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The Four Fundamental Vector SubSpaces Assoc’d with A

Each m × n matrix A has four canonical vector subspaces associated with
itself. These are:

the null space NS(A) of A (a vector subspace of Rn),

the column space CS(A) of A (a vector subspace of Rm),

the orthogonal complement CS(A)⊥ = NS(AT ) (a VSS of Rm),

the orthogonal complement NS(A)⊥ = CS(AT ) (a VSS of Rn).

Thus:

{~u1, . . . , ~ur} is an orthonormal basis for CS(A),

{~ur+1, . . . , ~um} is an orthonormal basis for CS(A)⊥ = NS(AT ),

{~vr+1, . . . , ~vn} is an orthonormal basis for NS(A), and

{~v1, . . . , ~vr} is an orthonormal basis for NS(A)⊥ = CS(AT ).
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Example: using an SVD A = U ΣV T

Let’s try to “see” the linear transformation R2 T−→ R3 defined by
T (~x) = A~x where A = U ΣV T .

Here
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