Using SVD to "see" a Linear Transformation

Linear Algebra MATH 2076

The Four Fundamental Vector SubSpaces Assoc'd with A

The four canonical vector subspaces associated with an $m \times n$ matrix A are:

- the null space $\mathcal{NS}(A)$ of A (a vector subspace of $\mathbb{R}^n)$,
- the column space $\mathcal{CS}(A)$ of A (a vector subspace of \mathbb{R}^m),
- the orthogonal complement $\mathcal{CS}(A)^\perp=\mathcal{NS}(A^\mathcal{T})$ (a VSS of $\mathbb{R}^m)$,
- the orthogonal complement $\mathcal{N}\mathcal{S}(A)^{\perp}=\mathcal{CS}(A^{\mathcal{T}})$ (a VSS of $\mathbb{R}^n).$ Suppose $A=\begin{bmatrix}\vec{u}_1\;\vec{u}_2\ldots\vec{u}_m\end{bmatrix}\Sigma\begin{bmatrix}\vec{v}_1\;\vec{v}_2\ldots\vec{v}_n\end{bmatrix}^T$ is an SVD for A . Then: $\bullet \{\vec{u_1}, \ldots, \vec{u_r}\}$ is an orthonormal basis for $CS(A)$,
	- $\{\vec{u}_{r+1},\ldots,\vec{u}_m\}$ is an *orthonormal basis* for $\mathcal{CS}(A)^{\perp}=\mathcal{NS}(A^{\mathcal{T}})$,
	- $\bullet \ \{\vec{v}_{r+1}, \ldots, \vec{v}_n\}$ is an orthonormal basis for $NS(A)$, and
	- $\{\vec{\mathsf{v}}_1,\ldots,\vec{\mathsf{v}}_r\}$ is an *orthonormal basis* for $\mathcal{N}\mathcal{S}(A)^{\perp}=\mathcal{CS}(A^{\mathsf{T}}).$

$$
A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix} m \times n \text{ and } \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m \text{ given by } T(\vec{x}) = A\vec{x}
$$

 $\vec{x}=\vec{\rho}+\vec{z},\vec{\rho}=\mathsf{Proj}_{\mathcal{NS}(A)^\perp}(\vec{x}), \vec{z}=\mathsf{Proj}_{\mathcal{NS}(A)}(\vec{x}) \implies A\vec{x}=A\vec{\rho}+A\vec{z}=A\vec{\rho}.$ Recall: $\mathcal{NS}(A)^\perp=\mathcal{CS}(A^{\mathcal{T}})$ and $\mathcal{CS}(A)^\perp=\mathcal{NS}(A^{\mathcal{T}})$. When have an <code>SVD</code> $\mathcal{A}=\left[\right.\vec{u}_1 \left.\vec{u}_2 \ldots \vec{u}_m\right] \Sigma\left[\right.\vec{v}_1 \left.\vec{v}_2 \ldots \vec{v}_n\right] ^\mathsf{T}, \text{ get orthon bases }\mathcal{V}=\left\{\vec{v}_1, \vec{v}_2 \ldots, \vec{v}_n\right\}$ (for \mathbb{R}^n), $\mathcal{U}=\left\{\vec{\mathit{u}}_1,\vec{\mathit{u}}_2\dots,\vec{\mathit{u}}_m\right\}$ (for \mathbb{R}^m), and $\left[\left.{\mathsf{T}}\right]_{\mathcal{U}\mathcal{V}}=\Sigma.$ Also, these give....

Example: using an SVD $A = U \Sigma V^T$

Let's try to "see" the linear transformation $\mathbb{R}^2 \overset{\mathcal{T}}{\rightarrow} \mathbb{R}^3$ defined by $T(\vec{x}) = A\vec{x}$ where $A = U \Sigma V^{T}$ is given below.

Here
$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ 0 & 2 \end{bmatrix}
$$
 and we will find U, Σ, V so that $A = U \Sigma V^{T}$.

Recall that A is the standard matrix for \mathcal{T} ; i.e., $A = \big[\mathcal{T}\big]_{\mathcal{E}}.$ It turns out that $\mathsf{\Sigma} = \big[\, \mathsf{\mathcal{T}} \big]_{\mathcal{U}\mathcal{V}}$ where

$$
\mathcal{V} = \{\vec{v}_1, \vec{v}_2\} \quad \text{and} \quad \mathcal{U} = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}
$$

are the orthonormal bases for \mathbb{R}^2 and \mathbb{R}^3 (respectively) with

$$
V = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 \end{bmatrix}.
$$

In fact, it even gets better, but lets just work this simple example.

For
$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ 0 & 2 \end{bmatrix}
$$
, $A^T A = \begin{bmatrix} 5 & 2 \\ 2 & 8 \end{bmatrix}$ which has evs $\lambda_1 = 9, \lambda_2 = 4$.
\nThus $\sigma_1 = 3, \sigma_2 = 2$ and $\Sigma = \begin{bmatrix} 3 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix}$. Get associd e \vec{v} s $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$ so
\ntake $\vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\vec{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ and then $V = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$.
\nGet $A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}$, $A \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -4 \\ 2 \end{bmatrix}$ so $\vec{u}_1 = \frac{1}{3\sqrt{5}} \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}$, $\vec{u}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$.
\nNow $\{\vec{u}_3\}$ is a basis for $\mathcal{NS}(A^T)$, so we can take $\vec{u}_3 = \frac{1}{3} \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$. Then
\n $U = \frac{1}{3\sqrt{5}} \begin{bmatrix} 5 & 0 & -2\sqrt{5} \\ 2 & -6 & \sqrt{5} \\ 4 & 3 & 2\sqrt{5} \end{bmatrix}$. $\frac{1}{15} \begin{bmatrix} 5 & 0 & -2\sqrt{5} \\ 2 & -6 & \sqrt{5} \\ 4 & 3 & 2\sqrt{5} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} =$