A Quadratic Function Example

Linear Algebra MATH 2076

~		
Sec	tion	1.
200		1.4

(日) (同) (三) (三)

Consider the quadratic function $q(x, y) = 4x^2 + 6xy - 4y^2$.

<ロト < 回 > < 回 > 、 < 回 >

Consider the quadratic function $q(x, y) = 4x^2 + 6xy - 4y^2$.

Here we:

<ロト < 回 > < 回 > 、 < 回 >

Consider the quadratic function $q(x, y) = 4x^2 + 6xy - 4y^2$.

Here we:

• Find a matrix A so that
$$q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$$
.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider the quadratic function
$$q(x, y) = 4x^2 + 6xy - 4y^2$$
.

Here we:

- Find a matrix A so that $q(x, y) = [x \ y]A\begin{bmatrix} x \\ y \end{bmatrix}$.
- Find an orthogonal Q and a diagonal D with $A = QDQ^T$.

Consider the quadratic function
$$q(x,y) = 4x^2 + 6xy - 4y^2$$
.

Here we:

- Find a matrix A so that $q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$.
- Find an orthogonal Q and a diagonal D with $A = QDQ^{T}$.
- Analyze the quadratic function $\begin{bmatrix} u \\ v \end{bmatrix} D \begin{bmatrix} u \\ v \end{bmatrix}$.

Consider the quadratic function
$$q(x,y) = 4x^2 + 6xy - 4y^2$$
.

Here we:

- Find a matrix A so that $q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$.
- Find an orthogonal Q and a diagonal D with $A = QDQ^{T}$.
- Analyze the quadratic function $\begin{bmatrix} u \\ v \end{bmatrix} D \begin{bmatrix} u \\ v \end{bmatrix}$.
- Draw the level curve $\begin{bmatrix} u \\ v \end{bmatrix} D \begin{bmatrix} u \\ v \end{bmatrix} = 5.$

Consider the quadratic function
$$q(x,y) = 4x^2 + 6xy - 4y^2$$
.

Here we:

- Find a matrix A so that $q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$.
- Find an orthogonal Q and a diagonal D with $A = QDQ^T$.
- Analyze the quadratic function $\begin{bmatrix} u \\ v \end{bmatrix} D \begin{bmatrix} u \\ v \end{bmatrix}$.
- Draw the level curve $\begin{bmatrix} u \\ v \end{bmatrix} = 5$.
- Explain how the change of variables $\begin{bmatrix} x \\ y \end{bmatrix} = Q \begin{bmatrix} u \\ v \end{bmatrix}$ provides an easy way to see the level curve q(x, y) = 5, along with lotsa other info.

Consider the quadratic function
$$q(x,y) = 4x^2 + 6xy - 4y^2$$
.

Here we:

- Find a matrix A so that $q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$.
- Find an orthogonal Q and a diagonal D with $A = QDQ^T$.
- Analyze the quadratic function $\begin{bmatrix} u \\ v \end{bmatrix} D \begin{bmatrix} u \\ v \end{bmatrix}$.
- Draw the level curve $\begin{bmatrix} u \\ v \end{bmatrix} = 5$.
- Explain how the change of variables $\begin{bmatrix} x \\ y \end{bmatrix} = Q \begin{bmatrix} u \\ v \end{bmatrix}$ provides an easy way to see the level curve q(x, y) = 5, along with lotsa other info.

It is simple to use geogebra to "see" the curve $4x^2 + 6xy - 4y^2 = 5$.

イロト イポト イヨト イヨ

Finding A so that
$$q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$$

We have $q(x, y) = 4x^2 + 6xy - 4y^2$.

イロト イヨト イヨト イヨト

Finding A so that
$$q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$$

A D > A A > A > A

Finding A so that
$$q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}.$$

Finding A so that
$$q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathsf{A} = \begin{bmatrix} \mathsf{4} & \mathsf{3} \\ \mathsf{3} & -\mathsf{4} \end{bmatrix}.$$

To orthogonally diagonalize A, we need to know its eigenvalues and associated eigenvectors.

Finding A so that
$$q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}.$$

To orthogonally diagonalize A, we need to know its eigenvalues and associated eigenvectors. At the end, we explain how to find these.

Finding A so that
$$q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}.$$

To orthogonally diagonalize A, we need to know its eigenvalues and associated eigenvectors. At the end, we explain how to find these.

For now, we note that A has eigenvalues ± 5 so,

Finding A so that
$$q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}.$$

To orthogonally diagonalize *A*, we need to know its eigenvalues and associated eigenvectors. At the end, we explain how to find these. For now, we note that *A* has eigenvalues ± 5 so $D = \begin{bmatrix} 5 & 0 \end{bmatrix}$

For now, we note that A has eigenvalues ± 5 so, $D = \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix}$.

Finding A so that
$$q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}.$$

To orthogonally diagonalize A, we need to know its eigenvalues and associated eigenvectors. At the end, we explain how to find these. For now, we note that A has eigenvalues ± 5 so, $D = \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix}$. Also, A has eigenvectors $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ (assoc'd with 5) and $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ (assoc'd with -5).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Finding A so that
$$q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}.$$

To orthogonally diagonalize A, we need to know its eigenvalues and associated eigenvectors. At the end, we explain how to find these. For now, we note that A has eigenvalues ± 5 so, $D = \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix}$. Also, A has eigenvectors $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ (assoc'd with 5) and $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ (assoc'd with -5). This is easy to check, right?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We have

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} \quad \text{with eigenvectors } \begin{bmatrix} 3 \\ 1 \end{bmatrix} \text{assoc'd with 5, } \begin{bmatrix} -1 \\ 3 \end{bmatrix} \text{assoc'd with -5.}$$

イロト イヨト イヨト イヨト 三日

We have

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} \text{ with eigenvectors } \begin{bmatrix} 3 \\ 1 \end{bmatrix} \text{ assoc'd with 5, } \begin{bmatrix} -1 \\ 3 \end{bmatrix} \text{ assoc'd with -5.}$$

Since the eigenvectors are already orthogonal, we need only normalize them to get Q.

We have

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} \text{ with eigenvectors } \begin{bmatrix} 3 \\ 1 \end{bmatrix} \text{ assoc'd with 5, } \begin{bmatrix} -1 \\ 3 \end{bmatrix} \text{ assoc'd with -5.}$$

Since the eigenvectors are already orthogonal, we need only normalize them to get Q. As both eigenvectors have length $\sqrt{10}$, we simply let

$$ec{q}_1 = rac{1}{\sqrt{10}} egin{bmatrix} 3 \ 1 \end{bmatrix}$$
 and $ec{q}_2 = rac{1}{\sqrt{10}} egin{bmatrix} -1 \ 3 \end{bmatrix}$

We have

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} \text{ with eigenvectors } \begin{bmatrix} 3 \\ 1 \end{bmatrix} \text{ assoc'd with 5, } \begin{bmatrix} -1 \\ 3 \end{bmatrix} \text{ assoc'd with -5.}$$

Since the eigenvectors are already orthogonal, we need only normalize them to get Q. As both eigenvectors have length $\sqrt{10}$, we simply let $\begin{bmatrix} 1 & 5 \\ -1 \end{bmatrix}$

$$\vec{q}_1 = rac{1}{\sqrt{10}} \begin{bmatrix} 3\\1 \end{bmatrix}$$
 and $\vec{q}_2 = rac{1}{\sqrt{10}} \begin{bmatrix} -1\\3 \end{bmatrix}$

and then

$$\mathcal{Q} = egin{bmatrix} ec{q}_1 \ ec{q}_2 \end{bmatrix} = rac{1}{\sqrt{10}} egin{bmatrix} 3 & -1 \ 1 & 3 \end{bmatrix}.$$

We have

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} \text{ with eigenvectors } \begin{bmatrix} 3 \\ 1 \end{bmatrix} \text{ assoc'd with 5, } \begin{bmatrix} -1 \\ 3 \end{bmatrix} \text{ assoc'd with -5.}$$

Since the eigenvectors are already orthogonal, we need only normalize them to get Q. As both eigenvectors have length $\sqrt{10}$, we simply let $\vec{1}$ $\vec{1}$ $\vec{3}$ $\vec{1}$ $\vec{-1}$

$$\vec{q}_1 = rac{1}{\sqrt{10}} \begin{bmatrix} 5\\1 \end{bmatrix}$$
 and $\vec{q}_2 = rac{1}{\sqrt{10}} \begin{bmatrix} -1\\3 \end{bmatrix}$

and then

$$Q = egin{bmatrix} ec q_1 \; ec q_2 \end{bmatrix} = rac{1}{\sqrt{10}} egin{bmatrix} 3 & -1 \ 1 & 3 \end{bmatrix}.$$

Thus,

$$A = QDQ^{T} = \frac{1}{10} \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix}$$

We have

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} \text{ with eigenvectors } \begin{bmatrix} 3 \\ 1 \end{bmatrix} \text{ assoc'd with 5, } \begin{bmatrix} -1 \\ 3 \end{bmatrix} \text{ assoc'd with -5.}$$

Since the eigenvectors are already orthogonal, we need only normalize them to get Q. As both eigenvectors have length $\sqrt{10}$, we simply let $1 \quad \begin{bmatrix} 3 \end{bmatrix} \quad = \quad 1 \quad \begin{bmatrix} -1 \end{bmatrix}$

$$\vec{q}_1 = \frac{1}{\sqrt{10}} \begin{bmatrix} 5\\1 \end{bmatrix}$$
 and $\vec{q}_2 = \frac{1}{\sqrt{10}} \begin{bmatrix} -1\\3 \end{bmatrix}$

and then

$$Q = egin{bmatrix} ec{q}_1 \ ec{q}_2 \end{bmatrix} = rac{1}{\sqrt{10}} egin{bmatrix} 3 & -1 \ 1 & 3 \end{bmatrix}.$$

Thus,

$$A = QDQ^{T} = \frac{1}{10} \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix}$$

To practice your matrix arithmetic skills, check this!

Section 7.2

Now we use the fact that $A = QDQ^T$ to thoroughly analyze the level curve q(x, y) = 5; this is the curve which is the solution set for the quadratic

equation $4x^2 + 6xy - 4y^2 = 5$.

Now we use the fact that $A = QDQ^T$ to thoroughly analyze the level curve q(x, y) = 5; this is the curve which is the solution set for the quadratic equation $4x^2 + 6xy - 4y^2 = 5$. Changing variables $\begin{bmatrix} x \\ y \end{bmatrix} = Q \begin{bmatrix} u \\ v \end{bmatrix}$ helps!

Now we use the fact that $A = QDQ^T$ to thoroughly analyze the level curve q(x, y) = 5; this is the curve which is the solution set for the quadratic equation $4x^2 + 6xy - 4y^2 = 5$. Changing variables $\begin{bmatrix} x \\ y \end{bmatrix} = Q \begin{bmatrix} u \\ v \end{bmatrix}$ helps! Since $q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$, this change of variables converts the equation q(x, y) = 5 into $[u \ v]D \begin{bmatrix} u \\ v \end{bmatrix} = 5$, or

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Now we use the fact that $A = QDQ^T$ to thoroughly analyze the level curve q(x, y) = 5; this is the curve which is the solution set for the quadratic equation $4x^2 + 6xy - 4y^2 = 5$. Changing variables $\begin{bmatrix} x \\ y \end{bmatrix} = Q \begin{bmatrix} u \\ v \end{bmatrix}$ helps! Since $q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$, this change of variables converts the equation q(x, y) = 5 into $[u \ v]D \begin{bmatrix} u \\ v \end{bmatrix} = 5$, or $[u \ v] \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = 5u^2 - 5v^2 = 5$,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Now we use the fact that $A = QDQ^T$ to thoroughly analyze the level curve q(x, y) = 5; this is the curve which is the solution set for the quadratic equation $4x^2 + 6xy - 4y^2 = 5$. Changing variables $\begin{bmatrix} x \\ y \end{bmatrix} = Q \begin{bmatrix} u \\ v \end{bmatrix}$ helps! Since $q(x, y) = [x \ y]A \begin{bmatrix} x \\ y \end{bmatrix}$, this change of variables converts the equation q(x, y) = 5 into $[u \ v]D \begin{bmatrix} u \\ v \end{bmatrix} = 5$, or $[u \ v] \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = 5u^2 - 5v^2 = 5$, or more simply $u^2 - v^2 = 1$.

Now we use the fact that $A = QDQ^T$ to thoroughly analyze the level curve q(x, y) = 5; this is the curve which is the solution set for the quadratic equation $4x^2 + 6xy - 4y^2 = 5$. Changing variables $\begin{bmatrix} x \\ y \end{bmatrix} = Q \begin{bmatrix} u \\ y \end{bmatrix}$ helps! Since $q(x, y) = [x \ y]A\begin{bmatrix} x \\ y \end{bmatrix}$, this change of variables converts the equation q(x, y) = 5 into $[u \ v] D \begin{bmatrix} u \\ v \end{bmatrix} = 5$, or $[u \ v] \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = 5u^2 - 5v^2 = 5$, or more simply $u^2 - v^2 = 1$. This level curve is just the "standard unit hyperbola".

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Now we use the fact that $A = QDQ^T$ to thoroughly analyze the level curve q(x, y) = 5; this is the curve which is the solution set for the quadratic equation $4x^2 + 6xy - 4y^2 = 5$. Changing variables $\begin{bmatrix} x \\ y \end{bmatrix} = Q \begin{bmatrix} u \\ y \end{bmatrix}$ helps! Since $q(x, y) = [x \ y]A\begin{bmatrix} x \\ y \end{bmatrix}$, this change of variables converts the equation q(x, y) = 5 into $[u \ v] D \begin{bmatrix} u \\ v \end{bmatrix} = 5$, or $[u \ v] \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = 5u^2 - 5v^2 = 5$, or more simply $u^2 - v^2 = 1$. This level curve is just the "standard unit hyperbola". A careful look at the linear transformation $\begin{bmatrix} x \\ y \end{bmatrix} = Q \begin{bmatrix} u \\ y \end{bmatrix}$ reveals that it is a rotation of the plane.

イロト イヨト イヨト イヨト 三日

Now we use the fact that $A = QDQ^T$ to thoroughly analyze the level curve q(x, y) = 5; this is the curve which is the solution set for the quadratic equation $4x^2 + 6xy - 4y^2 = 5$. Changing variables $\begin{bmatrix} x \\ y \end{bmatrix} = Q \begin{bmatrix} u \\ y \end{bmatrix}$ helps! Since $q(x, y) = [x \ y]A\begin{bmatrix} x \\ y \end{bmatrix}$, this change of variables converts the equation q(x, y) = 5 into $[u \ v] D \begin{bmatrix} u \\ v \end{bmatrix} = 5$, or $[u \ v] \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = 5u^2 - 5v^2 = 5$, or more simply $u^2 - v^2 = 1$. This level curve is just the "standard unit hyperbola". A careful look at the linear transformation $\begin{vmatrix} x \\ y \end{vmatrix} = Q \begin{vmatrix} u \\ y \end{vmatrix}$ reveals that it is a rotation of the plane. Therefore, the level curve q(x, y) = 5 (i.e., the solution set for $4x^2 + 6xy - 4y^2 = 5$) is a rotated copy of this "standard unit hyperbola".

イロト イヨト イヨト イヨト 三日

Now we use the fact that $A = QDQ^T$ to thoroughly analyze the level curve q(x, y) = 5; this is the curve which is the solution set for the quadratic equation $4x^2 + 6xy - 4y^2 = 5$. Changing variables $\begin{bmatrix} x \\ y \end{bmatrix} = Q \begin{bmatrix} u \\ y \end{bmatrix}$ helps! Since $q(x, y) = [x \ y]A\begin{bmatrix} x \\ y \end{bmatrix}$, this change of variables converts the equation q(x, y) = 5 into $[u \ v] D \begin{bmatrix} u \\ v \end{bmatrix} = 5$, or $[u \ v] \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = 5u^2 - 5v^2 = 5$, or more simply $u^2 - v^2 = 1$. This level curve is just the "standard unit hyperbola". A careful look at the linear transformation $\begin{vmatrix} x \\ y \end{vmatrix} = Q \begin{vmatrix} u \\ y \end{vmatrix}$ reveals that it is a rotation of the plane. Therefore, the level curve q(x, y) = 5 (i.e., the solution set for $4x^2 + 6xy - 4y^2 = 5$) is a rotated copy of this "standard unit hyperbola". Let's look at a picture.