The Singular Value Decomposition

Linear Algebra MATH 2076

The Matrix $M = A^T A$

What can we say about $M = A^T A$ when A is an $m \times n$ matrix?

Evidently, M is an $n \times n$ matrix, and $M^{\mathcal{T}} = (A^{\mathcal{T}}A)^{\mathcal{T}} = A^{\mathcal{T}}A = M$, so M is *symmetric*. Thus:

- \bullet *M* has *n* real eigenvalues, counting according to multiplicity.
- **2** M is orthogonally diagonalizable.

Item (1) says that M has (real) eigenvalues $\lambda_1, \lambda_2 \ldots, \lambda_n$. Item (2) says that M has an associated *orthonormal* eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Let's examine

$$
A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix}.
$$

Here we find that

$$
M = A^T A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}
$$

.

We show that

$$
A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{2} & \sqrt{3} & 1 \\ \sqrt{2} & 0 & -2 \\ \sqrt{2} & \sqrt{3} & 1 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
$$

this is a so-called singular value decomposition for the matrix A. We already saw that

$$
A^T A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}.
$$

So $\lambda_1 = 3, \lambda_2 = 2$ are eigenvalues for $A^T A$ with associ d unit eigenvectors

$$
\vec{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.
$$
 Note that $A\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $A\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ satisfy

$$
||A\vec{v}_1|| = \sqrt{3} = \sqrt{\lambda_1} = \sigma_1, ||A\vec{v}_2|| = \sqrt{2} = \sqrt{\lambda_2} = \sigma_2,
$$
 and $A\vec{v}_1 \perp A\vec{v}_2$.
Put

$$
\vec{u}_1 = \frac{A\vec{v}_1}{\|A\vec{v}_1\|} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{u}_2 = \frac{A\vec{v}_2}{\|A\vec{v}_2\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.
$$

Now choose \vec{u}_3 so that $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is an orthonormal basis of \mathbb{R}^3 .

We have

$$
\vec{u}_1 = \frac{A\vec{v}_1}{\|A\vec{v}_1\|} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} , \vec{u}_2 = \frac{A\vec{v}_2}{\|A\vec{v}_2\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} .
$$

We want to choose $\vec{u_3}$ so that $\{\vec{u_1},\vec{u_2},\vec{u_3}\}$ is an orthonormal basis of \mathbb{R}^3 . One choice (there are only two possibilities) is $\vec{u}_3 = \frac{1}{\sqrt{2}}$ 6 $\sqrt{ }$ $\overline{}$ 1 -2 1 1 $\vert \cdot$

Finally, we see that $A=U\Sigma V^{\mathcal{\,T}}$ where $U=\left[\vec{u}_1 \; \vec{u}_2 \; \vec{u}_3\right]$ and $V=\left[\vec{v}_1 \; \vec{v}_2\right]$ are orthogonal matrices, and

$$
\Sigma = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix}.
$$

That is,

$$
A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{2} & \sqrt{3} & 1 \\ \sqrt{2} & 0 & -2 \\ \sqrt{2} & \sqrt{3} & 1 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.
$$

The Matrix $A^T A$

We return to our discussion concerning A^TA where A is any $m\times n$ matrix? Evidently, A^TA is an $n\times n$ matrix, and $(A^TA)^{\mathcal{T}}=A^{\mathcal{T}}A$, so $A^{\mathcal{T}}A$ is *symmetric*. Thus:

 $\mathbf{1} \mathbf{1}$ $\mathbf{A}^T \mathbf{A}$ has n real eigenvalues, say, $\lambda_1, \lambda_2 \dots, \lambda_n.$

2 $A^{T}A$ is orthogonally diagonalizable.

Item (2) says that A^TA has an associated *orthonormal* eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$ where, say, $A^T A \vec{v}_i = \lambda_i \vec{v}_i$. Now look at

$$
||A\vec{v}_i||^2 = (A\vec{v}_i) \cdot (A\vec{v}_i) = (A\vec{v}_i)^T (A\vec{v}_i) = \vec{v}_i^T (A^T A) \vec{v}_i = \vec{v}_i^T \lambda_i \vec{v}_i
$$

= $\lambda_i \vec{v}_i \cdot \vec{v}_i = \lambda_i ||\vec{v}_i||^2 = \lambda_i$.

Thus $\lambda_i = \|A \vec{v_i}\|^2 \geq 0$. By relabeling, if necessary, we can assume that $\lambda_1 > \lambda_2 > \cdots > \lambda_n > 0.$

The Matrix $A^T A$

When A is an $m \times n$ matrix, A^TA is an $n \times n$ *symmetric* matrix with non-negative real eigenvalues, say $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$, and there is an associated *orthonormal* eigenbasis $\{\vec{v}_1,\ldots,\vec{v}_n\}$. Here $A^T A \vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i ||\vec{v}_i||^2 = ||A\vec{v}_i||^2.$

The numbers $\sigma_i =$ √ $\lambda_i = \|A \vec{v_i}\|$ are called the *singular values of A*. We really only care about the non-zero singular values. Suppose

$$
\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0.
$$

Here $1 \le r \le n$ and when $r \le n$, $A\vec{v}_{r+1} = \cdots = A\vec{v}_n = \vec{0}$. So, if $\vec{x} = \sum_{i=1}^n c_i \vec{v}_i$, then $A\vec{x} = \sum_{n=1}^{n}$ $i=1$ $c_i A \vec{v}_i = \sum^r$ $i=1$ $c_i A \vec{v_i}$.

Thus, $CS(A) = Span{A\vec{v}_1, \ldots, A\vec{v}_r}$. Is $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$ LI?

$A^T A$ where A is $m \times n$

- $A^{\mathcal{T}}A$ is an $n\times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for A^TA
- orthonormal eigenbasis $\{\vec{\mathsf{v}}_1,\ldots,\vec{\mathsf{v}}_n\}$ assoc'd with A^TA

•
$$
A^T A \vec{v}_i = \lambda_i \vec{v}_i
$$
 and $\lambda_i = \lambda_i ||\vec{v}_i||^2 = ||A\vec{v}_i||^2$

singular values (of A) are $\sigma_i =$ √ $\lambda_i = \|A \vec{v}_i\|$

$$
\bullet \ \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0
$$

Look at

$$
A\vec{v}_i \cdot A\vec{v}_j = (A\vec{v}_i)^T A\vec{v}_j = \vec{v}_i^T (A^T A)\vec{v}_j = \lambda_j \vec{v}_i^T \vec{v}_j = \lambda_j \vec{v}_i \cdot \vec{v}_j = \lambda_j \delta_{ij}.
$$

Thus $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$ is an orthogonal set of non-zero vectors, so it is LI. ∴ $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$ is an orthogonal basis for $CS(A)$.

$A^T A$ where A is $m \times n$

- $A^{\mathcal{T}}A$ is an $n\times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for $A^{\mathcal{T}}A$
- orthonormal eigenbasis $\{\vec{\mathsf{v}}_1,\ldots,\vec{\mathsf{v}}_n\}$ assoc'd with A^TA

•
$$
A^T A \vec{v}_i = \lambda_i \vec{v}_i
$$
 and $\lambda_i = \lambda_i ||\vec{v}_i||^2 = ||A\vec{v}_i||^2$

singular values (of A) are $\sigma_i =$ √ $\lambda_i = \|A \vec{v}_i\|$

$$
\bullet \ \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0
$$

 \bullet { $A\vec{v}_1, \ldots, A\vec{v}_r$ } is an orthogonal basis for $CS(A)$

It follows that rank $(A) = \dim CS(A) = r$. Recall that $CS(A)$ is vector subspace of \mathbb{R}^m .

For
$$
1 \le i \le r
$$
, let $\vec{u}_i = \frac{A\vec{v}_i}{\|A\vec{v}_i\|}$. Then $\boxed{A\vec{v}_i = \sigma_i \vec{u}_i}$. Add unit orthogonal vectors to get orthonormal basis $\{\vec{u}_1, \ldots, \vec{u}_r, \vec{u}_{r+1}, \ldots, \vec{u}_m\}$ for \mathbb{R}^m .

Matrices: A $(m \times n)$, $M = A^TA$ $(n \times n)$, and U, Σ, V

- eigenvalues $\lambda_1 > \lambda_2 > \cdots > \lambda_n > 0$ for M
- $\{\vec{v}_1, \ldots, \vec{v}_n\}$ orthon eigenbasis assoc'd with M (so basis for \mathbb{R}^n)
- $M \vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i ||\vec{v}_i||^2 = ||A \vec{v}_i||^2$ √
- *singular values* (of A) are $\sigma_i =$ $\lambda_i = \|A\vec{v}_i\|$ $(\sigma_1 > \sigma_2 > \cdots > \sigma_r > 0)$
- \bullet { $A\vec{v}_1, \ldots, A\vec{v}_r$ } is an orthogonal basis for $CS(A)$
- $\{\vec{u}_1, \ldots, \vec{u}_r, \ldots, \vec{u}_m\}$ orthon basis for \mathbb{R}^m

Let $\mathcal{U}=\left[\vec{\mathit{u}}_1\;\vec{\mathit{u}}_2\ldots\vec{\mathit{u}}_m\right]$ $(\mathcal{U}$ is $m\times m)$ and $\mathcal{V}=\left[\vec{\mathit{v}}_1\;\vec{\mathit{v}}_2\ldots\vec{\mathit{v}}_n\right]$ $(\mathcal{V}$ is $n\times n).$ Now define an $r \times r$ diagonal matrix D and an $m \times n$ matrix Σ by

$$
\Sigma = \begin{bmatrix} D & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \text{where} \quad D = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ 0 & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \sigma_r \end{bmatrix}
$$

Then, $A = U\Sigma V^{T}$.

This is a *singular value decomposition* for A.

.

Finding matrices U, Σ, V so that $A = U \Sigma V^T$

Start with any $m \times n$ matrix A.

- \bullet Find an orthogonal diagonalization of $M = A^T A$.
- **2** Write down V and Σ .

• Find
$$
\vec{u}_i = \frac{A\vec{v}_i}{\|A\vec{v}_i\|}
$$
 and then U.

Find eigenvalues $\lambda_1\geq\lambda_2\geq\cdots\geq\lambda_n\geq 0$ of $M=A^{\pmb{\tau}}A$ and $\{\vec{\mathsf{v}}_1,\ldots,\vec{\mathsf{v}}_n\}$ (an orthon eigenbasis assoc'd with M, so a basis for \mathbb{R}^n).

Get $n \times n$ matrix $V = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \dots \vec{v}_n \end{bmatrix}$. Also, $\sigma_i =$ √ $\lambda_i = \|A \vec{v_i}\|$, which gives D and then Σ .

Need $\{\vec{u}_1, \ldots, \vec{u}_r, \ldots, \vec{u}_m\}$, an orthon basis for \mathbb{R}^m . Then have $m \times m$ matrix $U = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \dots & \vec{u}_m \end{bmatrix}$.

For
$$
A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}
$$
, $A^T A = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$ which has evs $\lambda_1 = 25, \lambda_2 = 9$.
\nThus $\sigma_1 = 5, \sigma_2 = 3$ and $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$. Get associ d evis $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ so
\ntake $\vec{v_1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\vec{v_2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and then $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
\nGet $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 0 \end{bmatrix}$, $A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$ so $\vec{u_1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\vec{u_2} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$.
\nNeed $\vec{u_3} \cdot \vec{u_1} = 0 = \vec{u_3} \cdot \vec{u_2}$. Use $\vec{u_3} = \frac{1}{3} \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$. Then
\n $U = \frac{1}{3\sqrt{2}} \begin{bmatrix} 3 & 1 & -2\sqrt{2} \\ 3 & -1 & 2\sqrt{2} \\ 0 & 4 & \sqrt{2} \end{bmatrix} \cdot \frac{1}{6} \begin{bmatrix} 3 & 1 & -2\sqrt{2} \\ 3 & -1 & 2\sqrt{2} \\ 0 & 4 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 &$