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Abstract. We present uniform and pointwise estimates for various ratios of
the hyperbolic, quasihyperbolic and Möbius metrics. We determine when these
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1. Introduction

Throughout this article Ω is a proper subdomain of the Riemann sphere Ĉ pos-
sessing at least two boundary points. When such an Ω is a plane domain (i.e.,
Ω ⊂ C), one can study the domain constants

sup λδ = sup
Ω
λδ := sup

z∈Ω
λΩ(z)δΩ(z) and inf λδ = inf

Ω
λδ := inf

z∈Ω
λΩ(z)δΩ(z);

for example, see [FH99], [HM92], [Har90] and the references mentioned in these
papers. Here λ = λΩ is the Poincaré hyperbolic metric-density in Ω (i.e.,
the scale factor or density for the maximal constant curvature −1 metric) and
δ(z) = δΩ(z) := dist(z, ∂Ω) denotes the Euclidean distance from a point z to the
boundary ∂Ω of Ω. The product λ(z)δ(z) should be viewed as the ratio of the
hyperbolic and quasihyperbolic metrics at z ∈ Ω.

In this paper we study the analogous Möbius invariant domain constants

sup λµ-1 = sup
Ω
λµ−1 = sup

z∈Ω

λΩ(z)

µΩ(z)
and inf λµ-1 = inf

Ω
λµ−1 = inf

z∈Ω

λΩ(z)

µΩ(z)
,

where now Ω is a hyperbolic domain on the Riemann sphere and µ = µΩ is
the Kulkarni-Pinkall metric-density in Ω. (The astute reader recognizes that we
are considering here the ratio of two conformal metrics, which is a well defined
function; local coordinates should be used when Ω is not a plane region.) The
metric µΩ(z)|dz| was introduced in [KP94] as a canonical metric for Möbius
structures on n-dimensional manifolds. In [HMM03] we employed the definition
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given below (see subsection 2.C) and established various properties of this metric
(both from [KP94] and some new results too) using classical function theory.

In a certain sense, the Kulkarni-Pinkall metric is a Möbius invariant analog of
the quasihyperbolic metric. In this connection, it provides finer estimates for
the hyperbolic metric. This point of view is borne out by the results established
here.

For any hyperbolic domain, sup λµ-1 ≤ 1, and inf λµ-1 ≥ 1/2 in the simply
connected case; see (λ/µ). For the Möbius image of a convex region, equality
holds in the upper bound while the lower bound can be improved to inf λµ-1 ≥
π/4 and this is best possible; see Theorems 3.3 and 3.10(d). In the opposite
direction, any domain with inf λµ-1 ≥

√
3/2 must be simply connected; see

Theorem 3.5. In Theorem 3.6 we reveal a close connection between inf λµ-1 and
the domain constant β(Ω) introduced by Harmelin (see [Har90] and [HM92]).

We identify the largest constantM with supλµ-1 ≥M for all hyperbolic domains.
We establish this and related estimates in Theorem 3.10. In this connection, we
corroborate Hilditch’s conjecture that in any hyperbolic region we always have
supλδ ≥ 8π2/Γ4(1/4); see Theorem 4.2.

For the sake of completeness, we also provide information regarding

sup µδ = sup
Ω
µδ = sup

z∈Ω
µΩ(z)δΩ(z) and inf µδ = inf

Ω
µδ = inf

z∈Ω
µΩ(z)δΩ(z);

see Theorems 2.1 and 2.2. Here once again Ω ⊂ C possesses at least one finite
boundary point. Notice that the ratio λµ−1 is Möbius invariant whereas the
quantities λδ and µδ are merely affine invariant.

This document is organized as follows: Section 2 contains preliminary informa-
tion including basic definitions and terminology as well as elementary and/or
well-known facts. We exhibit examples and examine inf λµ-1 and sup λµ-1 in
Section 3. In Section 4 we verify Hilditch’s conjecture, identify the regions in
which the various metric ratios are constant, and mention some related domain
constants.

The authors are grateful for Roger Barnard’s careful reading of this manuscript
and in particular for drawing our attention to a special function mis-calculation.

2. Preliminaries

2.A. General Information. Our notation is relatively standard and, for the
most part, conforms with that of [HMM03]. We work in the complex plane C;

stated results are valid for the Riemann sphere Ĉ in terms of local coordinates
as the reader may verify. The disk centered at the point a of radius r is denoted
by D(a; r) and we write D = D(0; 1) for the unit disk. We also let H denote the
upper half-plane, and for points a, b ∈ C put

Cab := C \ {a, b}



00 (0000), No. 0 Estimates for Conformal Metric Ratios 3

and write λab and µab for the metric-densities in Cab.

The quantity δ(z) = δΩ(z) := dist(z, ∂Ω) = dist(z, ∂Ω ∩ C) is the Euclidean
distance to the boundary of Ω, and 1/δ is the density for the so-called quasihy-

perbolic metric |dz|/δ(z) when Ω ⊂ C. We call Ω ⊂ Ĉ a quasihyperbolic domain

provided Ĉ \ Ω contains at least two points (one of which may be the point at
infinity). We make frequent use of the notation

D(z) = DΩ(z) := D(z; δ(z)) = D(z; δΩ(z)).

The reader should take care not to confuse the two disks D(z) and ∆(z) (the
latter is defined below in subsection 2.C) each associated with a point z ∈ Ω.

2.B. The Hyperbolic Metric. When Ω ⊂ Ĉ has at least three boundary
points, usually dubbed a hyperbolic domain, there exists a universal covering
projection f : D → Ω and the density λ = λΩ of the Poincaré hyperbolic metric
λΩ(z)|dz| is determined from

λ(z) = λ(f(ζ)) := 2(1 − |ζ|2)−1|f ′(ζ)|−1.

It is well-known, and not difficult to check, that for all points z ∈ Ω ⊂ C,

(λδ)
1

2
≤ λ(z)δ(z) ≤ 2;

the second inequality holds for any hyperbolic domain Ω whereas the first requires
that Ω be simply connected. It is also known that equality holds in (λδ) at some
point z if and only if: Ω is a disk centered at z for the right-hand inequality,
or, Ω is the complement of a ray and z lies on the ray of symmetry for the left-
hand inequality. In [FH99] one finds characterizations for the hyperbolic domains
with supλδ < 2 and descriptions of the simply connected hyperbolic domains
satisfying inf λδ > 1/2, as well as various estimates for these domain constants.

In the sequel we require the following information about two values of the hy-
perbolic metric density λ01 in the the twice punctured plane C01:

λ01(1/2) =
16π2

Γ4(1/4)
= 0.913893 . . . and λ01(τ ) =

22/3 · 8π3

3Γ6(1/3)
= 0.355082 . . . ,

where τ = (1 + i
√

3)/2. The elliptic modular function J : H → C01 satisfies
J(i) = 1/2 and J(τ ) = τ ; of course, λ01(J(ζ)) = [Im(ζ)|J ′(ζ)|]−1. Thus, the first
formula follows from Nehari’s calculation [Neh75, (97),p.329] of |J ′(i)| and the
second formula is a consequence of Carathéodory’s computation [Car60, p.193] of
|J ′(τ )|. The decimal expressions are easily calculated using Mathematica (which
also has the builtin ModularLambda function permitting a direct calculation of
these values:-).
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2.C. The Möbius Metric. We define the density µ = µΩ for the Kulkarni-
Pinkall Möbius metric µΩ(z)|dz| as follows: for z ∈ Ω ∩ C,

µ(z) := inf
{
λD(z) : z ∈ D ⊂ Ω,D is a disk on Ĉ

}
.

We follow the standard convention that a disk in Ĉ is either a Euclidean disk,
a Euclidean half-plane, or the complement of a closed Euclidean disk together
with the point at infinity. Clearly, µΩ(z)|dz| is defined (and positive) for any

quasihyperbolic domain Ω ⊂ Ĉ. The ‘infimum’ in this definition can be replaced
by ‘minimum’; see [HMM03]. This metric enjoys the usual domain monotonicity
property, is Möbius invariant and complete with generalized curvature between
0 and −1, and is bilipschitz equivalent to the quasihyperbolic metric. For precise
statements of these results, along with various other useful facts, we refer the
interested reader to [HMM03] and/or [KP94]; but, see below as well.

We mention that for each z ∈ Ω (a quasihyperbolic domain in Ĉ) there is an
associated unique extremal disk ∆ = ∆(z) = ∆Ω(z) ⊂ Ω with the property that

µΩ(z) = λ∆(z).

The extremal disk ∆ = ∆(z) is either an open Euclidean disk, an open half-
plane, or the exterior of a closed disk, and is characterized by the property
that K = ∂∆ ∩ ∂Ω contains two or more points and z belongs to the so-called
hyperbolically convex hull K̂ (of K in ∆) defined by

K̂ =
⋂

{H : H ⊂ ∆, the spherical closure of H contains K};

here H is a closed (relative to hyperbolic geometry on ∆) hyperbolic half-plane

in ∆. (As examples: (i) If K = {a, b}, K̂ is the hyperbolic geodesic in ∆ ending

at a and b. (ii) If K = {a, b, c}, K̂ is the closed ideal hyperbolic triangle in ∆

with vertices a, b, c. (iii) If K contains n points, n ≥ 3, then K̂ is the closed ideal
hyperbolic n-gon in ∆ with vertices at the points of K. (iv) When K = ∂∆, we

let K̂ = ∆.) Moreover, it turns out that such a disk ∆ is the extremal disk for

each point of K̂.

For detailed information, and proofs, regarding extremal disks we refer to [HMM03,
Thms. 3.4, 3.5, 3.7, 4.1, 4.2]. In particular, 3.4 and 4.2 provide explicit de-
scriptions for the extremal disks (and formulae for the Kulkarni-Pinkall metric
thereof) in the regions obtained by puncturing the Riemann sphere at two and
three points, respectively.

We point out that if z ∈ D ⊂ Ω with D a disk in Ĉ, and z on the hyperbolic
geodesic in D ending at points a, b ∈ ∂D ∩ ∂Ω, then

µΩ(z) = λD(z) = µab(z) =
|a− b|

|z − a||z − b| .
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2.D. Estimates for µδ. As already mentioned, for plane domains the Kulkarni-
Pinkall metric is bilipschitz equivalent to the quasihyperbolic metric. In partic-
ular we have the following explicit information.

2.1. Theorem. Let Ω ⊂ Ĉ be a quasihyperbolic domain and fix z ∈ Ω ∩ C.
Then:

(a) µ(z) ≤ 2

δ(z)
, and equality holds if and only if ∆(z) = D(z);

(b) µ(z) ≤
√

2

δ(z)
if ∞ ∈ ∆(z), and the constant

√
2 is best possible;

(c) µ(z) ≥ 1

δ(z)
if ∆(z) ⊂ C, and equality holds if and only if ∆(z) is a

Euclidean half-plane H with δΩ(z) = δH(z).

Proof. The inequalities in parts (a) and (c) were essentially verified in [HMM03,
Thm.3.3], however, there we assumed that Ω ⊂ C. For the sake of completeness,
we sketch the proofs. The inequality in (a) follows readily from the observation
that µΩ(z) ≤ λD(z) when D = D(z). If ∆(z) = D, then equality clearly holds;
if ∆(z) 6= D, then µ(z) < λD(z) = 2/δ(z).

The inequality in (c) follows exactly as in [HMM03, Thm.3.3]. Moreover, the
argument also reveals that equality forces ∆(z) to be a half-planeH with δΩ(z) =
δH(z) as asserted. Clearly, if ∆(z) is such a half-plane H, then equality does hold.

Let us look at (b). We may assume ∆ = {z ∈ Ĉ : |z| > 1} ⊂ Ω is the extremal
disk associated with some point z ∈ (1,∞)∩Ω. Let e±iθ be the points where the
hyperbolic geodesic in ∆ through z meets ∂∆ = ∂D; here we take 0 < θ < π/2
and find that said geodesic is a subarc of the circle centered at c = sec θ and of
radius r = tan θ (so z = sec θ + tan θ). There must be a point of ∂∆ ∩ ∂Ω on
∂D ∩ D̄(c; r) and a short calculation reveals that

µ(z)δ(z) ≤ 2|z − eiθ|
|z|2 − 1

=
√

2
cos θ√

1 + sin θ
≤

√
2

as desired. To see that
√

2 is best possible, consider Ωθ = Ĉ \ {−1, eiθ, e−iθ} and
notice that limθ→0(µδθ)(sec θ + tan θ) =

√
2 (where µδθ = µΩθ

δΩθ
).

Notice that (b) and (c) above provide improved estimates for λ in terms of δ
(compared with (λδ)).

Next we present uniform estimates for the µδ ratio. To help understand part (c)
below, we point out that for any z ∈ C ∩ Ω,

∆(z) = D(z) ⇐⇒ sup{`(A) : A ⊂ Ω ∩ ∂D(z), A an arc} ≤ πδ(z).

The condition in (c) below is a uniform version of this; it is also a direct analog
of a corresponding necessary and sufficient condition for supλδ < 2 to hold (see
[FH99, Thm.4.2]).
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2.2. Theorem. Let Ω ⊂ Ĉ be a quasihyperbolic domain. Then:

(a) inf µδ = 1 if Ω ⊂ C;
(b) infC∩Ω µδ = 0 if ∞ ∈ Ω;
(c) supC∩Ω µδ < 2 if and only if there exists a constant κ > 0 such that for each

z ∈ C ∩ Ω there is a semi-circle C ⊂ Ω ∩ ∂D(z) with dist(C, ∂Ω) ≥ κδ(z).

Proof. First we verify (b). Suppose ∞ belongs to Ω. Assume that 1 ∈ ∂Ω and

that ∆ = {z ∈ Ĉ : |z| > 1} ⊂ Ω. Then for all z ∈ ∆ ∩ C, say with z > 1, we
have δΩ(z) = |z| − 1 and so as z → ∞,

µΩ(z)δΩ(z) ≤ λ∆(z)δΩ(z) =
2

|z|2 − 1
(|z| − 1) =

2

|z|+ 1
→ 0.

For (a), suppose Ω ⊂ C. Thanks to Theorem 2.1(c), we know that inf µδ ≥ 1.
By fixing a disk D = D(a) ⊂ Ω, choosing a point b ∈ ∂D ∩ ∂Ω, and letting z
move along the line segment [a, b) to b, we readily find that inf µδ ≤ 1.

Finally, let us corroborate (c). The sufficiency of the stated condition follows
from the calculations in the proof of [HMM03, Thm.4.1(a)]. We leave the details
to the interested reader. Suppose now that the stated condition fails to hold.
Then there are points zn ∈ C ∩ Ω with the property that each semi-circle C ⊂
∂D(zn) has dist(C, ∂Ω) ≤ (1/n)δ(zn).

Select affine transformations ϕn sending zn,D(zn), Ω to 0, D, Ωn respectively, and
also such that 1 ∈ ∂Ωn for all n. Then each semi-circleC ⊂ D has dist(C, ∂Ωn) ≤
1/n. Also, since δΩn(0) = 1, µΩ(zn)δΩ(zn) = µΩn(0). We show that the latter
has upper limit 2 as n→ ∞. Put

αn = sup{θ : 0 ≤ θ ≤ π, dist(eiθ, ∂Ωn) ≤ 1/n},
βn = inf{θ : π ≤ θ ≤ 2π, dist(eiθ, ∂Ωn) ≤ 1/n}

and choose an, bn ∈ ∂Ωn with |an − eiαn| ≤ 1/n, |bn − eiβn| ≤ 1/n. Then for all
θ ∈ (αn, βn), dist(eiθ, ∂Ωn) > 1/n; therefore βn − αn ≤ π.

Extracting subsequences where necessary permits us to assume that as n→ ∞:
an, e

iαn → a = eiα and bn, e
iβn → b = eiβ. Then

Ωn ⊂ Ĉ \ {1, an, bn} → Ĉ \ {1, a, b} = Ω′.

Now either α = β (in which case a = −1 = b) or 0 < β − α ≤ π (and a 6= b).
In both cases we see that Ω′ is a quasihyperbolic domain and moreover, D is the
extremal disk for Ω′ associated with the origin (because K = ∂D∩∂Ω′ = {1, a, b}
enjoys 0 ∈ K̂). Thus, according to [HMM03, Thm.3.9],

µΩn(0) ≥ µĈ\{1,an,bn}(0) → µΩ′(0) = 2.
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3. The Ratio λµ−1

In [HMM03, Thms. 3.6,6.3] we demonstrated that for all points z ∈ Ω ⊂ Ĉ,

(λ/µ)
1

2
≤ λ(z)

µ(z)
≤ 1;

the second inequality holds for any hyperbolic domain Ω whereas the first re-
quires that Ω be simply connected. It is also known that equality holds at some
point z for the right-hand inequality in (λ/µ) if and only if Ω is a disk in Ĉ.
Below we explain the equality situation for the left-hand inequality. Notice that
(λ/µ) in conjunction with the inequalities from Theorem 2.1 imply the classical
inequalities (λδ). In particular, we have

1

2δ
≤ µ

2
≤ λ ≤ µ ≤ 2

δ
;

of course, the left-hand inequalities must be appropriately interpreted.

It is not hard to guess that equality should hold for the left-hand inequality in
(λ/µ) if and only if Ω is a Möbius image of a slit plane. Observe that such a

region is precisely Ĉ\A where A is a non-degenerate closed subarc of some circle

C on Ĉ. For the reader’s convenience, we sketch a proof.

3.1. Lemma. For any simply connected hyperbolic domain Ω ⊂ Ĉ we have
λ(z) ≥ 1

2
µ(z) for all z ∈ Ω, and equality holds at a point z ∈ Ω if and only if

Ω = Ĉ \A, where A is a non-degenerate closed subarc of some circle C ⊂ Ĉ, and
z lies on C ∩ Ω.

Proof. The domain C\(−∞, 0] has λ(z)δ(z) = 1/2 for all z > 0. The sufficiency
of the above condition now follows from Möbius invariance in conjunction with
λδ ≥ λµ−1. Let us verify the necessity. The stated inequality was established in
[HMM03, Thm.6.3] (see Remarks 3.7(i) also), which in turn was based on Theo-
rem 5.1 in that paper. We require its proof to validate our assertion concerning
equality.

Assume Ω is a plane domain, a ∈ Ω, and f : (D, 0) → (Ω, a) is a conformal map
of the form f(ζ) = ζ + a2ζ

2 + . . . with 0 ≤ a2 ≤ 2. Thus a = f(0) = 0 and
λ(a) = 2/|f ′(0)| = 2. If a2 = 2, then f = k is the Koebe function and all is okay;
assume 0 ≤ a2 < 2. Given b ∈ C \ Ω,

g(ζ) =
bf(ζ)

b− f(ζ)
= ζ + (a2 + b−1)ζ2 + . . . ,

belongs to the class S (of normalized univalent functions), so |a2 + b−1| ≤ 2.
Now b−1 ∈ D̄(−a2; 2) tells us b /∈ D = D(c; r), where c = a2/(4 − a2

2) and
r = 2/(4−a2

2). Since this is valid for all points b ∈ C\Ω, we have a = 0 ∈ D ⊂ Ω,
which yields

µ(a) ≤ λD(0) = 4 , so λ(a) ≥ 1

2
µ(a).
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Suppose there is equality at a; i.e., that µ(a) = 4. Because of our normalization,
we can check that Ω = C \ ((−∞,−1/(2 + a2)] ∪ [1/(2 − a2),+∞)). Indeed,
µ(a) = 4 implies that ∆(a) = D = D(c; r). In particular there must be some
b ∈ ∂D ∩ ∂Ω. For this point b, |a2 + b−1| = 2, which in turn means that the
associated function g is a ‘rotation’ of the Koebe function: g(ζ) = kθ(ζ) :=
eiθk(e−iθζ) where eiθ(a2 + b−1) = 2. Therefore f(ζ) = bkθ(ζ)/(b+ kθ(ζ)), and so
Ω = f(D) = ψ

(
C \ {−reiθ : r ≥ 1/4}

)
where ψ(z) = bz/(b+ z). Since ψ(−b) =

∞ /∈ Ω, −b /∈ kθ(D), so b = reiθ for some r ≥ 1/4. Straightforward calculations
now reveal that eiθ = ±1 and ∂D ∩ ∂Ω = {ψ(−eiθ/4), ψ(∞)} = {−1/(a2 ± 2)}.

3.A. Examples for λµ−1. Here we mention a few simple examples where one
can actually calculate inf λµ-1 and sup λµ-1. For the infinite strip Σ0 := {x+ iy :
|y| < π/2},

λ(x+ iy) = sec(y) and µ(x+ iy) =
π

(π/2)2 − y2
;

from this we see that for x+iy ∈ Σ0, λµ
−1(x+iy) ≥ π/4 with equality if and only

if y = 0, and lim|y|→π/2 λµ
−1(x+ iy) = 1. Thus inf λµ-1 = π/4 and sup λµ-1 = 1.

Next, we consider the infinite sectors Σα := {reiθ : r > 0, |θ| < απ/2} where 0 <
α ≤ 2. Careful calculations reveal that for all 0 < α ≤ 2 we have sup λµ-1 = 1,
while inf λµ-1 = α−1 tan(απ/4) for 0 < α ≤ 1 and inf λµ-1 = α−1 for 1 ≤ α ≤ 2.
We make repeated use of this information in the convex case, so let us indicate
the calculations involved. In fact we have

λ(reiθ) =
sec(θ/α)

αr
and µ(reiθ) =

sin(απ/2)

r[cos(θ) − cos(απ/2)]
.

A standard conformal change of variables gives the first formula, which holds for
all 0 < α ≤ 2. The right-hand formula is only valid for 0 < α ≤ 1 and can be
established using the fact that reiθ lies on the geodesic through the points re±iα.
Thus for 0 < α ≤ 1 we obtain

λ(reiθ)

µ(reiθ)
=

cos(θ) − cos(απ/2)

α cos(θ/α) sin(απ/2)
.

The minimum is attained when θ = 0. (The trignometric identities 2 sin[(ϕ +
ψ)/2] sin[(ϕ− ψ)/2] = cosψ − cosϕ and (1 − cosϕ)/ sinϕ = tan(ϕ/2) come in
handy!)

Another simple, although important, example is the punctured disk D \ {0} for
which

λ(z)

µ(z)
=

1 − |z|
| log |z|| yielding inf λµ-1 = 0 and supλµ-1 = 1.

Similarly, inf λµ-1 = 0 for any hyperbolic region possessing an isolated boundary
point.
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Finally, we take a close look at the annulus A(R) := {z : 1/R < |z| < R}. A
routine computation produces

λA(R)(z) =
π/2

|z| logR
sec

(
π

2

log |z|
logR

)
and µA(R)(z) =

R− 1/R

(R− |z|)(|z| − 1/R)
.

Letting |z| → R (or |z| → 1/R) we find that supλµ-1 = 1, while evaluating on
|z| = 1 gives

inf λµ-1 ≤ π/2

logR

R− 1

R + 1
.

In fact, equality holds in the above as we now demonstrate. This assertion is
equivalent to

(R + 1/R) − (r + 1/r) ≥ (R− 1)2

R
cos

(
π

2

log r

logR

)
for all 1/R ≤ r ≤ R.

To verify that this holds for 1 ≤ r ≤ R (which suffices), write R = exp(ρ) and
change variables to u = log r/ logR, so the above inequality becomes

cosh(ρ) − cosh(ρu) ≥ (cosh(ρ) − 1) cos
(πu

2

)
, or equivalently,

0 ≤ (cosh(ρ) − 1)
(
1 − cos

(πu
2

))
− (cosh(ρu) − 1) =

= 4 sinh2
(ρ

2

)
sin2

(πu
4

)
− 2 sinh2

(ρu
2

)
=

= 2
(√

2 sinh
(ρ

2

)
sin

(πu
4

)
+ sinh

(ρu
2

))
·

·
(√

2 sinh
(ρ

2

)
sin

(πu
2

)
− sinh

(ρu
2

))
.

Thus our claim follows from the fact that, for all 0 ≤ u ≤ 1,

ψ(u) =
√

2 sinh
(ρ

2

)
sin

(πu
4

)
− sinh

(ρu
2

)
≥ 0,

which in turn is a consequence of ψ(0) = 0 = ψ(1) together with ψ′′(u) ≤ 0. The
significance of these calculations is that we now have

inf λµ-1 =
π/2

logR

R− 1

R + 1
→ π

4
as R → 1.

3.B. Estimating inf λµ-1. We remind the reader that a hyperbolic region is
convex if and only if inf λδ = 1. However given any ε > 0 there exists non-
simply connected regions (thin annuli) with inf λδ ≥ 1 − ε; see [HM92, Thm.4],
[Hil84, Thm.2.2, Ex.2.4]. Here we present analogs of these facts for the λµ−1

ratio. We demonstrate that inf λµ-1 ≥ π/4 for any Möbius image of a convex
region. Then we show that any region with inf λµ-1 ≥

√
3/2 must be simply

connected. We complete this subsection by establishing a connection between
inf λµ-1 and the domain constant β(Ω) introduced and studied by Harmelin and
Minda ([Har90] and [HM92]).
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First we consider (the interior of) triangles; this lemma and its proof will be used
in the subsequent proof.

3.2. Lemma. Let Ω be the interior of a Euclidean triangle. Then inf λµ-1 > π/4.

Proof. Let ∆ be the interior of the incircle Γ for the triangle ∂Ω. Let I = K̂ be
the ideal hyperbolic triangle in ∆, where K = Γ ∩ ∂Ω (the three points opposite
the vertices of ∂Ω). Notice that Ω \ I consists of three circular sectors.

First, assume z ∈ Ω belongs to one of the circular sectors of Ω \ I. This circular
sector lies in an infinite sector Σ which is affine equivalent to some Σα, where
απ is the angle at the vertex and 0 < α < 1. Since µΩ(z) = µΣ(z), the second
example in subsection 3.A yields

λΩ(z)

µΩ(z)
≥ λΣ(z)

µΣ(z)
≥ 1

α
tan

(πα
4

)
>
π

4
.

Now, assume z ∈ I. In this case, µΩ(z) = λ∆(z). Also, for z ∈ ∂I ∩ Ω,
λ(z)/µ(z) > π/4. Next we show that for each b ∈ K = ∂I ∩ ∂Ω,

lim
z→b
z∈I

λΩ(z)

λ∆(z)
= 1.

To see this, choose a Möbius transformation ϕ with ϕ(b) = ∞ and ϕ(∆) = H.
Then I ′ = ϕ(I) is contained in a vertical half-strip above the real axis, and
Ω′ = ϕ(Ω) ⊂ {w : Imw > −a} for some constant a > 0. Thus for w = ϕ(z) we
have

λΩ(z)

µΩ(z)
=
λΩ(z)

λ∆(z)
=

λ′Ω(w)

λ∆′(w)
≥ Im(w)

Im(w) + a
,

and the latter quantity clearly tends to 1 as w tends to infinity through points
of I ′.

Finally, define

v(z) =
λΩ(z)

λ∆(z)
for z ∈ I

and put m = inf {v(z) : z ∈ I}. Choose zn ∈ I with v(zn) → m. Assume
zn → c ∈ I. If c ∈ ∂I, then m > π/4. Suppose c is an interior point of I. Then
log v attains its minimum value at c, which, in conjunction with λ(z)|dz| having
curvature −1 (so ∆ log λ = λ2), yields

0 ≤ ∆log v(c) = ∆ log λΩ(c) − ∆log λ∆(c) = λΩ(c)2 − λ∆(c)2.

Hence, λ∆(c) ≤ λΩ(c), which is impossible. Thus c ∈ ∂I and m > π/4.

Notice that the above proof actually furnishes a better lower bound if we assume
some lower bound on the interior angles.



00 (0000), No. 0 Estimates for Conformal Metric Ratios 11

3.3. Theorem. Suppose Ω is a Möbius image of a Euclidean convex region.
Then inf λµ-1 ≥ π/4. However, given ε > 0 there is a hyperbolic domain Ω with
inf λµ-1 ≥ π/4 − ε and Ω is not the Möbius image of a convex region.

Proof. The last assertion follows by looking at thin annuli; see the end of sub-
section 3.A. Suppose now that Ω is a Euclidean convex hyperbolic region in C.
Let z ∈ Ω and put ∆ = ∆(z), K = ∂∆ ∩ ∂Ω.

First, we consider the special case when ∂Ω consists of a finite line segment
and two infinite rays, each from one end point of the line segment. Here K
contains either two points or three points. Suppose K contains two points.
Then we can choose an infinite sector Σ such that Ω ⊂ Σ and ∆ is still the
extremal disk in Σ associated with z. The second example in subsection 3.A
yields λΩ(z)/µΩ(z) ≥ λΣ(z)/µΣ(z) > π/4. On the other hand, when K contains

three points, then, since z ∈ K̂, we can argue as at the end of the proof of
Lemma 3.2, to see that λΩ(z)/µΩ(z) ≥ π/4; this is valid even if two of the three
points are diametrically opposite.

Now, we deal with the general case. Since any convex region is the kernel of
a sequence of bounded convex polygons, we may assume that Ω is a bounded
convex polygon (see [Hej74], [HMM03, Thm.3.9]). Suppose K contains exactly
two points. Then we can choose either an infinite strip or an infinite sector Σ
which contains Ω and is such that ∆ is still the extremal disk in Σ associated
with z. As above, the first and second examples in subsection 3.A produce the
desired conclusion.

Our remaining case is when K contains finitely many, but at least three, points.
Since z ∈ K̂, z lies inside or on the boundary of one ideal hyperbolic triangle with
its three vertices in K. We construct an enveloping region G by intersecting the
three supporting half-planes for ∂∆ at these three vertices. Then ∂G is either
a Euclidean triangle or consists of a finite line segment and two infinite rays,
each from one end point of the line segment. Lemma 3.2 furnishes the desired
result in the former case, while the latter situation is handled by the special case
considered at the beginning of our proof.

3.4. Remarks. (i) It is straightforward to check that Ω ⊂ Ĉ is a Möbius image

of a Euclidean convex region if and only if there is some point c ∈ Ĉ\Ω with the
property that for all points a, b ∈ Ω, the subarc of the circle through a, b, c which
joins a, b and does not contain c lies in Ω. (ii) We will see below (Remarks 3.7(iii))
that given ε > 0, there is even a hyperbolic Ω with inf λµ-1 > 1− ε, yet Ω is not
the Möbius image of a convex region.

Now we show that inf λµ-1 cannot be too small unless Ω is multiply connected.

3.5. Theorem. Suppose a hyperbolic region Ω has the property that inf λµ-1 ≥√
3/2. Then Ω is simply connected.
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Proof. Assume Ω is multiply connected; we show inf λµ-1 <
√

3/2.

Thanks to Möbius invariance, we can assume ∞ ∈ Ω, and thus, we can partition
Ĉ \ Ω into two disjoint compact sets C1 and C2. Select ci ∈ Ci with |c1 − c2| =
dist(C1, C2). We can further assume that ci = (−1)i. Then G = D(−1; 2) ∩
D(1; 2) ⊂ Ω, so we see that ∆(0) = D and µ(0) = 2. A routine calculation gives
λG(0) =

√
3, and thus λ(0)/µ(0) <

√
3/2.

It is natural to ask for the least possible constant m such that inf λµ-1 ≥ m
implies simple connectivity of Ω. Clearly,

√
3/2 is not sharp. On the other hand,

our examples illustrate that m ≥ π/4, which we believe is the best possible value.

Conjecture. For a hyperbolic region Ω, inf λµ-1 ≥ π/4 implies that Ω is simply
connected.

Now we reveal a close connection between the ratio λ/µ and the Schwarzian
derivative Sf of any holomorphic covering f : D → Ω. Following [HM92] and
[Har90], we define

β(Ω) := 2 sup
z∈Ω

|Sλ(z)|
λ(z)2

=
1

2
sup
ζ∈D

(1 − |ζ|2)2|Sf (ζ)|;

here Ω ⊂ Ĉ is a hyperbolic region and f : D → Ω any holomorphic covering
projection. In general, the Schwarzian norm of a locally univalent holomorphic
g : D → C is the quantity supζ∈D(1 − |ζ|2)2|Sg(ζ)|. Recently, Barnard et al have
determined the maximal Schwarzian norm, say N , of a hyperbolically convex
map; see [BCPWta, Thm.1.1]. (In fact, N = 2.383635 . . . .)

3.6. Theorem. For any hyperbolic region Ω ⊂ Ĉ, β = β(Ω) satisfies

2

N
β ≤

(
inf λµ-1

)−2 ≤ 1 + β.

The right-hand inequality is best possible when 0 ≤ β ≤ 3.

Proof. Without loss of generality, we may assume Ω ⊂ C. Put m = inf λµ-1.

We first prove the estimatem ≥ 1/r where r =
√

1 + β. Fix a point a ∈ Ω and let
f : (D, 0) → (Ω, a) be a holomorphic covering projection. By affine invariance,
we may assume f(ζ) = ζ + a2ζ

2 + . . . with a2 ≥ 0; thus, a = f(0) = 0 and
λ(0) = 2/|f ′(0)| = 2. We show there is a disk or half-plane D with 0 ∈ D ⊂ Ω
and λD(0) = 2r. Then, since µ(0) ≤ λD(0), we obtain λ(0)/µ(0) ≥ 1/r as
desired.

The definition of β = β(Ω) gives us (1 − |ζ|2)2|Sf (ζ)| ≤ 2β. Select any b 6∈ Ω
and put

g(ζ) =
bf(ζ)

b− f(ζ)
= ζ +

(
a2 + b−1

)
ζ2 + . . . .
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Then g also satisfies (1−|ζ|2)2|Sg(ζ)| ≤ 2β. According to Proposition 3.8 below,

we have |a2 + b−1| ≤
√

1 + β = r, so b−1 ∈ D̄(−a2; r). Thus b ∈ Ĉ \ D where:
either D = D(c; s) with c = a2/(r

2 − a2
2), s = r/(r2 − a2

2) when a2 < r; or
D = {z : Re(z) > −1/2r} when a2 = r. In both cases, 0 ∈ D ⊂ Ω and
λD(0) = 2r.

Next, to verify the bound β ≤ (N/2)m−2, it suffices to confirm that for every
z ∈ Ω,

|Sλ(z)|
λ(z)2

≤ N

4
m−2.

Again, fix a ∈ Ω and let f : (D, 0) → (Ω, a) be a holomorphic covering projection.
By Möbius invariance, we may assume that a = f(0) = 0 and that ∆(0) = D;
thus µ(0) = 2. Now |Sλ(z)|/λ(z)2 = (1/4)(1 − |ζ|2)2|Sf (ζ)| for z = f(ζ), so we
must demonstrate that |Sf (0)| ≤ N/m2. Since m ≤ λ(0)/µ(0) = 1/|f ′(0)|, it
suffices to show |Sf (0)| ≤ N |f ′(0)|2.
It is known that disks and half-planes are hyperbolically convex subsets of con-
taining domains (see [Jør56]). In particular, D is a hyperbolically convex subset
of Ω. Let g = f−1 denote the branch of the inverse that is defined in D with
g(0) = 0. Then g is a hyperbolically convex function; i.e, g is univalent in
D and g(D) is a hyperbolically convex region in D. According to [BCPWta,
Thm.1.1], (1 − |ζ|2)2|Sg(ζ)| ≤ N for all ζ ∈ D. Thus, |Sg(0)| ≤ N . Now,
g ◦ f = id in g(D) ⊂ D, which implies 0 = Sg◦f = (Sg ◦ f)(f ′)2 + Sf . Therefore,
|Sf(0)| = |Sg(0)f

′(0)2| ≤ N |f ′(0)|2 as desired.

It remains to confirm the sharpness of the lower bound when 0 ≤ β ≤ 3. Consider
Ω = hβ(D), where

hβ(ζ) =
1

2
√

1 + β

[(
1 + ζ

1 − ζ

)√
1+β

− 1

]
= ζ +

√
1 + β ζ2 + . . . .

Note that hβ has Schwarzian derivative Shβ
(ζ) = −2β/(1 − ζ2)2. This means

β(Ω) = β, so inf λµ-1 ≥ 1/
√

1 + β. Moreover, Ω contains the half-plane described
by Re (z) > −1/(2

√
1 + β) and −1/(2

√
1 + β) ∈ ∂Ω. Hence, µ(0) = 2

√
1 + β

and therefore λ(0)/µ(0) = 1/
√

1 + β.

3.7. Remarks. (i) When Ω is simply connected, β(Ω) ≤ 3, and from above
we obtain inf λµ-1 ≥ 1/2; this was established by a different means in [HMM03,
Thm.6.3]. However, note that there are many non-simply connected regions Ω
with β(Ω) ≤ 3. (ii) Similarly, if Ω is a Nehari domain, then β(Ω) ≤ 1 and
inf λµ-1 ≥ 1/

√
2. (iii) For 0 ≤ β ≤ 3, we showed that the domain Ω = hβ(D)

satisfies inf λµ-1 = 1/
√

1 + β, which increases to 1 as β decreases to 0. It follows
that for any ε > 0, there is a hyperbolic domain Ω with inf λµ-1 > 1 − ε and Ω
is not the Möbius image of a convex region.
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3.8. Proposition. If f(ζ) = ζ+a2ζ
2 + . . . is holomorphic and locally univalent

in D and satisfies (1− |ζ|2)2|Sf(ζ)| ≤ 2β for all ζ ∈ D, then |a2| ≤
√

1 + β; also,
equality holds for hβ and its ‘rotations’.

Proof. Since the quantity (1−|ζ|2)2|Sf (ζ)| is invariant under ‘rotations’ of f , it is
enough to show that Re(a2) ≤

√
1 + β. The collection of all such functions forms

a compact normal family (because such functions are uniformly locally univalent
in the hyperbolic sense :-), so there exists an extremal function f for the problem
of maximizing Re(a2). By applying the Koebe transformation, we see that the
extremal function f must satisfy the Marty relation [Dur83, pp.59-60]

3a3 − 2a2
2 − 1 = 0, or equivalently, a2

2 − 1 = 3(a2
2 − a3) = −1

2
Sf (0).

From |Sf(0)| ≤ 2β, we have |a2|2 ≤ 1 + β, which implies Re (a2) ≤
√

1 + β for
the extremal function f .

3.C. Estimating sup λµ-1. Here we demonstrate that there is a positive lower
bound for sup λµ-1 valid for any hyperbolic region Ω ⊂ Ĉ. In fact, for such Ω

sup λµ-1 ≥M :=
22/3 · 4π3

√
3Γ6(1/3)

= 0.307510 . . . ,

and this is best possible. When we know additional information concerning Ω, we
can produce a larger lower bound. We begin by determining the value of sup λµ-1

for the domain C01 := C \ {0, 1}; recall that λ01 and µ01 are the metric-densities
in C01.

3.9. Example. For C01, sup λµ-1 =
λ01(τ )

µ01(τ )
= M , where τ = (1 + i

√
3)/2.

Proof. We utilize a number of monotonicity properties of λ01 which can be found
in [Hem79] (see also [Min87]). According to [HMM03, Thm.4.2], µ01(τ ) = 2/

√
3,

so λ01(τ )/µ01(τ ) = (
√

3/2)λ01(τ ) = M ; see the last paragraph of subsection 2.B.
We first prove that

sup
C01

λ01µ
−1
01 = sup

I
λ01µ

−1
01 ,

where I is the closed ideal hyperbolic triangle I = {z : 0 ≤ Re z ≤ 1; |z− 1/2| ≥
1/2} \ {0, 1}. By symmetry, the maximum value of λ01µ

−1
01 on I∗ = {z̄ : z ∈ I}

is the same as on I.

For Re z ≤ 0, z 6= 0, µ01(z) = 1/|z| so λ01(z)/µ01(z) = |z|λ01(z). If we fix
θ ∈ [π/2, 3π/2], then |z|λ01(z) = rλ01(re

ıθ) is increasing for 0 < r ≤ 1 and
decreasing for r ≥ 1. Also, λ01(e

iθ) is decreasing on (0, π]. Since λ01/µ01(z) is
symmetric about R, we have

sup

{
λ01(z)

µ01(z)
: Re z ≤ 0, z 6= 0

}
=
λ01(i)

µ01(i)
=
λ01(−i)
µ01(−i)

=: M0.
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Similarly,

sup

{
λ01(z)

µ01(z)
: Re z ≥ 1, z 6= 1

}
=
λ01(1 + i)

µ01(1 + i)
=
λ01(1 − i)

µ01(1 − i)
= M0.

As S(z) = 1/z maps C01 onto itself with S({Re z ≥ 1} \ {1}) = D(1/2; 1/2) \
{0, 1}, we likewise obtain

sup

{
λ01(z)

µ01(z)
: |z − 1/2| ≤ 1/2, z 6= 0, 1

}
=
λ01((1 ± i)/2)

µ01((1 ± i)/2)
= M0.

In summary, on {z : Re z ≤ 0 or |z − 1/2| ≤ 1/2 or Re z ≥ 1} \ {0, 1}, the
maximum value of λ01µ

−1
01 equals M0 and is attained at the six points: ±i, 1± i,

(1 ± i)/2.

Write z = x + iy = reiθ. Note that in I, λ01(z)/µ01(z) = y λ01(z) and by
symmetry

sup
I
λ01µ

−1
01 = sup

I1

yλ01(z),

where I1 = {z : 0 ≤ Re z ≤ 1/2, |z − 1/2| ≥ 1/2} \ {0}. We now verify that

sup
I1

yλ01(z) = sup
∂I1

yλ01(z)

by confirming that y λ01(x+ iy) does not have any relative extrema inside of I1.

For suppose there exists such a relative extremal point z0 in the interior of I1.
Then at z0,

∂λ01

∂x
= 0 and y

∂λ01

∂y
+ λ01 = 0, so,

r
∂λ01

∂r
+ λ01 = x

∂λ01

∂x
+ y

∂λ01

∂y
+ λ01 = 0.

If |z0| < 1, this contradicts the fact that |z|λ01(z) is strictly increasing in 0 <
|z| < 1; if |z0| > 1, it contradicts the fact that |z|λ01(z) is strictly decreasing in
|z| > 1; and when |z0| = 1, we get a contradiction to

(x− 1)
∂λ01

∂x
+ y

∂λ01

∂y
+ λ01 < 0

in |z−1| > 1. We derive this last inequality as follows: For u+ iv = w = 1− z =
1 − x− iy, λ01(w) = λ01(z), |w|λ01(w) is strictly decreasing for |w| > 1, and

0 > |w|∂λ01

∂|w|(w) + λ01(w) = u
∂λ01

∂u
(w) + v

∂λ01

∂v
(w) + λ01(w) =

= −u∂λ01

∂x
(z)− v

∂λ01

∂y
(z) + λ01(z) = (x− 1)

∂λ01

∂x
(z) + y

∂λ01

∂y
(z) + λ01(z).

We know that the maximum value of yλ01(z) is M0 on z = iy, 0 < y < ∞, and
on z = (1 + eiθ)/2, 0 < θ < π. We claim that yλ01(x + iy) → 0 as y → ∞
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uniformly on 0 ≤ x ≤ 1/2. Indeed, for |z| > 1, λ01(1/z) ≤ |z|/ log |z|, so
λ01(z) = λ01(1/z)/|z|2 ≤ 1/|z| log |z|. Thus, yλ01(x + iy) ≤ y/|z| log |z|, which
clearly tends uniformly to 0 as y → ∞.

Finally, we prove that

max

{
yλ01(

1

2
+ iy) : 0 ≤ y <∞

}
=

√
3

2
λ01(τ ).

Actually, we show that yλ01(
1
2
+ iy) is increasing on [0,

√
3/2] and decreasing on

[
√

3/2,∞). Set z = reiθ = x + iy. Since |z|λ01(z) is increasing for 0 < |z| < 1,
r∂λ01/∂r + λ01 > 0. Note that (∂λ01/∂x)(

1
2

+ iy) = 0 and |1
2

+ iy| < 1 if and

only if |y| <
√

3/2. Using

r
∂λ01

∂r
= x

∂λ01

∂x
+ y

∂λ01

∂y
, we get y

∂λ01

∂y
= r

∂λ01

∂r
> −λ01

on z = 1
2

+ iy, |y| <
√

3/2. Thus for 0 ≤ y <
√

3/2,

∂

∂y
[yλ01] (

1

2
+ iy) = y

∂λ01

∂y
(
1

2
+ iy) + λ01(

1

2
+ iy) > 0.

Similarly, using the fact that |z|λ01(z) is decreasing for |z| > 1, we obtain

∂

∂y
[yλ01] (

1

2
+ iy) < 0 when y >

√
3/2.

Notice that C01 is Möbius equivalent to Ĉ \ {ω, e2πi/3ω, e4πi/3ω} for any ω with
|ω| = 1; for any such region, supλµ-1 is attained at the origin.

Below are the aforementioned lower bounds on supλµ-1. Recall that Ω ⊂ C
is a Bloch domain if R(Ω) = supz∈Ω δΩ(z) is finite. Minda [Min85, Thm.2]
demonstrated that 2/R(Ω) ≥ Λ(Ω) ≥ 1/R(Ω), where Λ(Ω) = infz∈Ω λΩ(z); thus
Ω is Bloch if and only if Λ(Ω) > 0. Also, B denotes the Bloch constant for the
class S; it is known that B ≥ 0.57088 [Zha89].

3.10. Theorem. Let Ω ⊂ Ĉ be a hyperbolic domain. Then:

(a) sup λµ-1 ≥M , and equality holds if Ω = C01;

(b) sup λµ-1 ≥ 1
2

if Ω̄ 6= Ĉ or if Ω is Bloch;
(c) sup λµ-1 ≥ B if Ω is simply connected and Λ(Ω) is attained in Ω;
(d) sup λµ-1 = 1 if Ω is the Möbius image of a convex region.

Proof. We start by confirming (d). We may assume Ω is convex. Exactly as in
the proofs of (Theorem 2.2(a), [Hil84, Thm.2.1], [HM92, Thm.4]), we fix a disk
D = D(a) ⊂ Ω, choose a point b ∈ ∂D ∩ ∂Ω, let z move along the line segment
[a, b) to b; we readily find that lim supz→b λ(z)µ(z)−1 ≥ 1.
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Next, we verify (c). Suppose Ω is simply connected and Λ(Ω) is attained in
Ω. Thus there is a point a ∈ Ω such that λ(z) ≥ λ(a) for all z ∈ Ω. Let
f : D → Ω be conformal with f(0) = a; so λ(a) = 2/|f ′(0)|. The map g(z) =
(f(z) − a)/f ′(0) belongs to the class S. As g(D) contains some disk D(b;B),
f(D) ⊃ D(c;B|f ′(0)|) = D where c = a + f ′(0)b. Then µΩ(c) ≤ λD(c) =
2/B|f ′(0)| = λΩ(a)/B, and therefore λ(c)/µ(c) ≥ λ(a)/µ(c) ≥ B.

To justify (b), first observe that Ω̄ 6= Ĉ permits us to assume that Ω is a bounded
(hence Bloch) domain; this follows by making a Möbius change of variable w =
1/(z − c) where c ∈ C \ Ω̄. For such a region Ω, there is a point a ∈ Ω with
δ(a) = R(Ω). Since µ(a) ≤ 2/δ(a) = 2/R(Ω),

λ(a) ≥ Λ(Ω) ≥ 1

R(Ω)
≥ 1

2
µ(a).

For the case of a Bloch domain Ω, we use Theorem 2.1(a) in conjunction with
the aforementioned fact that Λ(Ω)R(Ω) ≥ 1.

Finally, we establish (a). Suppose there is an extremal disk D in Ω such that
∂D ∩ ∂Ω contains at least three points. Utilizing Möbius invariance, we may
assume that D = H and 0, 1,∞ ∈ ∂Ω. Then I = {z : 0 ≤ Re z ≤ 1, |z − 1/2| ≥
1/2, z 6= 0, 1} is a subset of the closed hyperbolic convex hull of ∂H ∩ ∂Ω in H,
so for all z ∈ I, µΩ(z) = λH(z) = µ01(z). Thus

λΩ(z)

µΩ(z)
=
λΩ(z)

λH(z)
≥ λ01(z)

µ01(z)
.

By Example 3.9 we know that sup λ01µ
−1
01 is attained at τ ∈ I, so supΩ λµ

−1 ≥M .

It remains to consider hyperbolic regions Ω with the property that each extremal
disk in Ω has exactly two boundary points on ∂Ω. Select any extremal disk ∆
in Ω. By Möbius invariance, we may assume ∆ = H and 0,∞ ∈ ∂Ω. Since Ω
is hyperbolic, there is a point of Ĉ \ Ω in the lower half-plane. Recall that all
points of R \ {0} must lie in Ω since ∂H ∩ ∂Ω = {0,∞}.
Suppose there were some θ ∈ (0, π) such that e−iθH = {e−iθz : z ∈ H} ⊂ Ω.
Then θ0 = sup {θ ∈ (0, π) : e−iθH ⊂ Ω} would be such that there is a point of
∂Ω in the lower half-plane that lies on the boundary of e−iθ0H. But then e−iθ0H
would be an extremal disk that has three common boundary points with Ω, a
contradiction.

Thus, for every θ ∈ (0, π), e−iθH meets ∂Ω. This implies that there exists
rne

−iθn ∈ ∂Ω with θn → 0. Set Ωn = r−1
n Ω = {z/rn : z ∈ Ω} and bn = e−iθn .

Then 0, bn,∞ ∈ ∂Ωn and supΩ λµ
−1 = supΩn

λµ−1 for all n.

Let fn : D → Ωn be a covering with fn(0) = i and f ′
n(0) > 0; then λΩn(i) =

2/f ′
n(0). Note that since fn omits 0, bn,∞ in D, an extended version of Montel’s

normality criterion (cf. [Car60, p.202]) implies that {fn : n ≥ 1} is a normal
family in D.
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Now for all n, H ⊂ Ωn ⊂ C0bn, so 1 = λH(i) ≥ λΩn(i) ≥ λ0bn(i), which provides
the estimates 2 ≤ f ′

n(0) ≤ 2/λ0bn (i). Recalling that λ01(−1) is the minimum
value of λ01 on the unit circle, we obtain

2 ≤ f ′
n(0) ≤ 2/λ01(−1).

Because {fn : n ≥ 1} is a normal family, we may assume that fn → f locally
uniformly in D. The preceeding inequalities guarantee that f is not a constant.
This means that f is a covering of D onto Ω′ = f(D) and that Ωn → Ω′ in
the sense of kernel convergence (say, with respect to the point i). According to
[Hej74] and [HMM03, Thm.3.9] respectively, we know that λΩn and µΩn converge
pointwise in Ω′ to λΩ′ and µΩ′ respectively. Notice that H ⊂ Ω′ and 0, 1,∞ ∈ ∂Ω′.
This means that H is an extremal disk in Ω′ and Ω′ ⊂ C01; therefore for all
z ∈ I = {z : 0 ≤ Re z ≤ 1, |z − 1/2| ≥ 1/2, z 6= 0, 1} we have

λΩ′ (z)

µΩ′(z)
=
λΩ′ (z)

λH(z)
≥ λ01(z)

λH(z)
=
λ01(z)

µ01(z)
.

Once again we appeal to Example 3.9 to conclude that supΩ λµ
−1 ≥M .

3.11. Remarks. (i) The technique used to prove part (d) applies to many other
domains. For example, if Ω has a boundary point at which there exist two disks
tangent to each other with one inside Ω and the other inside of C \ Ω, then (by
mapping the outside disk onto a half-plane) we see that supλµ-1 = 1. (ii) It
is not difficult to see that the domain C \ Z has supλµ-1 = 1. There are many
similar examples.

The astute reader has no doubt observed that so far all of our examples enjoy
the property that sup λµ-1 = 1.

3.12. Example. The domain C \ Z2 has sup λµ-1 < 1.

Proof. Using the formula for the hyperbolic metric in a punctured disk, in con-
junction with λµ−1 ≤ λδ, we easily find that λ(z) ≤ µ(z)/ log 3 for all z ∈ C \Z2

with δ(z) ≤ 1/3. Thus either sup λµ-1 ≤ 1/ log 3 < 1, or the supremum is a
maximum, attained at some point a ∈ C \ Z2 with δ(a) ≥ 1/3, in which case

λ(a) < µ(a) because C \ Z2 is not a disk on Ĉ.

Conjecture. For C \ Z2, supλµ-1 = λµ−1((1 + i)/2).

4. Miscellaneous

4.A. Hilditch’s Conjecture. Hilditch [Hil84] demonstrated that infΩ sup λδ >
0, where the infimum is taken over all hyperbolic domains Ω ⊂ C. He conjec-
tured that twice punctured planes (i.e., similarity images of C01) are the ex-
tremal regions and he also believed that 1

2
λ01(1/2) gives the maximum value of
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λ01(z)δ01(z), where δ01(z) = δC01(z). In this section we substantiate both of these
convictions. In fact we show that

H :=
8π2

Γ4(1/4)
= 0.456947 . . .

provides a universal lower bound for sup λδ valid for any hyperbolic domain in C.
See also [FH99, Prop.4.1] where infΩ sup λδ ≥ λ01(−1) = 0.22847 . . . is proved
and other lower bounds (for supλδ) are presented for various special classes of
hyperbolic regions.

We begin by determining the maximum value of λ01(z)δ01(z).

4.1. Example. For C01, sup λδ =
1

2
λ01(1/2) = H.

Proof. That H = 1
2
λ01(1/2) follows from the last paragraph of subsection 2.B.

By symmetry,

sup
C01

λδ = sup{λ01(z)δ01(z) : Re z ≤ 1/2, Im z ≥ 0, z 6= 0}.

Note that δ01(z) = |z| when Re z ≤ 1/2. Since w = 1/z is a conformal self-map
of C01,

λ01(z) = λ01(w)

∣∣∣∣
dw

dz

∣∣∣∣ =
λ01(w)

|z|2 ,

which implies λ01(1/z)|1/z| = λ01(z)|z|. Thus, sup
C01

λδ = sup{λ01(z)|z| : z ∈ I},

where

I = {z = reiθ : 0 < r cos θ ≤ 1/2 for 0 ≤ θ ≤ π/3, 0 < r ≤ 1 for π/3 ≤ θ ≤ π}.
For fixed θ, rλ01(re

iθ) is an increasing function of r on (0, 1] (cf. [Hem79] or
[Min87]), so

sup
C01

λδ = sup{rλ01(re
iθ) : r cos θ = 1/2 for 0 ≤ θ ≤ π/3, r = 1 for π/3 ≤ θ ≤ π}.

Next, λ01(e
iθ) is an decreasing function of θ on (0, π], so we conclude that

sup
C01

λδ = sup{rλ01(re
iθ) : r cos θ = 1/2 for 0 ≤ θ ≤ π/3}.

Now we use polarization to prove that |z|λ01(z) ≤ 1
2
λ01(1/2) for z = 1/2 + iy

with 0 ≤ y ≤
√

3/2. Fix z = 1/2 + iy, let w = 1 + 2iy, let L be the horizontal
line through z, and put Ω = C0w = C \ {0, w}. The reflection of Ω with respect
to L is Ω∗ = C \ {2iy, 1}. Then (see [Sol97]) λPΩ(ζ) ≤ λΩ(ζ) for all ζ ∈ Ω+,
where Ω+ consists of all points in Ω that are on or above L and

PΩ = (Ω ∪ Ω∗)+ ∪ (Ω ∩ Ω∗)−.

It is easy to see that PΩ = C01. Since z ∈ Ω+,

λ01(z) = λPΩ(z) ≤ λΩ(z) = λ0w(z).
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Therefore,

|z|λ01(z) ≤ |z|λ0w(z) =
1

2
λ01(1/2).

4.2. Theorem. For any hyperbolic region Ω in C, sup λδ ≥ H. In fact, unless
Ω is a twice punctured plane, there exists z ∈ Ω such that λΩ(z)δΩ(z) > H.

Proof. Thanks to Koebe’s One-Quarter Theorem, we may assume that Ω is not
simply connected. Next, suppose ∞ is an isolated boundary point of Ω and
C\Ω is a continuum. Then Ω′ = Ω∪{∞} ⊂ Ĉ is simply connected, so by (λ/µ),
λΩ′ ≥ 1

2
µΩ′ . Fix a ∈ Ω and choose b, c ∈ C \ Ω with δ(a) = |a − b| and b 6= c.

Now Ω′ ⊂ Ĉ \ {b, c} and thus for any z ∈ [a, b),

λΩ(z)δΩ(z) ≥ λΩ′(z)δΩ(z) ≥ 1

2
µΩ′(z)δΩ(z) ≥ 1

2

|b− c|
|z − b||z − c|δΩ(z) =

|b− c|
2|z − c|.

Therefore, letting z tend to b along [a, b), we see that sup λδ ≥ 1/2.

We now consider the remaining cases: ∞ a non-isolated boundary point, or C\Ω

not a continuum. In both situations we can partition Ĉ \ Ω into disjoint closed
subsets C1, C2 such that 0 < dist(C1, C2) < ∞ and ∞ ∈ C2. This can be seen
as follows.

Suppose ∞ is not an isolated point of Ĉ \ Ω. Since Ω is not simply connected,

Ĉ\Ω is not connected. Hence, there exist disjoint compact (relative to Ĉ) subsets

C1 and C2 with Ĉ \ Ω = C1 ∪ C2. We may assume ∞ ∈ C2. Because ∞ is not

an isolated point of Ĉ \ Ω, C2 \ {∞} is not empty. So 0 < dist(C1, C2) <∞.

If ∞ is an isolated point of Ĉ \ Ω and C \ Ω is not a continuum, then C \ Ω is
bounded in C and not connected. In this case we can write C\Ω = C1∪C ′

2, where
C1, C

′
2 are disjoint non-empty compact sets, and now C1 and C2 = C ′

2 ∪ {∞}
form the desired decomposition.

Choose ci ∈ Ci with |c1 − c2| = dist(C1, C2). By using an affine transformation
if necessary, we may assume c1 = 0 and c2 = 1. Then D(1/2; 1/2) ⊂ Ω ⊂ C01,
so, λΩ(1/2) ≥ λ01(1/2) with strict inequality unless Ω = C01. Also, δΩ(1/2) =
δ01(1/2). Therefore,

λΩ(1/2)δΩ(1/2) ≥ λ01(1/2)δ01(1/2) =
1

2
λ01(1/2)

with strict inequality unless Ω = C01.

4.B. Constant Ratios. Here we demonstrate that the metric ratios λδ, λµ−1,
µδ cannot be constant except in special domains. Recall that the (Gaussian)
curvature of a (smooth) conformal metric ρ(z)|dz| can be defined as −ρ−2∆log ρ.

4.3. Theorem. If λδ, λµ−1, or µδ is identically a constant k in Ω, then k = 1
and, respectively, Ω is a half-plane, a disk on Ĉ, or C \ C for some Euclidean
convex set C ⊂ C. Each converse holds too.
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Proof. First, suppose that λδ = k for some hyperbolic region Ω ⊂ C. Then
1/δ = λ/k which has constant curvature −k2. The asserted conclusion now
follows from [MO86, Thm.3.23].

Next, assume λµ−1 = k for some hyperbolic region Ω ⊂ Ĉ. As above we deduce
that the Kulkarni-Pinkall metric µ(z)|dz| has constant curvature −k2. In this
setting, the asserted conclusion follows from [HIMpp, Thm.D].

Finally, consider a quasihyperbolic domain Ω ⊂ C with µδ = k. Thanks to
Theorem 2.2(a) we have k = inf λδ = 1, and then by Theorem 2.1(c) we know
that every extremal disk in Ω is a Euclidean half-plane. From this it follows
that each point z ∈ Ω has a unique closest boundary point. Thus, according to
[MO86, Thm.3.11], C \ Ω is convex.

4.C. Other Domain Constants. There are also connections between inf λµ-1,
linear invariance, and radii of univalence. For example, the domain constant
η = η(Ω) = 2 sup |(∂/∂z) log λ|/λ (see [HM92] and [Har90]) satisfies

1√
η2 + 2

≤ inf λµ-1 ≤ 4√
η2 + 8 + η

.

The authors will return to these matters in the future.

References

[BCPWta] R. Barnard, L. Cole, K. Pearce, and B. Williams, A sharp bound on the Schwarzian
derivatives of hyperbolically convex functions, J. London Math. Soc., to appear.
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