The Singular Value Decomposition

Linear Algebra MATH 2076

The Matrix $M = A^T A$

What can we say about $M = A^T A$ when A is an $m \times n$ matrix?

Evidently, M is an $n \times n$ matrix, and $M^T = (A^T A)^T = A^T A = M$, so M is symmetric. Thus:

- $oldsymbol{0}$ M has n real eigenvalues, counting according to multiplicity.
- M is orthogonally diagonalizable.

Item (1) says that M has (real) eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Item (2) says that M has an associated *orthonormal* eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Let's examine

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix}.$$

Here we find that

$$M = A^T A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}.$$

 $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{2} & \sqrt{3} & 1 \\ \sqrt{2} & 0 & -2 \\ \sqrt{2} & \sqrt{3} & 1 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

We show that

this is a so-called *singular value decomposition* for the matrix *A*. We already saw that

$$A^TA = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}.$$

So $\lambda_1=3, \lambda_2=2$ are eigenvalues for A^TA with assoc'd unit eigenvectors $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$

$$\vec{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
. Note that $A\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $A\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ satisfy $\|A\vec{v}_1\| = \sqrt{3} = \sqrt{\lambda_1} = \sigma_1, \|A\vec{v}_2\| = \sqrt{2} = \sqrt{\lambda_2} = \sigma_2$, and $A\vec{v}_1 \perp A\vec{v}_2$.

$$\begin{split} \|A\vec{v}_1\| &= \sqrt{3} = \sqrt{\lambda_1} = \sigma_1, \|A\vec{v}_2\| = \sqrt{2} = \sqrt{\lambda_2} = \sigma_2, \text{ and } A\vec{v}_1 \perp A\vec{v}_2. \\ \text{Put} \\ \vec{u}_1 &= \frac{A\vec{v}_1}{\|A\vec{v}_1\|} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \vec{u}_2 = \frac{A\vec{v}_2}{\|A\vec{v}_2\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1 \end{bmatrix}. \end{split}$$

Now choose $\vec{u_3}$ so that $\{\vec{u_1}, \vec{u_2}, \vec{u_3}\}$ is an orthonormal basis of \mathbb{R}^3 .

We have

$$\vec{u}_1 = \frac{A\vec{v}_1}{\|A\vec{v}_1\|} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix} , \vec{u}_2 = \frac{A\vec{v}_2}{\|A\vec{v}_2\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1 \end{bmatrix}.$$
 We want to choose \vec{u}_3 so that $\{\vec{u}_1,\vec{u}_2,\vec{u}_3\}$ is an orthonormal basis of \mathbb{R}^3 .

One choice (there are only two possibilities) is $\vec{u}_3 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

Finally, we see that $A = U \Sigma V^T$ where $U = \begin{bmatrix} \vec{u_1} \ \vec{u_2} \ \vec{u_3} \end{bmatrix}$ and $V = \begin{bmatrix} \vec{v_1} \ \vec{v_2} \end{bmatrix}$ are orthogonal matrices, and

$$\Sigma = egin{bmatrix} \sqrt{3} & 0 \ 0 & \sqrt{2} \ 0 & 0 \end{bmatrix}$$

 $\Sigma = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix}$.

 $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{2} & \sqrt{3} & 1 \\ \sqrt{2} & 0 & -2 \\ \sqrt{2} & \sqrt{3} & 1 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$

That is,

The Matrix $A^T A$

We return to our discussion concerning A^TA where A is any $m \times n$ matrix? Evidently, $A^T A$ is an $n \times n$ matrix, and $(A^T A)^T = A^T A$, so A^TA is symmetric. Thus:

- **1** A^TA has *n* real eigenvalues, say, $\lambda_1, \lambda_2, \ldots, \lambda_n$.
- \bigcirc A^TA is orthogonally diagonalizable.

Item (2) says that A^TA has an associated orthonormal eigenbasis $\{\vec{v}_1,\ldots,\vec{v}_n\}$ where, say, $A^TA\vec{v}_i=\lambda_i\vec{v}_i$.

Now look at

$$||A\vec{v}_{i}||^{2} = (A\vec{v}_{i}) \cdot (A\vec{v}_{i}) = (A\vec{v}_{i})^{T}(A\vec{v}_{i}) = \vec{v}_{i}^{T}(A^{T}A)\vec{v}_{i} = \vec{v}_{i}^{T}\lambda_{i}\vec{v}_{i}$$
$$= \lambda_{i}\vec{v}_{i} \cdot \vec{v}_{i} = \lambda_{i}||\vec{v}_{i}||^{2} = \lambda_{i}.$$

Thus $\lambda_i = ||A\vec{v_i}||^2 \ge 0$. By relabeling, if necessary, we can assume that $\lambda_1 > \lambda_2 > \cdots > \lambda_n > 0$

The Matrix $A^T A$

When A is an $m \times n$ matrix, $A^T A$ is an $n \times n$ symmetric matrix with non-negative real eigenvalues, say $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$, and there is an associated orthonormal eigenbasis $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Here $A^T A \vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i = \lambda_i ||\vec{v}_i||^2 = ||A\vec{v}_i||^2$.

The numbers $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}||$ are called the *singular values of A*. We really only care about the *non-zero* singular values. Suppose

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0.$$

Here $1 \le r \le n$ and when r < n, $A\vec{v}_{r+1} = \cdots = A\vec{v}_n = \vec{0}$. So, if $\vec{x} = \sum_{i=1}^n c_i \vec{v}_i$, then

$$A\vec{x} = \sum_{i=1}^{n} c_i A \vec{v_i} = \sum_{i=1}^{r} c_i A \vec{v_i}.$$

Thus, $CS(A) = Span\{A\vec{v}_1, \dots, A\vec{v}_r\}$. Is $\{A\vec{v}_1, \dots, A\vec{v}_r\}$ LI?

$A^T A$ where A is $m \times n$

- A^TA is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for $A^T A$
- orthonormal eigenbasis $\{\vec{v}_1,\ldots,\vec{v}_n\}$ assoc'd with A^TA
- $A^T A \vec{v_i} = \lambda_i \vec{v_i}$ and $\lambda_i = \lambda_i ||\vec{v_i}||^2 = ||A \vec{v_i}||^2$
- singular values (of A) are $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}||$
- $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$

Look at

$$A\vec{v}_i \cdot A\vec{v}_j = (A\vec{v}_i)^T A\vec{v}_j = \vec{v}_i^T (A^T A)\vec{v}_j = \lambda_j \vec{v}_i^T \vec{v}_j = \lambda_j \vec{v}_i \cdot \vec{v}_j = \lambda_j \delta_{ij}.$$

Thus $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$ is an orthogonal set of non-zero vectors, so it is LI. $\therefore \{A\vec{v}_1, \ldots, A\vec{v}_r\}$ is an *orthogonal basis* for $\mathcal{CS}(A)$.

$A^T A$ where A is $m \times n$

- A^TA is an $n \times n$ symmetric matrix
- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for $A^T A$
- orthonormal eigenbasis $\{\vec{v}_1,\ldots,\vec{v}_n\}$ assoc'd with A^TA
- $A^T A \vec{v_i} = \lambda_i \vec{v_i}$ and $\lambda_i = \lambda_i ||\vec{v_i}||^2 = ||A \vec{v_i}||^2$
- singular values (of A) are $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v}_i||$
- $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$
- ullet $\{A\vec{v}_1,\ldots,A\vec{v}_r\}$ is an *orthogonal basis* for $\mathcal{CS}(A)$

It follows that $rank(A) = \dim \mathcal{CS}(A) = r$. Recall that $\mathcal{CS}(A)$ is vector subspace of \mathbb{R}^m .

For $1 \le i \le r$, let $\vec{u_i} = \frac{A\vec{v_i}}{\|A\vec{v_i}\|}$. Then $A\vec{v_i} = \sigma_i\vec{u_i}$. Add unit orthogonal vectors to get orthonormal basis $\{\vec{u_1}, \dots, \vec{u_r}, \vec{u_{r+1}}, \dots, \vec{u_m}\}$ for \mathbb{R}^m .

Matrices: $A(m \times n)$, $M = A^T A(n \times n)$, and U, Σ, V

- eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ for M
- $\{\vec{v}_1, \dots, \vec{v}_n\}$ orthon eigenbasis assoc'd with M (so basis for \mathbb{R}^n)
- $M\vec{v_i} = \lambda_i \vec{v_i}$ and $\lambda_i = \lambda_i ||\vec{v_i}||^2 = ||A\vec{v_i}||^2$
- singular values (of A) are $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v_i}||$ $(\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0)$
- $\{A\vec{v}_1, \dots, A\vec{v}_r\}$ is an orthogonal basis for $\mathcal{CS}(A)$
- $\{\vec{u}_1, \dots, \vec{u}_r, \dots, \vec{u}_m\}$ orthon basis for \mathbb{R}^m

Let $U = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 \dots \vec{u}_m \end{bmatrix}$ (U is $m \times m$) and $V = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \dots \vec{v}_n \end{bmatrix}$ (V is $n \times n$). Now define an $r \times r$ diagonal matrix D and an $m \times n$ matrix Σ by

$$\Sigma = \begin{bmatrix} D & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$
 where $D = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ 0 & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \sigma_r \end{bmatrix}$.

Then, $A = U\Sigma V^T$. This is a singular value decomposition for A.

Finding matrices U, Σ, V so that $A = U \Sigma V^T$

Start with any $m \times n$ matrix A.

- Find an orthogonal diagonalization of $M = A^T A$.
- $oldsymbol{o}$ Write down V and Σ .

Find eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ of $M = A^T A$ and $\{\vec{v}_1, \dots, \vec{v}_n\}$ (an orthon eigenbasis assoc'd with M, so a basis for \mathbb{R}^n).

Get $n \times n$ matrix $V = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \dots \vec{v}_n \end{bmatrix}$. Also, $\sigma_i = \sqrt{\lambda_i} = ||A\vec{v}_i||$, which gives D and then Σ .

Need $\{\vec{u}_1,\ldots,\vec{u}_r,\ldots,\vec{u}_m\}$, an orthon basis for \mathbb{R}^m . Then have $m\times m$ matrix $U=\begin{bmatrix}\vec{u}_1\ \vec{u}_2\ldots\vec{u}_m\end{bmatrix}$.

10 / 11

For $A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$, $A^T A = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$ which has evs $\lambda_1 = 25, \lambda_2 = 9$.

Thus
$$\sigma_1 = 5$$
, $\sigma_2 = 3$ and $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$. Get assoc'd $\vec{\text{evs}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ so

take
$$\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and then $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

Get
$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 0 \end{bmatrix}$$
, $A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$ so $\vec{u_1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\vec{u_2} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$.

Need
$$\vec{u}_3 \cdot \vec{u}_1 = 0 = \vec{u}_3 \cdot \vec{u}_2$$
. Use $\vec{u}_3 = \frac{1}{3} \begin{bmatrix} -2\\2\\1 \end{bmatrix}$. Then

$$U = \frac{1}{3\sqrt{2}} \begin{bmatrix} 3 & 1 & -2\sqrt{2} \\ 3 & -1 & 2\sqrt{2} \\ 0 & 4 & \sqrt{2} \end{bmatrix} \cdot \frac{1}{6} \begin{bmatrix} 3 & 1 & -2\sqrt{2} \\ 3 & -1 & 2\sqrt{2} \\ 0 & 4 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$$