The Singular Value Decomposition

Linear Algebra MATH 2076

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation.

A D > A P > A B > A

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. We know how to find the T image of a vector subspace \mathbb{W} .

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. We know how to find the T image of a vector subspace \mathbb{W} . If $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$, then

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. We know how to find the T image of a vector subspace \mathbb{W} . If $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$, then $T(\mathbb{W}) = Span\{T(\vec{w}_1), T(\vec{w}_2), \dots, T(\vec{w}_k)\}$.

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. We know how to find the T image of a vector subspace \mathbb{W} . If $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$, then $T(\mathbb{W}) = Span\{T(\vec{w}_1), T(\vec{w}_2), \ldots, T(\vec{w}_k)\}$. This allows us to find images of rectangular boxes, and so forth.

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. We know how to find the T image of a vector subspace \mathbb{W} . If $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$, then $T(\mathbb{W}) = Span\{T(\vec{w}_1), T(\vec{w}_2), \ldots, T(\vec{w}_k)\}$. This allows us to find images of rectangular boxes, and so forth.

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. We know how to find the T image of a vector subspace \mathbb{W} . If $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$, then $T(\mathbb{W}) = Span\{T(\vec{w}_1), T(\vec{w}_2), \ldots, T(\vec{w}_k)\}$. This allows us to find images of rectangular boxes, and so forth.

2 / 9

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. We know how to find the T image of a vector subspace \mathbb{W} . If $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$, then $T(\mathbb{W}) = Span\{T(\vec{w}_1), T(\vec{w}_2), \dots, T(\vec{w}_k)\}$. This allows us to find images of rectangular boxes, and so forth.

But what about finding the T image of the unit sphere $\mathbb{S}^{n-1} = \{ \|\vec{x}\| = 1 \}$?

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. We know how to find the T image of a vector subspace \mathbb{W} . If $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$, then $T(\mathbb{W}) = Span\{T(\vec{w}_1), T(\vec{w}_2), \ldots, T(\vec{w}_k)\}$. This allows us to find images of rectangular boxes, and so forth.

But what about finding the T image of the unit sphere $\mathbb{S}^{n-1} = \{ \|\vec{x}\| = 1 \}$? Can we find an equation that describes $T(\mathbb{S}^{n-1})$?

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. We know how to find the T image of a vector subspace \mathbb{W} . If $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$, then $T(\mathbb{W}) = Span\{T(\vec{w}_1), T(\vec{w}_2), \ldots, T(\vec{w}_k)\}$. This allows us to find images of rectangular boxes, and so forth.

But what about finding the T image of the unit sphere $\mathbb{S}^{n-1} = \{ \|\vec{x}\| = 1 \}$? Can we find an equation that describes $T(\mathbb{S}^{n-1})$?

Assume m = n and T is invertible. Let A be the (standard) matrix for T^{-1} .

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. We know how to find the T image of a vector subspace \mathbb{W} . If $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$, then $T(\mathbb{W}) = Span\{T(\vec{w}_1), T(\vec{w}_2), \dots, T(\vec{w}_k)\}$. This allows us to find images of rectangular boxes, and so forth.

But what about finding the T image of the unit sphere $\mathbb{S}^{n-1} = \{ \|\vec{x}\| = 1 \}$? Can we find an equation that describes $T(\mathbb{S}^{n-1})$?

Assume m = n and T is invertible. Let A be the (standard) matrix for T^{-1} . Let $\vec{y} = T(\vec{x})$, so $\vec{x} = T^{-1}(y) = A\vec{y}$.

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. We know how to find the T image of a vector subspace \mathbb{W} . If $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$, then $T(\mathbb{W}) = Span\{T(\vec{w}_1), T(\vec{w}_2), \dots, T(\vec{w}_k)\}$. This allows us to find images of rectangular boxes, and so forth.

But what about finding the T image of the unit sphere $\mathbb{S}^{n-1} = \{ \|\vec{x}\| = 1 \}$? Can we find an equation that describes $T(\mathbb{S}^{n-1})$?

Assume m = n and T is invertible. Let A be the (standard) matrix for T^{-1} . Let $\vec{y} = T(\vec{x})$, so $\vec{x} = T^{-1}(y) = A\vec{y}$. Now suppose $\|\vec{x}\| = 1$. Then

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. We know how to find the T image of a vector subspace \mathbb{W} . If $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$, then $T(\mathbb{W}) = Span\{T(\vec{w}_1), T(\vec{w}_2), \dots, T(\vec{w}_k)\}$. This allows us to find images of rectangular boxes, and so forth.

But what about finding the T image of the unit sphere $\mathbb{S}^{n-1} = \{ \|\vec{x}\| = 1 \}$? Can we find an equation that describes $T(\mathbb{S}^{n-1})$?

Assume m = n and T is invertible. Let A be the (standard) matrix for T^{-1} . Let $\vec{y} = T(\vec{x})$, so $\vec{x} = T^{-1}(y) = A\vec{y}$. Now suppose $||\vec{x}|| = 1$. Then

$$1 = \vec{x} \cdot \vec{x} = (\vec{x})^T \vec{x} = (A\vec{y})^T A\vec{y} = \vec{y}^T (A^T A) \vec{y}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. We know how to find the T image of a vector subspace \mathbb{W} . If $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$, then $T(\mathbb{W}) = Span\{T(\vec{w}_1), T(\vec{w}_2), \ldots, T(\vec{w}_k)\}$. This allows us to find images of rectangular boxes, and so forth.

But what about finding the T image of the unit sphere $\mathbb{S}^{n-1} = \{ \|\vec{x}\| = 1 \}$? Can we find an equation that describes $T(\mathbb{S}^{n-1})$?

Assume m = n and T is invertible. Let A be the (standard) matrix for T^{-1} . Let $\vec{y} = T(\vec{x})$, so $\vec{x} = T^{-1}(y) = A\vec{y}$. Now suppose $||\vec{x}|| = 1$. Then

$$1 = \vec{x} \cdot \vec{x} = (\vec{x})^T \vec{x} = (A\vec{y})^T A\vec{y} = \vec{y}^T (A^T A) \vec{y}.$$

Thus we do have an equation for $T(\mathbb{S}^{n-1})$, namely

$$\vec{y}^T M \vec{y} = 1$$
 where $M = A^T A$.

イロト イポト イヨト イヨト 二日

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. We know how to find the T image of a vector subspace \mathbb{W} . If $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$, then $T(\mathbb{W}) = Span\{T(\vec{w}_1), T(\vec{w}_2), \ldots, T(\vec{w}_k)\}$. This allows us to find images of rectangular boxes, and so forth.

But what about finding the T image of the unit sphere $\mathbb{S}^{n-1} = \{ \|\vec{x}\| = 1 \}$? Can we find an equation that describes $T(\mathbb{S}^{n-1})$?

Assume m = n and T is invertible. Let A be the (standard) matrix for T^{-1} . Let $\vec{y} = T(\vec{x})$, so $\vec{x} = T^{-1}(y) = A\vec{y}$. Now suppose $||\vec{x}|| = 1$. Then

$$1 = \vec{x} \cdot \vec{x} = (\vec{x})^T \vec{x} = (A\vec{y})^T A\vec{y} = \vec{y}^T (A^T A) \vec{y}.$$

Thus we do have an equation for $T(\mathbb{S}^{n-1})$, namely

$$\vec{y}^T M \vec{y} = 1$$
 where $M = A^T A$.

In particular we see that $T(\mathbb{S}^{n-1})$ is the level set of a quadratic function \mathbb{S}_{2}

What can we say about $M = A^T A$ when A is an $m \times n$ matrix?

.⊒ . ⊾

A D > A P > A B > A

What can we say about $M = A^T A$ when A is an $m \times n$ matrix?

Evidently, M is an $n \times n$ matrix, and

What can we say about $M = A^T A$ when A is an $m \times n$ matrix?

Evidently, *M* is an $n \times n$ matrix, and $M^T = (A^T A)^T = A^T A = M$, so *M* is *symmetric*. Thus:

Image: Image:

What can we say about $M = A^T A$ when A is an $m \times n$ matrix?

Evidently, *M* is an $n \times n$ matrix, and $M^T = (A^T A)^T = A^T A = M$, so *M* is *symmetric*. Thus:

M has n real eigenvalues, counting according to multiplicity.

What can we say about $M = A^T A$ when A is an $m \times n$ matrix?

Evidently, *M* is an $n \times n$ matrix, and $M^T = (A^T A)^T = A^T A = M$, so *M* is *symmetric*. Thus:

1 M has *n* real eigenvalues, counting according to multiplicity.

2 *M* is orthogonally diagonalizable.

What can we say about $M = A^T A$ when A is an $m \times n$ matrix?

Evidently, *M* is an $n \times n$ matrix, and $M^T = (A^T A)^T = A^T A = M$, so *M* is *symmetric*. Thus:

() M has n real eigenvalues, counting according to multiplicity.

2 *M* is orthogonally diagonalizable.

Item (1) says that *M* has (real) eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

What can we say about $M = A^T A$ when A is an $m \times n$ matrix?

Evidently, *M* is an $n \times n$ matrix, and $M^T = (A^T A)^T = A^T A = M$, so *M* is *symmetric*. Thus:

() M has n real eigenvalues, counting according to multiplicity.

2 *M* is orthogonally diagonalizable.

Item (1) says that M has (real) eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Item (2) says that M has an associated *orthonormal* eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Here $M\vec{v}_i = \lambda_i \vec{v}_i$.

イロト イポト イヨト イヨト

What can we say about $M = A^T A$ when A is an $m \times n$ matrix?

Evidently, *M* is an $n \times n$ matrix, and $M^T = (A^T A)^T = A^T A = M$, so *M* is *symmetric*. Thus:

1 M has *n* real eigenvalues, counting according to multiplicity.

@ *M* is orthogonally diagonalizable.

Item (1) says that M has (real) eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Item (2) says that M has an associated *orthonormal* eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Here $M\vec{v}_i = \lambda_i \vec{v}_i$. Now look at

$$\lambda_{i} = \lambda_{i} \|\vec{v}_{i}\|^{2} = \lambda_{i} \vec{v}_{i} \cdot \vec{v}_{i} = (M\vec{v}_{i}) \cdot \vec{v}_{i} = (M\vec{v}_{i})^{T} \vec{v}_{i} = \vec{v}_{i}^{T} M^{T} \vec{v}_{i}$$

= $\vec{v}_{i}^{T} M \vec{v}_{i} = \vec{v}_{i}^{T} A^{T} A \vec{v}_{i} = (A\vec{v}_{i})^{T} (A\vec{v}_{i}) = \|A\vec{v}_{i}\|^{2}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What can we say about $M = A^T A$ when A is an $m \times n$ matrix?

Evidently, *M* is an $n \times n$ matrix, and $M^T = (A^T A)^T = A^T A = M$, so *M* is *symmetric*. Thus:

1 M has *n* real eigenvalues, counting according to multiplicity.

2 *M* is orthogonally diagonalizable.

Item (1) says that M has (real) eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Item (2) says that M has an associated *orthonormal* eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Here $M\vec{v}_i = \lambda_i \vec{v}_i$. Now look at

$$\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \lambda_i \vec{v}_i \cdot \vec{v}_i = (M\vec{v}_i) \cdot \vec{v}_i = (M\vec{v}_i)^T \vec{v}_i = \vec{v}_i^T M^T \vec{v}_i$$
$$= \vec{v}_i^T M \vec{v}_i = \vec{v}_i^T A^T A \vec{v}_i = (A\vec{v}_i)^T (A\vec{v}_i) = \|A\vec{v}_i\|^2.$$

Thus each $\lambda_i \geq 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What can we say about $M = A^T A$ when A is an $m \times n$ matrix?

Evidently, *M* is an $n \times n$ matrix, and $M^T = (A^T A)^T = A^T A = M$, so *M* is *symmetric*. Thus:

1 M has *n* real eigenvalues, counting according to multiplicity.

@ *M* is orthogonally diagonalizable.

Item (1) says that M has (real) eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Item (2) says that M has an associated *orthonormal* eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Here $M\vec{v}_i = \lambda_i \vec{v}_i$. Now look at

$$\lambda_{i} = \lambda_{i} \|\vec{v}_{i}\|^{2} = \lambda_{i} \vec{v}_{i} \cdot \vec{v}_{i} = (M\vec{v}_{i}) \cdot \vec{v}_{i} = (M\vec{v}_{i})^{T} \vec{v}_{i} = \vec{v}_{i}^{T} M^{T} \vec{v}_{i}$$

= $\vec{v}_{i}^{T} M \vec{v}_{i} = \vec{v}_{i}^{T} A^{T} A \vec{v}_{i} = (A\vec{v}_{i})^{T} (A\vec{v}_{i}) = \|A\vec{v}_{i}\|^{2}.$

Thus each $\lambda_i \geq 0$. By relabeling, we can assume $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

When A is an $m \times n$ matrix, $M = A^T A$ is an $n \times n$ symmetric matrix with non-negative real eigenvalues, say $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$, and it has an associated orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Here $M\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i ||\vec{v}_i||^2 = ||A\vec{v}_i||^2$.

When A is an $m \times n$ matrix, $M = A^T A$ is an $n \times n$ symmetric matrix with non-negative real eigenvalues, say $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$, and it has an associated orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Here $M\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i ||\vec{v}_i||^2 = ||A\vec{v}_i||^2$.

The numbers $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}||$ are called the *singular values of A*.

When A is an $m \times n$ matrix, $M = A^T A$ is an $n \times n$ symmetric matrix with non-negative real eigenvalues, say $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$, and it has an associated orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Here $M\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i ||\vec{v}_i||^2 = ||A\vec{v}_i||^2$.

The numbers $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}|||$ are called the *singular values of A*. We really only care about the *non-zero* singular values.

When A is an $m \times n$ matrix, $M = A^T A$ is an $n \times n$ symmetric matrix with non-negative real eigenvalues, say $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$, and it has an associated orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Here $M\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i ||\vec{v}_i||^2 = ||A\vec{v}_i||^2$.

The numbers $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}|||$ are called the *singular values of A*. We really only care about the *non-zero* singular values. Suppose

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0.$$

When A is an $m \times n$ matrix, $M = A^T A$ is an $n \times n$ symmetric matrix with non-negative real eigenvalues, say $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$, and it has an associated orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Here $M\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \|A\vec{v}_i\|^2$.

The numbers $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}|||$ are called the *singular values of A*. We really only care about the *non-zero* singular values. Suppose

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0.$$

Here $1 \le r \le n$ and when r < n, $A\vec{v}_{r+1} = \cdots = A\vec{v}_n = \vec{0}$.

When A is an $m \times n$ matrix, $M = A^T A$ is an $n \times n$ symmetric matrix with non-negative real eigenvalues, say $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$, and it has an associated orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Here $M\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \|A\vec{v}_i\|^2$.

The numbers $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}|||$ are called the *singular values of A*. We really only care about the *non-zero* singular values. Suppose

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0.$$

Here $1 \le r \le n$ and when r < n, $A\vec{v}_{r+1} = \cdots = A\vec{v}_n = \vec{0}$. So, if $\vec{x} = \sum_{i=1}^n c_i \vec{v}_i$, then

When A is an $m \times n$ matrix, $M = A^T A$ is an $n \times n$ symmetric matrix with non-negative real eigenvalues, say $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$, and it has an associated orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Here $M\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \|A\vec{v}_i\|^2$.

The numbers $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}|||$ are called the *singular values of A*. We really only care about the *non-zero* singular values. Suppose

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0.$$

Here $1 \le r \le n$ and when r < n, $A\vec{v}_{r+1} = \cdots = A\vec{v}_n = \vec{0}$. So, if $\vec{x} = \sum_{i=1}^n c_i \vec{v}_i$, then

$$A\vec{x} = \sum_{i=1} c_i A\vec{v}_i = \sum_{i=1} c_i A\vec{v}_i.$$

When A is an $m \times n$ matrix, $M = A^T A$ is an $n \times n$ symmetric matrix with non-negative real eigenvalues, say $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$, and it has an associated orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Here $M\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \|A\vec{v}_i\|^2$.

The numbers $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}|||$ are called the *singular values of A*. We really only care about the *non-zero* singular values. Suppose

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0.$$

Here $1 \le r \le n$ and when r < n, $A\vec{v}_{r+1} = \cdots = A\vec{v}_n = \vec{0}$. So, if $\vec{x} = \sum_{i=1}^n c_i \vec{v}_i$, then

$$A\vec{x} = \sum_{i=1}^n c_i A\vec{v}_i = \sum_{i=1}^n c_i A\vec{v}_i.$$

Thus, $CS(A) = Span\{A\vec{v}_1, \ldots, A\vec{v}_r\}.$

When A is an $m \times n$ matrix, $M = A^T A$ is an $n \times n$ symmetric matrix with non-negative real eigenvalues, say $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$, and it has an associated orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Here $M\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \|A\vec{v}_i\|^2$.

The numbers $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}|||$ are called the *singular values of A*. We really only care about the *non-zero* singular values. Suppose

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0.$$

Here $1 \le r \le n$ and when r < n, $A\vec{v}_{r+1} = \cdots = A\vec{v}_n = \vec{0}$. So, if $\vec{x} = \sum_{i=1}^n c_i \vec{v}_i$, then $A\vec{x} = \sum_{i=1}^n c_i A\vec{v}_i = \sum_{i=1}^r c_i A\vec{v}_i$.

Thus, $CS(A) = Span\{A\vec{v}_1, \dots, A\vec{v}_r\}$. Is $\{A\vec{v}_1, \dots, A\vec{v}_r\}$ LI?

$M = A^T A$ where A is $m \times n$
• $M = A^T A$ is an $n \times n$ symmetric matrix

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$ assoc'd with M

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$ assoc'd with M

•
$$M\vec{v}_i = \lambda_i \vec{v}_i$$
 and $\lambda_i = \lambda_i ||\vec{v}_i||^2 = ||A\vec{v}_i||^2$

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$ assoc'd with M

•
$$M\vec{v}_i = \lambda_i \vec{v}_i$$
 and $\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \|A\vec{v}_i\|^2$

• singular values (of A) $\sigma_i = \sqrt{\lambda_i} = \|A\vec{v_i}\|$

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$ assoc'd with M

•
$$M\vec{v}_i = \lambda_i \vec{v}_i$$
 and $\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \|A\vec{v}_i\|^2$

• singular values (of A) $\sigma_i = \sqrt{\lambda_i} = \|A\vec{v_i}\|$

•
$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$ assoc'd with M

•
$$M\vec{v}_i = \lambda_i \vec{v}_i$$
 and $\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \|A\vec{v}_i\|^2$

• singular values (of A) $\sigma_i = \sqrt{\lambda_i} = \|A\vec{v_i}\|$

•
$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$$

Look at

$$A\vec{v_i} \cdot A\vec{v_j} = (A\vec{v_i})^T A\vec{v_j} = \vec{v_i}^T (A^T A)\vec{v_j} = \vec{v_i}^T (M\vec{v_j}) = \lambda_j \vec{v_i}^T \vec{v_j} = \lambda_j \vec{v_i} \cdot \vec{v_j} = \lambda_j \delta_{ij}.$$

(日) (同) (三) (三)

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- orthonormal eigenbasis $\{\vec{v_1},\ldots,\vec{v_n}\}$ assoc'd with M

•
$$M\vec{v}_i = \lambda_i \vec{v}_i$$
 and $\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \|A\vec{v}_i\|^2$

• singular values (of A) $\sigma_i = \sqrt{\lambda_i} = \|A\vec{v}_i\|$

•
$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

Look at

$$A\vec{v}_i \cdot A\vec{v}_j = (A\vec{v}_i)^T A\vec{v}_j = \vec{v}_i^T (A^T A)\vec{v}_j = \vec{v}_i^T (M\vec{v}_j) = \lambda_j \vec{v}_i^T \vec{v}_j = \lambda_j \vec{v}_i \cdot \vec{v}_j = \lambda_j \delta_{ij}.$$

Thus $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$ is an orthogonal set, so it is LI.

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- orthonormal eigenbasis $\{\vec{v_1},\ldots,\vec{v_n}\}$ assoc'd with M

•
$$M\vec{v}_i = \lambda_i \vec{v}_i$$
 and $\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \|A\vec{v}_i\|^2$

• singular values (of A) $\sigma_i = \sqrt{\lambda_i} = \|A\vec{v}_i\|$

•
$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$$

Look at

$$A\vec{v}_i \cdot A\vec{v}_j = (A\vec{v}_i)^T A\vec{v}_j = \vec{v}_i^T (A^T A)\vec{v}_j = \vec{v}_i^T (M\vec{v}_j) = \lambda_j \vec{v}_i^T \vec{v}_j = \lambda_j \vec{v}_i \cdot \vec{v}_j = \lambda_j \delta_{ij}.$$

Thus $\{A\vec{v_1}, \ldots, A\vec{v_r}\}$ is an orthogonal set, so it is LI. $\therefore \{A\vec{v_1}, \ldots, A\vec{v_r}\}$ is an orthogonal basis for CS(A).

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- orthonormal eigenbasis $\{\vec{v}_1,\ldots,\vec{v}_n\}$ assoc'd with M
- $M\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \|A\vec{v}_i\|^2$
- singular values (of A) $\sigma_i = \sqrt{\lambda_i} = \|A\vec{v_i}\|$

•
$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$ assoc'd with M
- $M\vec{v_i} = \lambda_i \vec{v_i}$ and $\lambda_i = \lambda_i ||\vec{v_i}||^2 = ||A\vec{v_i}||^2$
- singular values (of A) $\sigma_i = \sqrt{\lambda_i} = \|A\vec{v_i}\|$
- $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$
- $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$ is an *orthogonal basis* for CS(A)

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- orthonormal eigenbasis $\{\vec{v}_1,\ldots,\vec{v}_n\}$ assoc'd with M
- $M\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \|A\vec{v}_i\|^2$
- singular values (of A) $\sigma_i = \sqrt{\lambda_i} = \|A\vec{v_i}\|$

•
$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

• $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$ is an *orthogonal basis* for CS(A)

It follows that $rank(A) = \dim CS(A) = r$.

• • = • • = •

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$ assoc'd with M
- $M\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \|A\vec{v}_i\|^2$
- singular values (of A) $\sigma_i = \sqrt{\lambda_i} = \|A\vec{v_i}\|$

•
$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

• $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$ is an *orthogonal basis* for CS(A)

It follows that rank(A) = dim CS(A) = r. Recall that CS(A) is vector subspace of \mathbb{R}^m .

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- orthonormal eigenbasis $\{\vec{v}_1,\ldots,\vec{v}_n\}$ assoc'd with M

•
$$M\vec{v}_i = \lambda_i \vec{v}_i$$
 and $\lambda_i = \lambda_i \|\vec{v}_i\|^2 = \|A\vec{v}_i\|^2$

• singular values (of A) $\sigma_i = \sqrt{\lambda_i} = \|A\vec{v_i}\|$

•
$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

• $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$ is an *orthogonal basis* for CS(A)

It follows that rank(A) = dim CS(A) = r. Recall that CS(A) is vector subspace of \mathbb{R}^m .

For
$$1 \leq i \leq r$$
, let $ec{u_i} = rac{Aec{v_i}}{\|Aec{v_i}\|}.$

> < = > < = >

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- orthonormal eigenbasis $\{\vec{v}_1,\ldots,\vec{v}_n\}$ assoc'd with M

•
$$M \vec{v}_i = \lambda_i \vec{v}_i$$
 and $\lambda_i = \lambda_i \| \vec{v}_i \|^2 = \| A \vec{v}_i \|^2$

• singular values (of A) $\sigma_i = \sqrt{\lambda_i} = \|A\vec{v_i}\|$

•
$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

• $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$ is an *orthogonal basis* for CS(A)

It follows that rank(A) = dim CS(A) = r. Recall that CS(A) is vector subspace of \mathbb{R}^m .

For
$$1 \leq i \leq r$$
, let $\vec{u_i} = \frac{A\vec{v_i}}{\|A\vec{v_i}\|}$. Then $\boxed{A\vec{v_i} = \sigma_i\vec{u_i}}$.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- $M = A^T A$ is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- orthonormal eigenbasis $\{\vec{v}_1,\ldots,\vec{v}_n\}$ assoc'd with M

•
$$M ec{v}_i = \lambda_i ec{v}_i$$
 and $\lambda_i = \lambda_i \|ec{v}_i\|^2 = \|A ec{v}_i\|^2$

• singular values (of A) $\sigma_i = \sqrt{\lambda_i} = \|A\vec{v_i}\|$

•
$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

• $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$ is an *orthogonal basis* for CS(A)

It follows that rank(A) = dim CS(A) = r. Recall that CS(A) is vector subspace of \mathbb{R}^m .

For $1 \le i \le r$, let $\vec{u_i} = \frac{A\vec{v_i}}{\|A\vec{v_i}\|}$. Then $A\vec{v_i} = \sigma_i \vec{u_i}$. Add unit orthogonal vectors to get orthonormal basis $\{\vec{u_1}, \ldots, \vec{u_r}, \vec{u_{r+1}}, \ldots, \vec{u_m}\}$ for \mathbb{R}^m .

- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- $\{\vec{v_1},\ldots,\vec{v_n}\}$ orthon eigenbasis assoc'd with M (so basis for \mathbb{R}^n)
- $M\vec{v_i} = \lambda_i \vec{v_i}$ and $\lambda_i = \lambda_i \|\vec{v_i}\|^2 = \|A\vec{v_i}\|^2$
- singular values (of A) $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}|| \ (\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0)$
- $\{A\vec{v_1}, \dots, A\vec{v_r}\}$ is an *orthogonal basis* for $\mathcal{CS}(A)$
- $\{\vec{u_1}, \ldots, \vec{u_r}, \ldots, \vec{u_m}\}$ orthon basis for \mathbb{R}^m

- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- $\{\vec{v_1},\ldots,\vec{v_n}\}$ orthon eigenbasis assoc'd with M (so basis for \mathbb{R}^n)
- $M\vec{v_i} = \lambda_i \vec{v_i}$ and $\lambda_i = \lambda_i \|\vec{v_i}\|^2 = \|A\vec{v_i}\|^2$
- singular values (of A) $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}|| \ (\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0)$
- $\{A\vec{v_1}, \dots, A\vec{v_r}\}$ is an *orthogonal basis* for $\mathcal{CS}(A)$
- $\{\vec{u_1},\ldots,\vec{u_r},\ldots,\vec{u_m}\}$ orthon basis for \mathbb{R}^m

Let $U = \begin{bmatrix} \vec{u_1} & \vec{u_2} \dots & \vec{u_m} \end{bmatrix}$ (U is $m \times m$)

- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- $\{\vec{v_1},\ldots,\vec{v_n}\}$ orthon eigenbasis assoc'd with M (so basis for \mathbb{R}^n)
- $M\vec{v_i} = \lambda_i \vec{v_i}$ and $\lambda_i = \lambda_i \|\vec{v_i}\|^2 = \|A\vec{v_i}\|^2$
- singular values (of A) $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}|| \ (\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0)$
- $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$ is an *orthogonal basis* for CS(A)
- $\{\vec{u_1}, \ldots, \vec{u_r}, \ldots, \vec{u_m}\}$ orthon basis for \mathbb{R}^m

Let $U = \begin{bmatrix} \vec{u_1} & \vec{u_2} \dots & \vec{u_m} \end{bmatrix}$ (U is $m \times m$) and $V = \begin{bmatrix} \vec{v_1} & \vec{v_2} \dots & \vec{v_n} \end{bmatrix}$ (V is $n \times n$).

- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- $\{\vec{v_1},\ldots,\vec{v_n}\}$ orthon eigenbasis assoc'd with M (so basis for \mathbb{R}^n)
- $M\vec{v_i} = \lambda_i \vec{v_i}$ and $\lambda_i = \lambda_i \|\vec{v_i}\|^2 = \|A\vec{v_i}\|^2$
- singular values (of A) $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}|| \ (\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0)$
- $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$ is an *orthogonal basis* for CS(A)
- $\{\vec{u_1},\ldots,\vec{u_r},\ldots,\vec{u_m}\}$ orthon basis for \mathbb{R}^m

Let $U = \begin{bmatrix} \vec{u_1} & \vec{u_2} \dots & \vec{u_m} \end{bmatrix}$ (U is $m \times m$) and $V = \begin{bmatrix} \vec{v_1} & \vec{v_2} \dots & \vec{v_n} \end{bmatrix}$ (V is $n \times n$). Now define an $r \times r$ diagonal matrix D and an $m \times n$ matrix Σ by

$$\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{D} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} \quad \text{where} \quad \boldsymbol{D} = \begin{bmatrix} \sigma_1 & \boldsymbol{0} & \dots & \boldsymbol{0} \\ \boldsymbol{0} & \sigma_2 & \dots & \boldsymbol{0} \\ \boldsymbol{0} & \vdots & \vdots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \dots & \sigma_r \end{bmatrix}$$

- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- $\{\vec{v_1},\ldots,\vec{v_n}\}$ orthon eigenbasis assoc'd with M (so basis for \mathbb{R}^n)
- $M\vec{v_i} = \lambda_i \vec{v_i}$ and $\lambda_i = \lambda_i \|\vec{v_i}\|^2 = \|A\vec{v_i}\|^2$
- singular values (of A) $\sigma_i = \sqrt{\lambda_i} = \|A\vec{v_i}\| \ (\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0)$
- $\{A\vec{v_1}, \dots, A\vec{v_r}\}$ is an *orthogonal basis* for $\mathcal{CS}(A)$
- $\{\vec{u_1},\ldots,\vec{u_r},\ldots,\vec{u_m}\}$ orthon basis for \mathbb{R}^m

Let $U = \begin{bmatrix} \vec{u_1} & \vec{u_2} \dots & \vec{u_m} \end{bmatrix}$ (U is $m \times m$) and $V = \begin{bmatrix} \vec{v_1} & \vec{v_2} \dots & \vec{v_n} \end{bmatrix}$ (V is $n \times n$). Now define an $r \times r$ diagonal matrix D and an $m \times n$ matrix Σ by

$$\Sigma = \begin{bmatrix} D & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \text{ where } D = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ 0 & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \sigma_r \end{bmatrix}$$

Then, $A = U \Sigma V^T$

- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- $\{\vec{v_1},\ldots,\vec{v_n}\}$ orthon eigenbasis assoc'd with M (so basis for \mathbb{R}^n)
- $M\vec{v_i} = \lambda_i \vec{v_i}$ and $\lambda_i = \lambda_i \|\vec{v_i}\|^2 = \|A\vec{v_i}\|^2$
- singular values (of A) $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}|| \ (\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0)$
- $\{A\vec{v_1}, \dots, A\vec{v_r}\}$ is an *orthogonal basis* for $\mathcal{CS}(A)$
- $\{\vec{u_1},\ldots,\vec{u_r},\ldots,\vec{u_m}\}$ orthon basis for \mathbb{R}^m

Let $U = \begin{bmatrix} \vec{u_1} & \vec{u_2} \dots & \vec{u_m} \end{bmatrix}$ (U is $m \times m$) and $V = \begin{bmatrix} \vec{v_1} & \vec{v_2} \dots & \vec{v_n} \end{bmatrix}$ (V is $n \times n$). Now define an $r \times r$ diagonal matrix D and an $m \times n$ matrix Σ by

$$\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{D} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} \quad \text{where} \quad \boldsymbol{D} = \begin{bmatrix} \sigma_1 & \boldsymbol{0} & \dots & \boldsymbol{0} \\ \boldsymbol{0} & \sigma_2 & \dots & \boldsymbol{0} \\ \boldsymbol{0} & \vdots & \vdots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \dots & \sigma_r \end{bmatrix}$$

Then, $A = U\Sigma V^{T}$. This is a singular value decomposition for A.

Start with any $m \times n$ matrix A.

Start with any $m \times n$ matrix A.

• Find an orthogonal diagonalization of $M = A^T A$.

Find the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ of M and $\{\vec{v}_1, \ldots, \vec{v}_n\}$ (an orthon eigenbasis assoc'd with M, so a basis for \mathbb{R}^n).

Start with any $m \times n$ matrix A.

- Find an orthogonal diagonalization of $M = A^T A$.
- **2** Write down V and Σ .

Find the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ of M and $\{\vec{v}_1, \ldots, \vec{v}_n\}$ (an orthon eigenbasis assoc'd with M, so a basis for \mathbb{R}^n).

Get $n \times n$ matrix $V = \begin{bmatrix} \vec{v_1} & \vec{v_2} \dots & \vec{v_n} \end{bmatrix}$.

Start with any $m \times n$ matrix A.

- Find an orthogonal diagonalization of $M = A^T A$.
- **2** Write down V and Σ .

Find the eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$ of M and $\{\vec{v}_1, \ldots, \vec{v}_n\}$ (an orthon eigenbasis assoc'd with M, so a basis for \mathbb{R}^n).

Get $n \times n$ matrix $V = [\vec{v}_1 \ \vec{v}_2 \dots \vec{v}_n]$. Also, $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v}_i||$, which gives D and then Σ .

< ロト < 同ト < ヨト < ヨト -

Start with any $m \times n$ matrix A.

- Find an orthogonal diagonalization of $M = A^T A$.
- **2** Write down V and Σ .

Sind
$$\vec{u_i} = \frac{A\vec{v_i}}{\|A\vec{v_i}\|}$$
 and then U .

Find the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ of M and $\{\vec{v}_1, \ldots, \vec{v}_n\}$ (an orthon eigenbasis assoc'd with M, so a basis for \mathbb{R}^n).

Get $n \times n$ matrix $V = [\vec{v}_1 \ \vec{v}_2 \dots \vec{v}_n]$. Also, $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v}_i||$, which gives D and then Σ .

Need $\{\vec{u}_1, \ldots, \vec{u}_r, \ldots, \vec{u}_m\}$, an orthon basis for \mathbb{R}^m .

Start with any $m \times n$ matrix A.

- Find an orthogonal diagonalization of $M = A^T A$.
- **2** Write down V and Σ .

Sind
$$\vec{u_i} = \frac{A\vec{v_i}}{\|A\vec{v_i}\|}$$
 and then U .

Find the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ of M and $\{\vec{v}_1, \ldots, \vec{v}_n\}$ (an orthon eigenbasis assoc'd with M, so a basis for \mathbb{R}^n).

Get $n \times n$ matrix $V = [\vec{v}_1 \ \vec{v}_2 \dots \vec{v}_n]$. Also, $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v}_i||$, which gives D and then Σ .

Need $\{\vec{u}_1, \ldots, \vec{u}_r, \ldots, \vec{u}_m\}$, an orthon basis for \mathbb{R}^m . Then have $m \times m$ matrix $U = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 \dots \vec{u}_m \end{bmatrix}$.

For
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$$
, $A^T A = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$ which has evs $\lambda_1 = 25, \lambda_2 = 9$.

For
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$$
, $A^T A = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$ which has evs $\lambda_1 = 25, \lambda_2 = 9$.
Thus $\sigma_1 = 5, \sigma_2 = 3$ and $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$.

For
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$$
, $A^T A = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$ which has evs $\lambda_1 = 25, \lambda_2 = 9$.
Thus $\sigma_1 = 5, \sigma_2 = 3$ and $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$. Get assoc'd $e\vec{vs} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

For
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$$
, $A^T A = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$ which has evs $\lambda_1 = 25, \lambda_2 = 9$.
Thus $\sigma_1 = 5, \sigma_2 = 3$ and $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$. Get assoc'd $e\vec{v}s \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ so take $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and then

For
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$$
, $A^T A = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$ which has evs $\lambda_1 = 25, \lambda_2 = 9$.
Thus $\sigma_1 = 5, \sigma_2 = 3$ and $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$. Get assoc'd $e\vec{v}s \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ so take $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and then $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

For
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$$
, $A^T A = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$ which has evs $\lambda_1 = 25, \lambda_2 = 9$.
Thus $\sigma_1 = 5, \sigma_2 = 3$ and $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$. Get assoc'd $e\vec{v}s \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ so
take $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and then $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
Get $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 0 \end{bmatrix}, A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$

For
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$$
, $A^{T}A = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$ which has evs $\lambda_{1} = 25, \lambda_{2} = 9$.
Thus $\sigma_{1} = 5, \sigma_{2} = 3$ and $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$. Get assoc'd $e\vec{v}s \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ so
take $\vec{v}_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and then $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
Get $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 0 \end{bmatrix}, A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$ so $\vec{u}_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \vec{u}_{2} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$

For
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$$
, $A^{T}A = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$ which has evs $\lambda_{1} = 25, \lambda_{2} = 9$.
Thus $\sigma_{1} = 5, \sigma_{2} = 3$ and $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$. Get assoc'd $e\vec{v}s \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ so
take $\vec{v}_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and then $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
Get $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 0 \end{bmatrix}, A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$ so $\vec{u}_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \vec{u}_{2} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$

Need $\vec{u}_3 \cdot \vec{u}_1 = 0 = \vec{u}_3 \cdot \vec{u}_2$.
For
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$$
, $A^T A = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$ which has evs $\lambda_1 = 25, \lambda_2 = 9$.
Thus $\sigma_1 = 5, \sigma_2 = 3$ and $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$. Get assoc'd evs $\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ so
take $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and then $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
Get $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 0 \end{bmatrix}, A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$ so $\vec{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \vec{u}_2 = \frac{1}{3\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$.
Need $\vec{u}_3 \cdot \vec{u}_1 = 0 = \vec{u}_3 \cdot \vec{u}_2$. Use $\vec{u}_3 = \frac{1}{3} \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$.

オロト オポト オヨト オヨト ヨー のへで

For
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$$
, $A^T A = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$ which has evs $\lambda_1 = 25, \lambda_2 = 9$.
Thus $\sigma_1 = 5, \sigma_2 = 3$ and $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$. Get assoc'd evs $\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ so
take $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and then $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
Get $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 0 \end{bmatrix}, A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$ so $\vec{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \vec{u}_2 = \frac{1}{3\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$.
Need $\vec{u}_3 \cdot \vec{u}_1 = 0 = \vec{u}_3 \cdot \vec{u}_2$. Use $\vec{u}_3 = \frac{1}{3} \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$. Then
 $U = \frac{1}{3\sqrt{2}} \begin{bmatrix} 3 & 1 & -2\sqrt{2} \\ 3 & -1 & 2\sqrt{2} \\ 0 & 4 & \sqrt{2} \end{bmatrix}$.

オロト オポト オヨト オヨト ヨー のへで

For
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$$
, $A^{T}A = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$ which has evs $\lambda_{1} = 25, \lambda_{2} = 9$.
Thus $\sigma_{1} = 5, \sigma_{2} = 3$ and $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$. Get assoc'd evs $\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ so
take $\vec{v}_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and then $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
Get $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 0 \end{bmatrix}, A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$ so $\vec{u}_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \vec{u}_{2} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$.
Need $\vec{u}_{3} \cdot \vec{u}_{1} = 0 = \vec{u}_{3} \cdot \vec{u}_{2}$. Use $\vec{u}_{3} = \frac{1}{3} \begin{bmatrix} -2 \\ 2 \\ 1 \\ 0 \end{bmatrix}$. Then
 $U = \frac{1}{3\sqrt{2}} \begin{bmatrix} 3 & 1 & -2\sqrt{2} \\ 3 & -1 & 2\sqrt{2} \\ 0 & 4 & \sqrt{2} \end{bmatrix} \cdot \frac{1}{6} \begin{bmatrix} 3 & 1 & -2\sqrt{2} \\ 3 & -1 & 2\sqrt{2} \\ 0 & 4 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$

オロト オポト オヨト オヨト ヨー のへで