

LINEAR ALGEBRA REVIEW

I Systems of Equations

- (1) General linear system of equations
 - What is this?
 - What constitutes a solution?
 - What are the: coefficients? variables? constants?
- (2) Geometric viewpoint—lines and planes
- (3) Solution possibilities
 - none, a unique one, infinitely many
- (4) Finding solutions
 - manipulation phase into upper triangular system
 - back-substitution to get solutions
 - row reduction via elementary row operations
 - Gaussian elimination (GE) and Gauss-Jordan elimination (GJE)
 - what is general solution? how to find?
- (5) Row equivalent systems
 - why do these have the same solutions?
- (6) Homogeneous systems
 - why is there always a solution?
 - what is general solution? how to find?
 - what is connection to non-homogeneous system?

II Matrices

- (1) Notation
 - entries, columns, rows
- (2) Arithmetic
 - scalar multiplication and addition
 - matrix multiplication
 - inverses (what? how get? "big theorem")
- (3) Connection with linear systems of equations
 - coefficient and augmented matrices
 - elementary row operations
 - row equivalent matrices
 - GE and row echelon form (REF)
 - GJE and reduced row echelon form (RREF)
- (4) Interpretation of (R)REF regarding existence & uniqueness of solutions
 - the BIG theorem
 - zero rows (consistency—existence of solutions)
 - number of non-leading ones (arbitrary variables—uniqueness of solutions)
 - number of leading ones (what?)
- (5) Non-singular matrices
 - definition/meaning connection with inverses
 - how to calculate?
 - connection with solutions to (non)-homogeneous system
 - "big theorem"
- (6) Transpose
 - definition/meaning
 - symmetric and skew-symmetric matrices
 - upper and lower triangular matrices
 - diagonal matrices

III Euclidean Space

- vectors in \mathbb{R}^n

- arithmetic (scalar multiplication, vector addition)
- scalars vs vectors vs sets of vectors
- (2) Sets of vectors
 - closed wrt scalar multiplication
 - closed wrt vector addition
- (3) Vector subspaces of \mathbb{R}^n
 - definition (closed wrt scalar mult and vector add)
 - vector subspaces of \mathbb{R}^2 and \mathbb{R}^3
 - basic example: the null space $\mathcal{NS}(A)$ of a matrix A
 - what does $\mathcal{NS}(A) = \mathbb{R}^n$ mean?
 - what does $\mathcal{NS}(A) = \{0\}$ mean?
- (4) Linear combinations
 - definition/meaning
 - how to tell if a vector is a LC of other vectors?
 - reinterpretation of vector subspace definition
 - $(\mathcal{V} \text{ is a vector subspace if it is closed wrt LC})$
 - interpretation of matrix multiplication
 - (AX is a LC of the columns of A)
- (5) The span of a set of vectors
 - definition/meaning
 - how to tell if a vector is in the span of other vectors?
 - basic example: the column space $\mathcal{CS}(A)$ of a matrix A
 - other interpretation of $\mathcal{CS}(A)$ (all B st AX = B consistent)
 - what does $\mathcal{CS}(A) = \mathbb{R}^m$ mean?
 - what does $\mathcal{CS}(A) = \{0\}$ mean?
- (6) Linear independence vs linear dependence
 - definition/meaning (especially for 2 or 3 vectors)
 - how to tell when vectors LI?
 - how to find LI subset of set of vectors?
 - connection with solutions to homogeneous system of equations
 - "big theorem"
- (7) Basis
 - definition/meaning
 - minimal spanning set vs maximal linearly independent set
 - how to find (especially for $\mathcal{CS}(A)$ and $\mathcal{NS}(A)$)
 - special case when (?) get spanning set iff linearly independent
- (8) Rank and nullity
 - definition
 - connection with existence and uniqueness of solutions
 - what does it mean if
 - the rank of A is: 0 ? m? < m?
 - the nullity of A is: 0 ? n? > 0?
 - rank-nullity theorem
 - what does this say about existence and uniqueness of solutions especially when m > n or m < n or m = n?
 - why is the rank of A^T the same as the rank of A?
- (9) Coordinates
 - definition/geometric meaning
 - coordinate vector
 - how to find coordinates?
 - change of basis coordinate change matrix what is it? how to find it? properties how to use to find coordinates?
- (10) Scalar or dot product
 - definition/properties algebraic and geometric
 - connection with angles, length
- (11) Orthogonality
 - $X \perp Y$ if ..., $X \perp V$ if ..., $W \perp V$ if ...

- orthogonal *set* of vectors (LI or LD?)
- orthonormal set of vectors (LI or LD?)
- (12) Vector projection
 - definition
 - properties
- (13) Gram-Schmidt algorithm
 - what it does, how to do it, what it tells you
- (14) Orthogonal complement
 - definition and properties of \mathcal{V}^\perp
 - how to determine \mathcal{V}^\perp
 - dim $\mathcal{V}^{\perp} = ?$
 - Why is $\mathbb{R}^n = \mathcal{V} + \mathcal{V}^{\perp}$? Why is $\mathbb{R}^n = \mathcal{V} \oplus \mathcal{V}^{\perp}$?
- (15) Orthogonal projection
 - definition
 - how to calculate
 - geometric interpretation
 - closest pt idea