The Standard Matrix of a Rotation

Linear Algebra MATH 2076

Linear Transformations are Matrix Transformations

Recall that every linear transformation $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ can be written as $T(\vec{x})=A \vec{x}$ for some $m \times n$ matrix $A ; A$ is the standard matrix for T.

The $j^{\text {th }}$ column of A is just $\vec{a}_{j}=T\left(\vec{e}_{j}\right)$ where

$$
\vec{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \vec{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \ldots, \quad \vec{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] .
$$

When $m=2=n$, so $\mathbb{R}^{2} \xrightarrow{T} \mathbb{R}^{2}$, we have

$$
A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right)\right]=\left[T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right] .
$$

Rotations of the Plane \mathbb{R}^{2}

Let $\mathbb{R}^{2} \xrightarrow{R} \mathbb{R}^{2}$ be the transformation of \mathbb{R}^{2} given by rotating by θ radians (in the counter-clockwise direction about $\overrightarrow{0}$). That is, for each vector \vec{v} in $\mathbb{R}^{2}, R(\vec{v})$ is the result of rotating \vec{v} by θ radians (in the counter-clockwise direction).

First we examine the special case where we rotate by 90°.

Rotations of the Plane \mathbb{R}^{2}

Back to a general rotation $\mathbb{R}^{2} \xrightarrow{R} \mathbb{R}^{2}$ of \mathbb{R}^{2} by θ radians. We know that

$$
R\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=A\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \text { where } \quad A=\left[R\left(\vec{e}_{1}\right) R\left(\vec{e}_{2}\right)\right]=\left[R\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) R\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right] .
$$

Thus we gotta determine $R\left(\vec{e}_{1}\right)$ and $R\left(\vec{e}_{2}\right)$. This is easy, once we remember a wee bit of trigonometry! \because

Standard Matrix for a Rotation of the Plane \mathbb{R}^{2}

Let $\mathbb{R}^{2} \xrightarrow{R} \mathbb{R}^{2}$ be the transformation of \mathbb{R}^{2} given by rotating by θ radians (in the counter-clockwise direction about $\overrightarrow{0}$).

The standard matrix for R is $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$.
That is, for all vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ in \mathbb{R}^{2},

$$
R\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \cos \theta-y \sin \theta \\
x \sin \theta+y \cos \theta
\end{array}\right]
$$

So, what does the following transformation do?

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \mapsto\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
0 & \sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

