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Linear Transformations are Matrix Transformations

. . T .
Recall that every linear transformation R” — R™ can be written as
T(X) = AX| for some m x n matrix A; A is the standard matrix for T.

The j* column of A'is just | 3; = T(&)| where
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Rotations of the Plane R?

Let R2 &5 R2 be the transformation of R given by rotating by 6 radians
(in the counter-clockwise direction about 5). That is, for each vector v in
R2, R(V) is the result of rotating V' by 6 radians (in the counter-clockwise
direction).
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First we examine the special case where we rotate by 90°.




Rotations of the Plane R?

Back to a general rotation R? R, R2 of R2 by 8 radians. We know that

A(G]) =2 e 4= e me@] = [m(l =D

Thus we gotta determine R(€1) and R(&). This is easy, once we
remember a wee bit of trigonometry! =
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Standard Matrix for a Rotation of the Plane R?

Let R2 &5 R2 be the transformation of R given by rotating by 6 radians
(in the counter-clockwise direction about 0).

The standard matrix for R is A = [cos& — s 9].

sin@ cosf

That is, for all vectors [;] in R?,

(1% = cosf) —sinf| |x| |xcost —ysinf
yl/) |sin@ cos@ | |y| |xsinf+ ycos| |

So, what does the following transformation do?

X cosfd O —sinf| |x
yl—| O 1 0 y
z 0 sinf cos6 z
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