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The Matrix M = ATA

What can we say about M = ATA when A is an m × n matrix?

Evidently, M is an n × n matrix, and MT = (ATA)T = ATA = M,
so M is symmetric. Thus:

1 M has n real eigenvalues, counting according to multiplicity.

2 M is orthogonally diagonalizable.

Item (1) says that M has (real) eigenvalues λ1, λ2 . . . , λn. Item (2) says
that M has an associated orthonormal eigenbasis {~v1, . . . , ~vn}.
Let’s examine

A =

 1 1
0 1
−1 1

 .
Here we find that

M = ATA =

[
1 0 −1
1 1 1

] 1 1
0 1
−1 1

 =

[
2 0
0 3

]
.
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We show that

A =

 1 1
0 1
−1 1

 =
1√
6
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]
this is a so-called singular value decomposition for the matrix A.
We already saw that

ATA =

[
1 0 −1
1 1 1

] 1 1
0 1
−1 1

 =

[
2 0
0 3

]
.

So λ1 = 3, λ2 = 2 are eigenvalues for ATA with assoc’d unit eigenvectors

~v1 =

[
0
1

]
, ~v2 =

[
1
0

]
. Note that A~v1 =

1
1
1

 and A~v2 =

 1
0
−1

 satisfy

‖A~v1‖ =
√

3 =
√
λ1 = σ1, ‖A~v2‖ =

√
2 =
√
λ2 = σ2, and A~v1 ⊥ A~v2.

Put

~u1 =
A~v1
‖A~v1‖

=
1√
3

1
1
1

 , ~u2 =
A~v2
‖A~v2‖

=
1√
2

 1
0
−1

 .
Now choose ~u3 so that {~u1, ~u2, ~u3} is an orthonormal basis of R3.



We have

~u1 =
A~v1
‖A~v1‖

=
1√
3

1
1
1

 , ~u2 =
A~v2
‖A~v2‖

=
1√
2

 1
0
−1

 .
We want to choose ~u3 so that {~u1, ~u2, ~u3} is an orthonormal basis of R3.

One choice (there are only two possibilities) is ~u3 = 1√
6

 1
−2
1

.

Finally, we see that A = UΣV T where U =
[
~u1 ~u2 ~u3

]
and V =

[
~v1 ~v2

]
are orthogonal matrices, and

Σ =


√

3 0

0
√

2
0 0

 .
That is,

A =

 1 1
0 1
−1 1

 =
1√
6


√

2
√

3 1√
2 0 −2√
2
√

3 1


√

3 0

0
√

2
0 0

[0 1
1 0

]
.



The Matrix ATA

We return to our discussion concerning ATA where A is any m × n
matrix? Evidently, ATA is an n × n matrix, and (ATA)T = ATA,
so ATA is symmetric. Thus:

1 ATA has n real eigenvalues, say, λ1, λ2 . . . , λn.

2 ATA is orthogonally diagonalizable.

Item (2) says that ATA has an associated orthonormal eigenbasis
{~v1, . . . , ~vn} where, say, ATA~vi = λi~vi .
Now look at

‖A~vi‖2 = (A~vi ) · (A~vi ) = (A~vi )
T (A~vi ) = ~vTi (ATA)~vi = ~vTi λi~vi

= λi~vi · ~vi = λi‖~vi‖2 = λi .

Thus λi = ‖A~vi‖2 ≥ 0. By relabeling, if necessary, we can assume that
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.
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The Matrix ATA

When A is an m × n matrix, ATA is an n × n symmetric matrix with
non-negative real eigenvalues, say λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, and there is an
associated orthonormal eigenbasis {~v1, . . . , ~vn}. Here ATA~vi = λi~vi and
λi = λi‖~vi‖2 = ‖A~vi‖2.

The numbers σi =
√
λi = ‖A~vi‖ are called the singular values of A. We

really only care about the non-zero singular values. Suppose

σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Here 1 ≤ r ≤ n and when r < n, A~vr+1 = · · · = A~vn = ~0. So, if
~x =

∑n
i=1 ci~vi , then

A~x =
n∑

i=1

ciA~vi =
r∑

i=1

ciA~vi .

Thus, CS(A) = Span{A~v1, . . . ,A~vr}. Is {A~v1, . . . ,A~vr} LI?
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ATA where A is m × n

ATA is an n × n symmetric matrix

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 for ATA

orthonormal eigenbasis {~v1, . . . , ~vn} assoc’d with ATA

ATA~vi = λi~vi and λi = λi‖~vi‖2 = ‖A~vi‖2

singular values (of A) are σi =
√
λi = ‖A~vi‖

σ1 ≥ σ2 ≥ · · · ≥ σr > 0

Look at

A~vi · A~vj = (A~vi )
TA~vj = ~vTi (ATA)~vj = λj~v

T
i ~vj = λj~vi · ~vj = λjδij .

Thus {A~v1, . . . ,A~vr} is an orthogonal set of non-zero vectors, so it is LI.
∴ {A~v1, . . . ,A~vr} is an orthogonal basis for CS(A).
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ATA where A is m × n

ATA is an n × n symmetric matrix

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 for ATA

orthonormal eigenbasis {~v1, . . . , ~vn} assoc’d with ATA

ATA~vi = λi~vi and λi = λi‖~vi‖2 = ‖A~vi‖2

singular values (of A) are σi =
√
λi = ‖A~vi‖

σ1 ≥ σ2 ≥ · · · ≥ σr > 0

{A~v1, . . . ,A~vr} is an orthogonal basis for CS(A)

It follows that rank(A) = dim CS(A) = r . Recall that CS(A) is vector
subspace of Rm.

For 1 ≤ i ≤ r , let ~ui =
A~vi
‖A~vi‖

. Then A~vi = σi ~ui . Add unit orthogonal

vectors to get orthonormal basis {~u1, . . . , ~ur , ~ur+1, . . . , ~um} for Rm.
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Matrices: A (m × n), M = ATA (n × n), and U ,Σ,V

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 for M

{~v1, . . . , ~vn} orthon eigenbasis assoc’d with M (so basis for Rn)

M~vi = λi~vi and λi = λi‖~vi‖2 = ‖A~vi‖2

singular values (of A) are σi =
√
λi = ‖A~vi‖

(σ1 ≥ σ2 ≥ · · · ≥ σr > 0)

{A~v1, . . . ,A~vr} is an orthogonal basis for CS(A)

{~u1, . . . , ~ur , . . . , ~um} orthon basis for Rm

Let U =
[
~u1 ~u2 . . . ~um

]
(U is m ×m) and V =

[
~v1 ~v2 . . . ~vn

]
(V is n × n).

Now define an r × r diagonal matrix D and an m × n matrix Σ by

Σ =

[
D 0
0 0

]
where D =


σ1 0 . . . 0
0 σ2 . . . 0

0
...

... 0
0 0 . . . σr

 .
Then, A = UΣV T . This is a singular value decomposition for A.
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Finding matrices U ,Σ,V so that A = UΣV T

Start with any m × n matrix A.

1 Find an orthogonal diagonalization of M = ATA.

2 Write down V and Σ.

3 Find ~ui =
A~vi
‖A~vi‖

and then U.

Find eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 of M = ATA and {~v1, . . . , ~vn}
(an orthon eigenbasis assoc’d with M, so a basis for Rn).

Get n × n matrix V =
[
~v1 ~v2 . . . ~vn

]
. Also, σi =

√
λi = ‖A~vi‖, which gives

D and then Σ.

Need {~u1, . . . , ~ur , . . . , ~um}, an orthon basis for Rm. Then have m ×m
matrix U =

[
~u1 ~u2 . . . ~um

]
.
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For A =

3 2
2 3
2 −2

, ATA =

[
17 8
8 17

]
which has evs λ1 = 25, λ2 = 9.

Thus σ1 = 5, σ2 = 3 and Σ =

5 0
0 3
0 0

. Get assoc’d e~vs

[
1
1

]
,

[
1
−1

]
so

take ~v1 =
1√
2

[
1
1

]
, ~v2 =

1√
2

[
1
−1

]
and then V =

1√
2

[
1 1
1 −1

]
.

Get A

[
1
1

]
=

5
5
0

 ,A [ 1
−1

]
=

 1
−1
4

 so ~u1 =
1√
2

1
1
0

 , ~u2 =
1

3
√

2

 1
−1
4

.

Need ~u3 · ~u1 = 0 = ~u3 · ~u2. Use ~u3 =
1

3

−2
2
1

. Then

U =
1

3
√

2

3 1 −2
√

2

3 −1 2
√

2

0 4
√

2

.
1

6

3 1 −2
√
2

3 −1 2
√
2

0 4
√
2

5 0
0 3
0 0

[1 1
1 −1

]
=

3 2
2 3
2 −2




