What is Linear Algebra?

Linear Algebra MATH 2076

 \leftarrow

 $2QQ$

Linear algebra is the study of linearity $(\ddot{\smile})$.

Linear algebra is the study of linearity $(\ddot{\smile})$. Linear algebra is the study of linear functions $\vec{y} = \mathbf{F}(\vec{x})$.

K ロ ▶ K (日) → K (日) → K (日) → X (日) → K (日) → K (日) → K (日) → K (日) → 【日 】 → 【日 】

$$
\mathbb{R}^n \xrightarrow{\mathbf{F}} \mathbb{R}^m
$$

is a linear function (usually called a *linear transformation*).

$$
\mathbb{R}^n \xrightarrow{\mathbf{F}} \mathbb{R}^m
$$

is a linear function (usually called a linear transformation).

It is also possible to have a linear transformation $\mathbb{V} \stackrel{\mathsf{F}}{\rightarrow} \mathbb{W}$ where $\mathbb {V}$ and $\mathbb {W}$ are linear spaces (which are usually called vector spaces).

$$
\mathbb{R}^n \xrightarrow{\mathbf{F}} \mathbb{R}^m
$$

is a linear function (usually called a linear transformation).

It is also possible to have a linear transformation $\mathbb{V} \stackrel{\mathsf{F}}{\rightarrow} \mathbb{W}$ where $\mathbb {V}$ and $\mathbb {W}$ are linear spaces (which are usually called vector spaces).

Of course, linear algebra includes the study of many related objects.

$$
\mathbb{R}^n \xrightarrow{\mathbf{F}} \mathbb{R}^m
$$

is a linear function (usually called a linear transformation).

It is also possible to have a linear transformation $\mathbb{V} \stackrel{\mathsf{F}}{\rightarrow} \mathbb{W}$ where $\mathbb {V}$ and $\mathbb {W}$ are linear spaces (which are usually called vector spaces).

Of course, linear algebra includes the study of many related objects. One such especially important object is the analysis of *linear equations* such as

$$
a_1x_1+a_2x_2+\cdots+a_nx_n=b.
$$

$$
\mathbb{R}^n \xrightarrow{\mathbf{F}} \mathbb{R}^m
$$

is a linear function (usually called a linear transformation).

It is also possible to have a linear transformation $\mathbb{V} \stackrel{\mathsf{F}}{\rightarrow} \mathbb{W}$ where $\mathbb {V}$ and $\mathbb {W}$ are linear spaces (which are usually called vector spaces).

Of course, linear algebra includes the study of many related objects. One such especially important object is the analysis of *linear equations* such as

$$
a_1x_1+a_2x_2+\cdots+a_nx_n=b.
$$

This is a linear equation in "n unknowns" (the variables) $x_1, x_2, \ldots x_n$.

$$
\mathbb{R}^n \xrightarrow{\mathbf{F}} \mathbb{R}^m
$$

is a linear function (usually called a linear transformation).

It is also possible to have a linear transformation $\mathbb{V} \stackrel{\mathsf{F}}{\rightarrow} \mathbb{W}$ where $\mathbb {V}$ and $\mathbb {W}$ are linear spaces (which are usually called vector spaces).

Of course, linear algebra includes the study of many related objects. One such especially important object is the analysis of *linear equations* such as

$$
a_1x_1+a_2x_2+\cdots+a_nx_n=b.
$$

This is a *linear equation* in "*n* unknowns" (the variables) $x_1, x_2, \ldots x_n$. Here a_1, a_2, \ldots, a_n are the *coefficients* and *b* is the *right-hand-side*; these are numbers (aka, constants or scalars) that are usually—but not always—known in advance.

$$
\mathbb{R}^n \xrightarrow{\mathbf{F}} \mathbb{R}^m
$$

is a linear function (usually called a linear transformation).

It is also possible to have a linear transformation $\mathbb{V} \stackrel{\mathsf{F}}{\rightarrow} \mathbb{W}$ where $\mathbb {V}$ and $\mathbb {W}$ are linear spaces (which are usually called vector spaces).

Of course, linear algebra includes the study of many related objects. One such especially important object is the analysis of *linear equations* such as

$$
a_1x_1+a_2x_2+\cdots+a_nx_n=b.
$$

This is a linear equation in "n unknowns" (the variables) $x_1, x_2, \ldots x_n$. Here a_1, a_2, \ldots, a_n are the coefficients and b is the right-hand-side; these are numbers (aka, constants or scalars) that are usually-but not always—known in advance. A solution is a list (s_1, s_2, \ldots, s_n) of numbers such that setting $x_1 = s_1, \ldots, x_n = s_n$ makes the equation a true statement. The solution set consists of all of [th](#page-9-0)e [s](#page-11-0)[ol](#page-0-0)[u](#page-1-0)[ti](#page-10-0)[o](#page-11-0)[ns.](#page-0-0) $E = 990$

Systems of Linear Equations and their Solutions

A system of linear equation in "unknowns" (the variables) $x_1, x_2, \ldots x_n$ has the form

$$
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2
$$

\n
$$
\vdots \qquad \vdots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m
$$

 OQ

Systems of Linear Equations and their Solutions

A system of linear equation in "unknowns" (the variables) $x_1, x_2, \ldots x_n$ has the form

> $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$ $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$

Here $a_{11}, a_{12}, \ldots, a_{mn}$ are the coefficients and b_1, \ldots, b_m are the right-hand-side constants; these are numbers (aka, constants or scalars) that are usually—but not always—known in advance.

 2990

Systems of Linear Equations and their Solutions

A system of linear equation in "unknowns" (the variables) $x_1, x_2, \ldots x_n$ has the form

> $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$ $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$

Here $a_{11}, a_{12}, \ldots, a_{mn}$ are the coefficients and b_1, \ldots, b_m are the right-hand-side constants; these are numbers (aka, constants or scalars) that are usually—but not always—known in advance.

A solution to the above system is a list (s_1, s_2, \ldots, s_n) of numbers such that setting $x_1 = s_1, \ldots, x_n = s_n$ makes all of the equations true statements. The *solution set* consists of all solutions.

 Ω

KID KIND KENKEN E