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Motivation—Why study quadratic functions?

Let Rn T−→ Rm be a linear transformation.

We know how to find the T
image of a vector subspace W. If W = Span{~w1, ~w2, . . . , ~wk}, then
T (W) = Span{T (~w1),T (~w2), . . . ,T (~wk)}. This allows us to find images
of rectangular boxes, and so forth.
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T (W) = Span{T (~w1),T (~w2), . . . ,T (~wk)}. This allows us to find images
of rectangular boxes, and so forth.

But what about finding the T image of the unit sphere Sn−1 = {‖~x‖ = 1}?

Can we find an equation that describes T (Sn−1)?

Assume m = n and T is invertible. Let A be the (standard) matrix for T−1.
Let ~y = T (~x), so ~x = T−1(y) = A~y . Now suppose ‖~x‖ = 1. Then

1 = ~x · ~x = (~x)T~x = (A~y)TA~y = ~yT (ATA) ~y .

Thus we do have an equation for T (Sn−1), namely

~yTM~y = 1 where M = ATA.

In particular we see that T (Sn−1) is the level set of a quadratic function!
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The Matrix M = ATA

What can we say about M = ATA when A is an m × n matrix?

Evidently, M is an n× n matrix, and MT = (ATA)T = ATA = M, so M is
symmetric. Thus:

1 M has n real eigenvalues, counting according to multiplicity.

2 M is orthogonally diagonalizable.

Item (1) says that M has (real) eigenvalues λ1, λ2 . . . , λn. Item (2) says
that M has an associated orthonormal eigenbasis {~v1, . . . , ~vn}.
Here M~vi = λi~vi . Now look at

λi = λi‖~vi‖2 = λi~vi · ~vi = (M~vi ) · ~vi = (M~vi )
T~vi = ~vTi MT~vi

= ~vTi M~vi = ~vTi ATA~vi = (A~vi )
T (A~vi ) = ‖A~vi‖2.

Thus each λi ≥ 0. By relabeling, we can assume λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.
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The Matrix M = ATA

When A is an m × n matrix, M = ATA is an n × n symmetric matrix with
non-negative real eigenvalues, say λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, and it has an
associated orthonormal eigenbasis {~v1, . . . , ~vn}. Here M~vi = λi~vi and
λi = λi‖~vi‖2 = ‖A~vi‖2.

The numbers σi =
√
λi = ‖A~vi‖ are called the singular values of A. We

really only care about the non-zero singular values. Suppose

σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Here 1 ≤ r ≤ n and when r < n, A~vr+1 = · · · = A~vn = ~0.

So, if
~x =

∑n
i=1 ci~vi , then

A~x =
n∑

i=1

ciA~vi =
r∑

i=1

ciA~vi .

Thus, CS(A) = Span{A~v1, . . . ,A~vr}. Is {A~v1, . . . ,A~vr} LI?
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σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Here 1 ≤ r ≤ n and when r < n, A~vr+1 = · · · = A~vn = ~0. So, if
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M = ATA where A is m × n

M = ATA is an n × n symmetric matrix

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 for M

orthonormal eigenbasis {~v1, . . . , ~vn} assoc’d with M

M~vi = λi~vi and λi = λi‖~vi‖2 = ‖A~vi‖2

singular values (of A) σi =
√
λi = ‖A~vi‖

σ1 ≥ σ2 ≥ · · · ≥ σr > 0

Look at

A~vi ·A~vj = (A~vi )
TA~vj = ~vTi (ATA)~vj = ~vTi (M~vj) = λj~v

T
i ~vj = λj~vi ·~vj = λjδij .

Thus {A~v1, . . . ,A~vr} is an orthogonal set, so it is LI.
∴ {A~v1, . . . ,A~vr} is an orthogonal basis for CS(A).
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It follows that rank(A) = dim CS(A) = r . Recall that CS(A) is vector
subspace of Rm.

For 1 ≤ i ≤ r , let ~ui =
A~vi
‖A~vi‖

. Then A~vi = σi ~ui . Add unit orthogonal

vectors to get orthonormal basis {~u1, . . . , ~ur , ~ur+1, . . . , ~um} for Rm.
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Matrices: A (m × n), M = ATA (n × n), and U ,Σ,V

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 for M

{~v1, . . . , ~vn} orthon eigenbasis assoc’d with M (so basis for Rn)

M~vi = λi~vi and λi = λi‖~vi‖2 = ‖A~vi‖2

singular values (of A) σi =
√
λi = ‖A~vi‖ (σ1 ≥ σ2 ≥ · · · ≥ σr > 0)

{A~v1, . . . ,A~vr} is an orthogonal basis for CS(A)

{~u1, . . . , ~ur , . . . , ~um} orthon basis for Rm

Let U =
[
~u1 ~u2 . . . ~um

]
(U is m ×m) and V =

[
~v1 ~v2 . . . ~vn

]
(V is n × n).

Now define an r × r diagonal matrix D and an m × n matrix Σ by

Σ =

[
D 0
0 0

]
where D =


σ1 0 . . . 0
0 σ2 . . . 0

0
...

... 0
0 0 . . . σr

 .
Then, A = UΣV T . This is a singular value decomposition for A.
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M~vi = λi~vi and λi = λi‖~vi‖2 = ‖A~vi‖2

singular values (of A) σi =
√
λi = ‖A~vi‖ (σ1 ≥ σ2 ≥ · · · ≥ σr > 0)

{A~v1, . . . ,A~vr} is an orthogonal basis for CS(A)

{~u1, . . . , ~ur , . . . , ~um} orthon basis for Rm

Let U =
[
~u1 ~u2 . . . ~um

]
(U is m ×m) and V =

[
~v1 ~v2 . . . ~vn

]
(V is n × n).

Now define an r × r diagonal matrix D and an m × n matrix Σ by

Σ =

[
D 0
0 0

]
where D =


σ1 0 . . . 0
0 σ2 . . . 0

0
...

... 0
0 0 . . . σr

 .
Then, A = UΣV T . This is a singular value decomposition for A.
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Finding matrices U ,Σ,V so that A = UΣV T

Start with any m × n matrix A.

1 Find an orthogonal diagonalization of M = ATA.

2 Write down V and Σ.

3 Find ~ui =
A~vi
‖A~vi‖

and then U.

Find the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 of M and {~v1, . . . , ~vn} (an
orthon eigenbasis assoc’d with M, so a basis for Rn).

Get n × n matrix V =
[
~v1 ~v2 . . . ~vn

]
. Also, σi =

√
λi = ‖A~vi‖, which gives

D and then Σ.

Need {~u1, . . . , ~ur , . . . , ~um}, an orthon basis for Rm. Then have m ×m
matrix U =

[
~u1 ~u2 . . . ~um

]
.
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For A =

3 2
2 3
2 −2

, ATA =

[
17 8
8 17

]
which has evs λ1 = 25, λ2 = 9.

Thus σ1 = 5, σ2 = 3 and Σ =

5 0
0 3
0 0

. Get assoc’d e~vs

[
1
1

]
,

[
1
−1

]
so

take ~v1 =
1√
2

[
1
1

]
, ~v2 =

1√
2

[
1
−1

]
and then V =

1√
2

[
1 1
1 −1

]
.

Get A

[
1
1

]
=

5
5
0

 ,A [ 1
−1

]
=

 1
−1
4

 so ~u1 =
1√
2

1
1
0

 , ~u2 =
1

3
√

2

 1
−1
4

.

Need ~u3 · ~u1 = 0 = ~u3 · ~u2. Use ~u3 =
1

3

−2
2
1

. Then

U =
1

3
√

2

3 1 −2
√

2

3 −1 2
√

2

0 4
√

2

.
1

6

3 1 −2
√
2

3 −1 2
√
2

0 4
√
2

5 0
0 3
0 0

[1 1
1 −1

]
=

3 2
2 3
2 −2
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