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The Four Fundamental Vector SubSpaces Assoc'd with A

Each m x n matrix A has four canonical vector subspaces associated with
itself. These are:

@ the null space N'S(A) of A (a vector subspace of R"),
@ the column space CS(A) of A (a vector subspace of R™),
e the orthogonal complement CS(A)* = NS(AT) (a VSS of R™),

o the orthogonal complement N'S(A)* = CS(AT) (a VSS of R").
Thus:

e {u1,..., U} is an orthonormal basis for CS(A),
o {{,41,...,0m} is an orthonormal basis for CS(A)* = NS(AT),
@ {V,41,...,V,} is an orthonormal basis for NS(A), and

o {¥4,...,V,} is an orthonormal basis for NS(A)* = CS(AT).
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Example: usingan SVD A= UX VT

Let's try to “see” the linear transformation R? T, R3 defined by
T(X) = AX where A= UZ VT,
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