T with T (z) = 0 and T (D) = D.
Since J0(ζ) = 1/ζ, JT (z)(TE) = J0(∂D) = ∂D, and thus

λD(z) = λD(0)|T ′(z)| = |T ′(z)|diamJT (z)(TE) = diamJz(E)

as asserted. �

Now we explain how to calculate the Ferrand and Kulkarni-Pinkall metrics in Euclidean
terms. Recall that DA denotes the circumdisk about A.

4.4. Proposition. Assume Ω is a quasihyperbolic region in Ĉ. For each z ∈ Ω ∩ C, let
Ωz = Jz(Ω), Bz = Ωc

z, and Dz = DBz . Then for such z,

ϕ(z) = diam(Bz) and µ(z) = diam(Dz).

Proof. First, w = Jz(ζ) ∈ Bz = Jz(Ω
c) if and only if ζ ∈ Ωc. Thus for wi = Jz(ζi) ∈ Bz,

|w1 − w2| =
|ζ1 − ζ2|

|z − ζ1||z − ζ2|
≤ ϕ(z) (by definition of ϕ).

Since equality does hold for some pair of points ζ1 and ζ2, ϕ(z) = diam(Bz).
Next, we claim that D = J−1

z (Dc
z) is the extremal disk ∆(z) in Ω containing z. Clearly

z ∈ D ⊂ Ω, D is a disk in Ω, and by Corollary 4.3 we have λD(z) = diam(Dz). Thus it
remains to verify that D = ∆(z).

According to Proposition 2.5, to corroborate this claim it suffices to check that K =

∂D ∩ ∂Ω contains two points and z ∈ K̂ . The former condition holds because ∂Dz ∩ ∂Ωz

must contain two points by Fact 4.1. The latter condition is equivalent to having the point
at infinity belong to Jz(K̂), and this is also a simple consequence of Fact 4.1. �

An immediate consequence of the above is an easy method to determine extremal disks.

4.5. Corollary. Let Ω be a quasihyperbolic region in Ĉ. The extremal disk ∆(z) associated
with a point z ∈ Ω ∩ C is given by ∆(z) = T−1(Dc) where T is any Möbius transformation
mapping z to the point at infinity and D = DT (Ωc).

Another easy corollary of the above yields some of the following inequalities. For more
information of this nature we refer the interested reader to [HMM06].
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4.6. Corollary. For all z ∈ Ω ∩ C,

λ(z) ≤ ϕ(z) ≤ µ(z) ≤ 2

δ(z)
and µ(z) ≤ 2√

3
ϕ(z);

the leftmost inequality requires Ω to be a hyperbolic region but the other inequalities hold for
quasihyperbolic regions. In addition we note that

λ(z) ≥ 1

δ(z)
when Ω ⊂ C is a disk or half-plane,

ϕ(z) ≥ 1

δ(z)
when Ω ( C,

µ(z) ≥ 1

δ(z)
when ∆(z) ⊂ C.

Proof. The inequality λ ≤ ϕ was established by Solynin who also observed that equality
holds at a point if and only if the region is a disk on Ĉ; see [Sol99, Theorem 3]. Using
domain monotonicity, it is straightforward to check that ϕ ≤ µ, but possibly Proposition 4.4
provides an illuminating interpretation. The inequality µ ≤ 2/δ was mentioned in [HMM03,
Theorem 3.3] (see [HMM06, Theorem 2.1(a)] for a discussion of when equality can hold); it
also follows from Proposition 4.4 by observing that Bz = Ωc

z = Jz(Ω)c lies inside the disk
{|w| ≤ 1/δ(z)}. Finally, µ ≤ (2/

√
3)ϕ is a consequence of Proposition 4.4 and Fact 4.1(d).

The lower estimates involving 1/δ are well known. �

It is natural to inquire about equality between the Ferrand and Kulkarni-Pinkall metrics.
Let us call z an FKP-point if ϕ(z) = µ(z). Notice that the examples Σ0, Σt, D∗, A(R)
presented in Section 3 each have the property that all points are FKP points. It is worthwhile
to mention the following.

4.7. Lemma. For points z in a quasihyperbolic region Ω ⊂ Ĉ, these are equivalent.
(a) z is an FKP point.
(b) z lies on some circular geodesic.
(c) µ(z) = τab(z) for some a, b ∈ ∂Ω.

Proof. If (a) holds, then by Proposition 4.4, diam(Bz) = ϕ(z) = µ(z) = diam(Dz), and
so (b) holds for the circular geodesic which is the Jz preimage of the complement of some
diameter of Dz. Assuming (b), we have z ∈ |Γ| where Γ is a hyperbolic geodesic line in
some disk D ⊂ Ω with endpoints a, b ∈ ∂Ω. According to Proposition 2.5(b), D = ∆(z) and
µ(z) = λD(z) = τab(z). Finally, if (c) is true, then ϕ(z) ≤ µ(z) = τab(z) ≤ ϕ(z). �

A notable byproduct of the above is that there does not exists a region Ω with ϕ < µ
everywhere in Ω. Also, we point out that in the above situation, with Γ a circular geodesic
(say, a hyperbolic geodesic in a disk D ⊂ Ω) in Ω having endpoints a, b ∈ ∂D ∩ ∂Ω, we have

ϕΩ(z) = µΩ(z) = λD(z) = τab(z) =
|a − b|

|z − a||z − b|
for every point z ∈ |Γ|. In any event we see that, given an extremal disk ∆ and K = ∂∆∩∂Ω,

every point of Bd(K̂) is an FKP-point; indeed, Bd(K̂) is a union of circular geodesics. Notice
that (

Int(K̂(z)) = ∅ ⇐⇒ #K(z) = 2
)

=⇒ z ∈ Bd(K̂(z)).
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However, there are simple examples with FKP points which satisfy z ∈ Int(K̂(z)). Indeed,
the origin is such a point for the domain C \ {1, i,−1,−i}.

We also see that

ϕ = µ in Ω if and only if Ω is foliated by its circular geodesics.

The examples Σ0, Σt, D∗, A(R) from Section 3 are foliated by their circular geodesics and
moreover enjoy the property that each extremal disk meets the boundary in exactly two
points. Of course this latter property describes the regions which satisfy the condition
#K(z) = 2 for all z ∈ Ω, but as the example just above illustrates, it is not necessarily true
for regions with ϕ = µ.

In fact we shall see below (see Theorem 4.11) that the condition #K(z) = 2 for all
z ∈ Ω implies that Ω must be simply or doubly connected. On the other hand, it is easy
to construct domains of arbitrary connectivity with ϕ = µ. Indeed, given n ∈ N ∪ {∞}, let
Ω = C \ ((−∞, 0] ∪ {k ∈ N : 1 ≤ k < n}). Then Ω is n-connected and, since Ω is foliated by
its circular geodesics we have ϕ = µ.

4.B. Ferrand and Kulkarni-Pinkall Geodesics. Here we prove that every circular ge-
odesic is both a Kulkarni-Pinkall and a Ferrand geodesic line. Then we provide additional
information concerning certain Kulkarni-Pinkall geodesic segments.

Proof of Theorem A. Let Γ be a circular geodesic with endpoints ξ, η ∈ ∂D∩∂Ω where D ⊂ Ω
is a disk (and Γ is a hyperbolic geodesic in D). Fix points a, b ∈ |Γ| and let α = Γ[a, b].
According to Corollary 4.6 and Lemma 4.7, ϕ ≤ µ with equality along Γ, so

dϕ(a, b) ≤ dµ(a, b) ≤ `µ(α) = `ϕ(α).

Thus to see that Γ is both a Ferrand and a Kulkarni-Pinkall geodesic line, it suffices to
confirm that `ϕ(α) ≤ dϕ(a, b).

Select a Möbius transformation which maps D to H, ξ to 0, η to the point at infinity and
say Ω,Γ, α, a, b to Ω′,Γ′, α′, a′, b′ respectively. Then α′ is a subarc lying on the positive real
axis (which is just Γ′). Let β be an arbitrary rectifiable curve in Ω′ joining a′, b′ and consider
the curve β ′ defined via β ′(t) = |β(t)|. Note that |α′| ⊂ |β ′| ⊂ |Γ′|. Also, for each point
w ∈ |β| we have a point |w| ∈ |β ′| with

ϕ′(w) ≥ 1

δ′(w)
≥ 1

|w| = ϕ′(|w|)

and thus ∫

β

ϕ′(w) |dw| ≥
∫

β′
ϕ′(|w|) d|w| ≥ `ϕ′(α′)

as desired. �

A careful look at the above proof reveals that we have established a slightly stronger result.
We call a conformal metric ρ(z)|dz| an FKP metric if it satisfies ϕ ≤ ρ ≤ µ. Notice that
such metrics are complete (since ϕ(z)|dz| is complete) and, by Lemma 4.7, agree with ϕ = µ
along every circular geodesic.

4.8. Corollary. Circular geodesics are geodesics for any FKP metric.

In certain cases we can describe all of the local Kulkarni-Pinkall geodesic segments.
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4.9. Proposition. Suppose a ∈ Ω ∩ C belongs to Int(K̂(a)). Then there is a Euclidean disk
D ⊂ Ω containing a with the property that any compact curve γ, with a ∈ |γ| ⊂ D, is a
Kulkarni-Pinkall geodesic segment if and only if γ is a hyperbolic geodesic segment in ∆(a).

Proof. Since a belongs to the interior of K̂(a), we can simply let D be a hyperbolic disk in
∆(a) with center a and sufficiently small radius. The desired assertion now follows from the

fact that µΩ = λ∆(a) in Int(K̂(a)). �

4.C. Kulkarni-Pinkall Isometries. The following, one of the main results in this paper,
is the key ingredient in our proof of Theorem B. Because of its importance, we present two
proofs for this crucial fact. It is convenient to introduce the notation

N = N(Ω) := sup
z∈Ω

#K(z).

4.10. Theorem. Every Kulkarni-Pinkall isometry between two regions, one of which has
N > 2, is (the restriction of) a Möbius transformation.

Proof. Assume that f : Ω → Ω′ is an orientation preserving Kulkarni-Pinkall isometry; thus
f is a conformal homeomorphism. Suppose N(Ω′) > 2; this ensures the existence of a point

b = f(a) with b ∈ G′ = Int(K̂ ′) where K ′ = K ′(b) = ∆′ ∩ ∂Ω′ and ∆′ = ∆(b) = ∆Ω′(b). Let
G = f−1(G′) and ∆ = ∆(a).

Notice that in G ∩ ∆ we have

f∗(λ∆′) = f∗(µ′) = µ ≤ λ∆

with equality holding at the point z = a. Indeed, the first equality holds because µ′ = λ∆′

in G′, the second equality holds because f is a Kulkarni-Pinkall isometry, and the inequality
holds by the very definition of µ. Appealing to Fact 2.1 we can now assert that f maps all
of ∆ conformally onto ∆′. Therefore f must be a Möbius transformation.

In lieu of the above argument, we can also finish our proof as follows. We have a ∈ K̂
where K = K(a) = ∂∆∩∂Ω. Thus either a ∈ Int(K̂) or a lies on one of the circular geodesics

which form Bd(K̂). In either case we can find an arc α with the properties that a ∈ |α|, α
and α′ = f ◦ α are hyperbolic geodesic segments in ∆ and ∆′ respectively, |α′| ⊂ G′, and
such that f is a hyperbolic isometry along α (with respect to the hyperbolic metrics in ∆
and ∆′). (Proposition 4.9 and Lemma 4.7 are useful here.) An easy lemma now confirms
that f must be a Möbius transformation along α and hence (the restriction of) a Möbius
transformation. �

Because of the above result, it is worthwhile to understand which regions have N = 2; of
course these domains are foliated by their circular geodesics and described precisely by the
condition that each extremal disk meets the boundary in exactly two points. See also the
discussion at the end of §4.A.

4.11. Theorem. Every region with N = 2 is either simply connected or doubly connected.

Proof. Let Ω be such a region. According to Lemma 2.10(c), the sets K(z) (of extremal
boundary points associated to each z ∈ Ω) can be described locally by pairs of continuous
functions. Fix a point a ∈ Ω, let K(a) = {b, c}, and select components X, Y of ∂Ω (possibly
X = Y ) such that b ∈ X and c ∈ Y .
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We claim that for all z ∈ Ω, K(z) ⊂ X ∪ Y . Assuming this, we employ the fact (Proposi-
tion 2.5(e)) that the extremal boundary points are dense in ∂Ω to deduce that

∂Ω =
⋃

z∈Ω

K(z) ⊂ X ∪ Y = X ∪ Y ⊂ ∂Ω.

It therefore follows that ∂Ω = X ∪ Y , as desired.
It remains to confirm the assertion K(z) ⊂ X∪Y ; so, let z ∈ Ω. There is a continuous path

γ : [0, 1] → Ω with γ(0) = a and γ(1) = z. Using Lemma 2.10(c) we construct continuous
ξ, η : [0, 1] → ∂Ω with the property that for all t ∈ [0, 1], K(γ(t)) = {ξ(t), η(t)}. Since [0, 1]
is connected, so are its images under ξ, η and hence K(z) = {ξ(1), η(1)} ⊂ X ∪ Y . �

Proof of Theorem B. Use Theorems 4.10 and 4.11.

4.D. Ferrand and Kulkarni-Pinkall Curvatures. Here we establish curvature inequali-
ties for both the Kulkarni-Pinkall and Ferrand metrics and then we investigate when these
curvatures can be constant. Our arguments are based on the Comparison Lemma 2.12 along
with knowledge of the curvatures in the special examples from Section 3.

Proof of Theorem C. First we consider the Kulkarni-Pinkall metric. Fix a point a ∈ Ω ∩ C
and let ∆ = ∆(a), K = K(a). Then µ ≤ λ∆ in ∆ with µ(a) = λ∆(a), by so Lemma 2.12 we
always have Kµ(a) ≥ Kλ∆

(a) = −1.

If a ∈ Int(K̂), then as µ = λ∆ in Int(K̂), Kµ(a) = −1. Assume a ∈ Bd(K̂); say,

a ∈ |Γ| for some circular geodesic Γ with endpoints ξ, η ∈ ∂Ω. Then Ω ⊂ Ω′ = Ĉξη and
µ ≥ µ′ = τξη. Since µ(a) = λD(a) = µ′(a) and µ′ = τξη is flat, an appeal to Lemma 2.12
yields Kµ(a) ≤ Kµ′(a) = 0.

Next suppose Ω is convex. As above, we may assume that a ∈ Bd(K̂) with say a ∈ |Γ|
for some circular geodesic Γ having endpoints ξ, η ∈ ∂Ω. Let Ω′ be the region formed by the
intersection of supporting half-planes for Ω at each of ξ, η; thus Ω′ is either an infinite strip
or a convex sector (i.e., Ω is affine equivalent to some Σt with 0 ≤ t ≤ 1). Since Ω ⊂ Ω′

with µ(a) = µ′(a), Lemma 2.12 again produces Kµ(a) ≤ Kµ′(a) ≤ −1/2 where the latter
inequality holds because of Examples 3.A, 3.B.

Now for the Ferrand metric: fix a ∈ Ω and ξ, η ∈ ∂Ω with ϕ(a) = τξη(a). Since Ω ⊂ Ω′ =

Ĉξη and ϕ′ = τξη is flat, Kϕ(a) ≤ Kϕ′(a) = 0. Notice that as ϕ ≤ µ, Lemma 2.12 ensures
that Kϕ(a) ≥ Kµ(a) ≥ −1 at each FKP-point a. However, in general there is no lower bound
on the curvature of the Ferrand metric; indeed, this may be −∞ as the thrice-punctured
sphere example shows (cf. §3.E).

Finally, suppose Ω is convex. Let Ω′ be the intersection of two open supporting half-planes
for Ω at each of ξ, η; thus Ω′ is either an infinite strip or a convex sector (i.e., Ω′ is affine
equivalent to some Σt with 0 ≤ t ≤ 1). Since Ω ⊂ Ω′ with ϕ(a) = ϕ′(a), Lemma 2.12 once
again produces Kϕ(a) ≤ Kϕ′(a) = Kµ′(a) ≤ −1/2.

Proof of Theorem D. This is an immediate consequence of the following.

4.12. Theorem. Let ρ(z)|dz| be an FKP metric on a quasihyperbolic region Ω on Ĉ. Suppose
that ρ(z)|dz| has constant Gaussian curvature Kρ = k in Ω. Then either k = 0 and Ω is a

twice punctured sphere, or k = −1 and Ω is a disk on Ĉ.
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Proof. Since every FKP metric is complete, the asserted claim follows directly from Fact 2.2
if k = 0. Thus by Fact 2.2 we may assume that k < 0, Ω is a hyperbolic region, and ρ = t λ
where t = 1/

√
−k. Since λ ≤ ϕ ≤ ρ = t λ, t ≥ 1 (and so −1 ≤ k < 0).

Fix a circular geodesic Γ in Ω (there are lots of these :-). Using an auxiliary Möbius
transformation, if necessary, we can assume that Γ is the positive real axis R+ (and so the
associated disk in Ω is the right half-plane H). According to Corollary 4.8, Γ is a geodesic
for ρ(z)|dz|, hence also a hyperbolic geodesic in Ω.

Now let f : H → Ω be a holomorphic covering projection. Since H is a simply connected
subdomain of Ω, there exists a single-valued branch g of f−1 defined in H. Then γ = g◦Γ is a
hyperbolic geodesic in H. Employing another auxiliary Möbius transformation, if necessary,
we can further assume that γ is also the positive real axis, that f is increasing along γ = R+,
and that f(1) = 1.

Recall that the hyperbolic distance between points 1, x ∈ R+ in H is | log x|. Along Γ = R+

we have λH = µ = ρ = t λ, and f∗[ρ] = t f∗[λ] = t λH, so we find that

| log f(x)| =

∫

[f(1),f(x)]

ρ(z) |dz| = t

∫

[f(1),f(x)]

λ(z) |dz| = t | log x|.

We conclude that f(x) = xt for all x ∈ R+, and hence f(ζ) = ζ t for all ζ ∈ H.
If t > 2 were true, then we would have Ω = f(H) = C∗ which would contradict Ω being a

hyperbolic region; thus 1 ≤ t ≤ 2. Therefore, Ω = f(H) = Σt is a concave sector. Clearly
Σt is foliated by circular geodesics (each of which is an actual Euclidean ray), and in fact
ϕ = µ = 1/δ in Σt. It follows that ρ = 1/δ, but then (see the end of §3.B) Kρ = K1/δ = k
can only be constant when t = 1, k = −1 and Ω = H. �
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[HMM06] , Estimates for conformal metric ratios, Comput. Methods Function Theory, to appear.
[Kos98] P. Koskela, Old and new on the quasihyperbolic metric, Quasiconformal mappings and analysis:

A collection of papers honoring F.W. Gehring (New York), Springer-Verlag, 1998, pp. 205–219.
[KP94] R. Kulkarni and U. Pinkall, A canonical metric for Möbius structures and its applications, Math.
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