The Standard Matrix of a Rotation

Linear Algebra MATH 2076

Linear Transformations are Matrix Transformations

Recall that *every* linear transformation $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ can be written as $T(\vec{x}) = A\vec{x}$ for some $m \times n$ matrix A; A is the *standard matrix* for T.

The j^{th} column of A is just $\vec{a_j} = T(\vec{e_j})$ where

$$\vec{e}_1 = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} , \quad \vec{e}_2 = \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix} , \dots , \quad \vec{e}_n = \begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix}$$

When m = 2 = n, so $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$, we have

$$A = \left[T(\vec{e_1}) \ T(\vec{e_2}) \right] = \left[T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) \ T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) \right].$$

Rotations of the Plane \mathbb{R}^2

Let $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ be the transformation of \mathbb{R}^2 given by rotating by θ radians (in the counter-clockwise direction about $\vec{0}$). That is, for each vector \vec{v} in \mathbb{R}^2 , $R(\vec{v})$ is the result of rotating \vec{v} by θ radians (in the counter-clockwise direction).

First we examine the special case where we rotate by 90° .

Rotations of the Plane \mathbb{R}^2

Back to a general rotation $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ of \mathbb{R}^2 by θ radians. We know that $R\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = A\begin{bmatrix}x\\y\end{bmatrix}$ where $A = \begin{bmatrix}R(\vec{e_1}) \ R(\vec{e_2})\end{bmatrix} = \begin{bmatrix}R(\begin{bmatrix}1\\0\end{bmatrix}) \ R(\begin{bmatrix}0\\1\end{bmatrix})\end{bmatrix}$.

Thus we gotta determine $R(\vec{e_1})$ and $R(\vec{e_2})$. This is easy, once we remember a wee bit of trigonometry! $\ddot{\sim}$

5/6

Standard Matrix for a Rotation of the Plane \mathbb{R}^2

Let $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ be the transformation of \mathbb{R}^2 given by rotating by θ radians (in the counter-clockwise direction about $\vec{0}$).

The standard matrix for R is
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
.

That is, for all vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ in \mathbb{R}^2 ,

$$R\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}x\cos\theta - y\sin\theta\\x\sin\theta + y\cos\theta\end{bmatrix}.$$

So, what does the following transformation do?

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$