Linear Algebra MATH 2076

4 0 8 4

E K K œ $2Q$

In calculus we learn about linear approximation (also called first order approximation) and study objects such as

 \leftarrow

 OQ

In calculus we learn about linear approximation (also called first order approximation) and study objects such as

• tangent lines,

 \leftarrow

 OQ

In calculus we learn about linear approximation (also called first order approximation) and study objects such as

- **o** tangent lines,
- tangent planes,

 \leftarrow

In calculus we learn about linear approximation (also called first order approximation) and study objects such as

- **o** tangent lines,
- **o** tangent planes,
- tangent hyperplanes,

 \leftarrow

In calculus we learn about linear approximation (also called first order approximation) and study objects such as

- **o** tangent lines,
- **o** tangent planes,
- tangent hyperplanes,
- **o** tangent spaces.

 \leftarrow

In calculus we learn about *linear approximation* (also called *first order* approximation) and study objects such as

- **o** tangent lines,
- **o** tangent planes,
- tangent hyperplanes,
- **o** tangent spaces.

The above objects are are described via *linear equations*.

 \leftarrow

In calculus we learn about *linear approximation* (also called *first order* approximation) and study objects such as

- **o** tangent lines,
- **o** tangent planes,
- tangent hyperplanes,
- **o** tangent spaces.

The above objects are are described via *linear equations*.

Sometime we require more information.

In calculus we learn about *linear approximation* (also called *first order* approximation) and study objects such as

- **o** tangent lines,
- **o** tangent planes,
- tangent hyperplanes,
- **o** tangent spaces.

The above objects are are described via *linear equations*.

Sometime we require more information. Then we use a second order or quadratic approximation.

In calculus we learn about *linear approximation* (also called *first order* approximation) and study objects such as

- **o** tangent lines,
- **o** tangent planes,
- tangent hyperplanes,
- **o** tangent spaces.

The above objects are are described via *linear equations*.

Sometime we require more information. Then we use a second order or quadratic approximation. Here we approximate the original graph by objects such as

In calculus we learn about *linear approximation* (also called *first order* approximation) and study objects such as

- **o** tangent lines,
- **o** tangent planes,
- tangent hyperplanes,
- **o** tangent spaces.

The above objects are are described via *linear equations*.

Sometime we require more information. Then we use a second order or quadratic approximation. Here we approximate the original graph by objects such as

• subarcs of circles or ellipses or parabolas or hyperbolas,

In calculus we learn about *linear approximation* (also called *first order* approximation) and study objects such as

- **o** tangent lines,
- **o** tangent planes,
- tangent hyperplanes,
- **o** tangent spaces.

The above objects are are described via *linear equations*.

Sometime we require more information. Then we use a second order or quadratic approximation. Here we approximate the original graph by objects such as

- subarcs of circles or ellipses or parabolas or hyperbolas,
- **•** quadratic surfaces such as spheres or ellipsoids or paraboloids or hyperboloids.

In calculus we learn about *linear approximation* (also called *first order* approximation) and study objects such as

- **o** tangent lines,
- **o** tangent planes,
- tangent hyperplanes,
- **o** tangent spaces.

The above objects are are described via *linear equations*.

Sometime we require more information. Then we use a second order or quadratic approximation. Here we approximate the original graph by objects such as

- subarcs of circles or ellipses or parabolas or hyperbolas,
- **•** quadratic surfaces such as spheres or ellipsoids or paraboloids or hyperboloids.

The above objects are are described via *quadratic equations*,

 QQ

▶ - 4 (三) ▶ - 4 (三) ▶

In calculus we learn about *linear approximation* (also called *first order* approximation) and study objects such as

- **o** tangent lines,
- **o** tangent planes,
- tangent hyperplanes,
- **o** tangent spaces.

The above objects are are described via *linear equations*.

Sometime we require more information. Then we use a second order or quadratic approximation. Here we approximate the original graph by objects such as

- subarcs of circles or ellipses or parabolas or hyperbolas,
- **•** quadratic surfaces such as spheres or ellipsoids or paraboloids or hyperboloids.

The above objects are are described via quadratic equations, which in turn use quadratic functions. $2Q$

The function

$$
q(x,y)=x^2+y^2
$$

is a quadratic function (of two variables), and

4 **D** F

 $2Q$

The function

$$
q(x,y)=x^2+y^2
$$

is a quadratic function (of two variables), and the level set where $q = 1$ (aka, the solution set to the equation $q(x, y) = 1$),

 \leftarrow

The function

$$
q(x,y)=x^2+y^2
$$

is a quadratic function (of two variables), and the level set where $q = 1$ (aka, the solution set to the equation $q(x, y) = 1$), that is, the curve given by the equation

$$
x^2 + y^2 = 1,
$$

The function

$$
q(x,y)=x^2+y^2
$$

is a quadratic function (of two variables), and the level set where $q = 1$ (aka, the solution set to the equation $q(x, y) = 1$), that is, the curve given by the equation

$$
x^2 + y^2 = 1,
$$

is the unit circle in the xy-plane.

The function

$$
q(x,y)=x^2+y^2
$$

is a quadratic function (of two variables), and the level set where $q = 1$ (aka, the solution set to the equation $q(x, y) = 1$), that is, the curve given by the equation

$$
x^2 + y^2 = 1,
$$

is the unit circle in the xy-plane.

Other examples of quadratic functions include:

The function

$$
q(x,y)=x^2+y^2
$$

is a quadratic function (of two variables), and the level set where $q = 1$ (aka, the solution set to the equation $q(x, y) = 1$), that is, the curve given by the equation

$$
x^2 + y^2 = 1,
$$

is the unit circle in the xy-plane.

Other examples of quadratic functions include:

 $q(x, y) = 4x^2 + 9y$ with level sets that are ellipses,

The function

$$
q(x,y)=x^2+y^2
$$

is a quadratic function (of two variables), and the level set where $q = 1$ (aka, the solution set to the equation $q(x, y) = 1$), that is, the curve given by the equation

$$
x^2 + y^2 = 1,
$$

is the unit circle in the xy-plane.

Other examples of quadratic functions include:

$$
q(x, y) = 4x2 + 9y2
$$
 with level sets that are ellipses,

$$
q(x, y) = x - y2
$$
 with level sets that are parabolas,

The function

$$
q(x,y)=x^2+y^2
$$

is a quadratic function (of two variables), and the level set where $q = 1$ (aka, the solution set to the equation $q(x, y) = 1$), that is, the curve given by the equation

$$
x^2 + y^2 = 1,
$$

is the unit circle in the xy-plane.

Other examples of quadratic functions include:

$$
q(x, y) = 4x2 + 9y2
$$

$$
q(x, y) = x - y2
$$

$$
q(x, y) = x2 - y2
$$

with level sets that are ellipses, with level sets that are parabolas, with level sets that are hyperbolas,

The function

$$
q(x,y)=x^2+y^2
$$

is a quadratic function (of two variables), and the level set where $q = 1$ (aka, the solution set to the equation $q(x, y) = 1$), that is, the curve given by the equation

$$
x^2 + y^2 = 1,
$$

is the unit circle in the xy-plane.

Other examples of quadratic functions include:

$$
q(x, y) = 4x2 + 9y2
$$

\n
$$
q(x, y) = x - y2
$$

\n
$$
q(x, y) = x2 - y2
$$

\n
$$
q(x, y) = x2 + xy - 4y
$$

with level sets that are ellipses, with level sets that are parabolas, with level sets that are hyperbolas, 2 with level sets that are what?

A quadratic function of n-variables is a function $\mathbb{R}^n\overset{q}{\to}\mathbb{R}$ given by

$$
\overline{q(\vec{x}) = \vec{x}^T A \vec{x}}
$$
 where *A* is an $n \times n$ matrix.

4 0 1

 OQ

A quadratic function of n-variables is a function $\mathbb{R}^n\overset{q}{\to}\mathbb{R}$ given by

$$
\boxed{q(\vec{x}) = \vec{x}^T A \vec{x}}
$$
 where *A* is an $n \times n$ matrix.

Here are some examples with the given 2×2 matrix A:

 \leftarrow

A quadratic function of n-variables is a function $\mathbb{R}^n\overset{q}{\to}\mathbb{R}$ given by

$$
\boxed{q(\vec{x}) = \vec{x}^T A \vec{x}}
$$
 where *A* is an $n \times n$ matrix.

Here are some examples with the given 2×2 matrix A:

$$
A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \quad \text{which gives } q\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = x^2 + 2y^2,
$$

 \leftarrow

A quadratic function of n-variables is a function $\mathbb{R}^n\overset{q}{\to}\mathbb{R}$ given by

$$
\boxed{q(\vec{x}) = \vec{x}^T A \vec{x}}
$$
 where *A* is an $n \times n$ matrix.

Here are some examples with the given 2×2 matrix A:

$$
A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}
$$
 which gives $q\begin{bmatrix} x \\ y \end{bmatrix} = x^2 + 2y^2$,

$$
A = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}
$$
 which gives $q\begin{bmatrix} x \\ y \end{bmatrix} = 4x^2 + 9y^2$,

 \leftarrow

A quadratic function of n-variables is a function $\mathbb{R}^n\overset{q}{\to}\mathbb{R}$ given by

$$
q(\vec{x}) = \vec{x}^T A \vec{x}
$$
 where *A* is an $n \times n$ matrix.

Here are some examples with the given 2×2 matrix A:

$$
A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \qquad \text{which gives } q\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = x^2 + 2y^2,
$$

$$
A = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix} \qquad \text{which gives } q\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = 4x^2 + 9y^2,
$$

$$
A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \text{which gives } q\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = x^2 - y^2,
$$

 \leftarrow

A quadratic function of n-variables is a function $\mathbb{R}^n\overset{q}{\to}\mathbb{R}$ given by

$$
\boxed{q(\vec{x}) = \vec{x}^T A \vec{x}}
$$
 where *A* is an $n \times n$ matrix.

Here are some examples with the given 2×2 matrix A:

$$
A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \qquad \text{which gives } q\begin{pmatrix} x \\ y \end{pmatrix} = x^2 + 2y^2,
$$

\n
$$
A = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix} \qquad \text{which gives } q\begin{pmatrix} x \\ y \end{pmatrix} = 4x^2 + 9y^2,
$$

\n
$$
A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \text{which gives } q\begin{pmatrix} x \\ y \end{pmatrix} = x^2 - y^2,
$$

\n
$$
A = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix} \qquad \text{which gives } q\begin{pmatrix} x \\ y \end{pmatrix} = x^2 + xy - 4y^2,
$$

 \leftarrow

A quadratic function of n-variables is a function $\mathbb{R}^n\overset{q}{\to}\mathbb{R}$ given by

$$
\boxed{q(\vec{x}) = \vec{x}^T A \vec{x}}
$$
 where *A* is an $n \times n$ matrix.

Here are some examples with the given 2×2 matrix A:

$$
A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \qquad \text{which gives } q\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = x^2 + 2y^2,
$$

\n
$$
A = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix} \qquad \text{which gives } q\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = 4x^2 + 9y^2,
$$

\n
$$
A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \text{which gives } q\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = x^2 - y^2,
$$

\n
$$
A = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix} \qquad \text{which gives } q\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = x^2 + xy - 4y^2,
$$

\n
$$
A = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & -4 \end{bmatrix} \qquad \text{which gives } q\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = x^2 + xy - 4y^2.
$$

Every quadratic function $\mathbb{R}^n \overset{q}{\to} \mathbb{R}$ given by

$$
q(\vec{x}) = \vec{x}^T A \vec{x}
$$

can always be expressed using a symmetric matrix A.

 \leftarrow

Every quadratic function $\mathbb{R}^n \overset{q}{\to} \mathbb{R}$ given by

$$
q(\vec{x}) = \vec{x}^T A \vec{x}
$$

can always be expressed using a symmetric matrix A.

This means that A is orthogonally diagonalizable;

 \leftarrow

Every quadratic function $\mathbb{R}^n \overset{q}{\to} \mathbb{R}$ given by

$$
q(\vec{x}) = \vec{x}^T A \vec{x}
$$

can always be expressed using a symmetric matrix A.

This means that A is orthogonally diagonalizable; we can write $A = QDQ^T$ where Q is orthogonal (so $Q^T Q = I = Q Q^T$) and D is diagonal.

Every quadratic function $\mathbb{R}^n \overset{q}{\to} \mathbb{R}$ given by

$$
q(\vec{x}) = \vec{x}^T A \vec{x}
$$

can always be expressed using a symmetric matrix A.

This means that A is orthogonally diagonalizable; we can write $A = QDQ^T$ where Q is orthogonal (so $Q^T Q = I = Q Q^T$) and D is diagonal.

The change of variables $\vec{x} = Q\vec{u}$ then gives us

$$
\vec{x}^T A \vec{x} =
$$

Every quadratic function $\mathbb{R}^n \overset{q}{\to} \mathbb{R}$ given by

$$
q(\vec{x}) = \vec{x}^T A \vec{x}
$$

can always be expressed using a symmetric matrix A.

This means that A is orthogonally diagonalizable; we can write $A = QDQ^T$ where Q is orthogonal (so $Q^T Q = I = Q Q^T$) and D is diagonal.

The change of variables $\vec{x} = Q\vec{u}$ then gives us

$$
\vec{x}^T A \vec{x} = (Q\vec{u})^T A (Q\vec{u}) =
$$

Every quadratic function $\mathbb{R}^n \overset{q}{\to} \mathbb{R}$ given by

$$
q(\vec{x}) = \vec{x}^T A \vec{x}
$$

can always be expressed using a symmetric matrix A.

This means that A is orthogonally diagonalizable; we can write $A = QDQ^T$ where Q is orthogonal (so $Q^T Q = I = Q Q^T$) and D is diagonal.

The change of variables $\vec{x} = Q\vec{u}$ then gives us

$$
\vec{x}^T A \vec{x} = (Q\vec{u})^T A (Q\vec{u}) = \vec{u}^T Q^T A Q \vec{u} =
$$

Every quadratic function $\mathbb{R}^n \overset{q}{\to} \mathbb{R}$ given by

$$
q(\vec{x}) = \vec{x}^T A \vec{x}
$$

can always be expressed using a symmetric matrix A.

This means that A is orthogonally diagonalizable; we can write $A = QDQ^T$ where Q is orthogonal (so $Q^T Q = I = Q Q^T$) and D is diagonal.

The change of variables $\vec{x} = Q\vec{u}$ then gives us

$$
\vec{x}^T A \vec{x} = (Q\vec{u})^T A (Q\vec{u}) = \vec{u}^T Q^T A Q \vec{u} = \vec{u}^T D \vec{u}.
$$

Every quadratic function $\mathbb{R}^n \overset{q}{\to} \mathbb{R}$ given by

$$
q(\vec{x}) = \vec{x}^T A \vec{x}
$$

can always be expressed using a symmetric matrix A.

This means that A is orthogonally diagonalizable; we can write $A = QDQ^T$ where Q is orthogonal (so $Q^T Q = I = Q Q^T$) and D is diagonal.

The change of variables $\vec{x} = Q\vec{u}$ then gives us

$$
\vec{x}^T A \vec{x} = (Q\vec{u})^T A (Q\vec{u}) = \vec{u}^T Q^T A Q \vec{u} = \vec{u}^T D \vec{u}.
$$

It follows that the level set $q(\vec{x})=1$ (i.e., $\vec{x}^T A \vec{x}=1)$

Every quadratic function $\mathbb{R}^n \overset{q}{\to} \mathbb{R}$ given by

$$
q(\vec{x}) = \vec{x}^T A \vec{x}
$$

can always be expressed using a symmetric matrix A.

This means that A is orthogonally diagonalizable; we can write $A = QDQ^T$ where Q is orthogonal (so $Q^T Q = I = Q Q^T$) and D is diagonal.

The change of variables $\vec{x} = Q\vec{u}$ then gives us

$$
\vec{x}^T A \vec{x} = (Q\vec{u})^T A (Q\vec{u}) = \vec{u}^T Q^T A Q \vec{u} = \vec{u}^T D \vec{u}.
$$

It follows that the level set $q(\vec{x}) = 1$ (i.e., $\vec{x}^T A \vec{x} = 1)$ can be easily determined once we know the level set $\vec{u}^T D\,\vec{u} = 1.$

Consider
$$
A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}
$$
, so $q\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} A \begin{bmatrix} x \\ y \end{bmatrix} = 2x^2 + 3y^2$.

э

K ロ ▶ K 倒 ▶ K 君 ▶ K

 $2QQ$

Consider
$$
A = \begin{bmatrix} 2 & 0 \ 0 & 3 \end{bmatrix}
$$
, so $q \begin{bmatrix} x \ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} A \begin{bmatrix} x \ y \end{bmatrix} = 2x^2 + 3y^2$.

The $q=1$ level curve is just the solution set for $2x^2+3y^2=1$.

イロト イ母 トイヨ トイヨト

 QQQ

Consider
$$
A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}
$$
, so $q \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} A \begin{bmatrix} x \\ y \end{bmatrix} = 2x^2 + 3y^2$.

The $q=1$ level curve is just the solution set for $2x^2+3y^2=1.$ This is just an ellipse with vertices ($\frac{\pm 1}{\sqrt{2}}$ $(\frac{1}{2},0), (0,\frac{\pm 1}{\sqrt{3}})$ $\frac{1}{3}$) as pictured below.

 \leftarrow

Consider
$$
A = \begin{bmatrix} 2 & 0 \ 0 & 3 \end{bmatrix}
$$
, so $q(\begin{bmatrix} x \ y \end{bmatrix}) = \begin{bmatrix} x & y \end{bmatrix} A \begin{bmatrix} x \ y \end{bmatrix} = 2x^2 + 3y^2$.
The $q = 1$ level curve is just the solution set for $2x^2 + 3y^2 = 1$. This is just an ellipse with vertices $(\frac{\pm 1}{\sqrt{2}}, 0), (0, \frac{\pm 1}{\sqrt{3}})$ as pictured below.

4 ロ ▶ 4 何

 $A \equiv 1$ \mathbb{R}

э

 $2QQ$

For
$$
A = \frac{1}{5} \begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix}
$$
 we get $q(\begin{bmatrix} x \\ y \end{bmatrix}) = \frac{1}{5}(14x^2 - 4xy + 11y^2)$. What

does $q = 1$ level curve look like?

 \triangleright \rightarrow \exists \triangleright \rightarrow

 $2QQ$

For
$$
A = \frac{1}{5} \begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix}
$$
 we get $q \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{5} (14x^2 - 4xy + 11y^2)$. What
does $q = 1$ level curve look like? This is given by $14x^2 - 4xy + 11y^2 = 5$.

 $\mathcal{O} \curvearrowright \curvearrowright$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

For
$$
A = \frac{1}{5} \begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix}
$$
 we get $q \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{5} (14x^2 - 4xy + 11y^2)$. What
does $q = 1$ level curve look like? This is given by $14x^2 - 4xy + 11y^2 = 5$.
A has eigenvalues 2, 3 with associated eigenvectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

 $\mathcal{O} \curvearrowright \curvearrowright$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

For
$$
A = \frac{1}{5} \begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix}
$$
 we get $q \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{5} (14x^2 - 4xy + 11y^2)$. What
does $q = 1$ level curve look like? This is given by $14x^2 - 4xy + 11y^2 = 5$.
A has eigenvalues 2, 3 with associated eigenvectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.
These are already orthogonal!

 QQQ

イロン イ部ン イヨン イヨン

For
$$
A = \frac{1}{5} \begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix}
$$
 we get $q \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{5} (14x^2 - 4xy + 11y^2)$. What
does $q = 1$ level curve look like? This is given by $14x^2 - 4xy + 11y^2 = 5$.
A has eigenvalues 2, 3 with associated eigenvectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.
These are already orthogonal!
Normalize these eigenvectors to get $\vec{q}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{q}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

 $\mathcal{O} \curvearrowright \curvearrowright$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

For
$$
A = \frac{1}{5} \begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix}
$$
 we get $q \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{5} (14x^2 - 4xy + 11y^2)$. What
does $q = 1$ level curve look like? This is given by $14x^2 - 4xy + 11y^2 = 5$.
A has eigenvalues 2, 3 with associated eigenvectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$.
These are already orthogonal!
Normalize these eigenvectors to get $\vec{q}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\vec{q}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.
Now we can write

$$
A = QDQ^T \quad \text{where} \quad Q = \begin{bmatrix} \vec{q}_1 & \vec{q}_2 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}.
$$

 QQQ

イロン イ部ン イヨン イヨン

For
$$
A = \frac{1}{5} \begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix}
$$
 we get $q \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{5} (14x^2 - 4xy + 11y^2)$. What
does $q = 1$ level curve look like? This is given by $14x^2 - 4xy + 11y^2 = 5$.
A has eigenvalues 2, 3 with associated eigenvectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$.
These are already orthogonal!
Normalize these eigenvectors to get $\vec{q}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\vec{q}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.
Now we can write

$$
A = QDQ^{\mathsf{T}} \quad \text{where} \quad Q = \begin{bmatrix} \vec{q}_1 & \vec{q}_2 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}.
$$

Here Q is an *orthogonal* matrix (i.e., $Q^{\mathcal{T}}Q = I)$ and therefore $Q^{\mathcal{T}} = Q^{-1}.$

∢ □ ▶ ∢ ñ

▶ - 4 로 ▶ - 4 로 ▶

 QQQ

For
$$
A = \frac{1}{5} \begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix}
$$
 we get $q \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{5} (14x^2 - 4xy + 11y^2)$. What
does $q = 1$ level curve look like? This is given by $14x^2 - 4xy + 11y^2 = 5$.
A has eigenvalues 2, 3 with associated eigenvectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.
These are already orthogonal!
Normalize these eigenvectors to get $\vec{q}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{q}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

Now we can write

$$
A = QDQ^T \quad \text{where} \quad Q = \begin{bmatrix} \vec{q}_1 & \vec{q}_2 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}.
$$

Here Q is an *orthogonal* matrix (i.e., $Q^{\mathcal{T}}Q = I)$ and therefore $Q^{\mathcal{T}} = Q^{-1}.$

The change of variable $\vec{x} = Q\vec{u}$ helps us to see the picture for the level curve $14x^2 - 4xy + 11y^2 = 5$.

 OQ

$$
A = \frac{1}{5} \begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix} = QDQ^T \text{ where } Q = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \text{ and } D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}
$$

K □ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q @

$$
A = \frac{1}{5} \begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix} = QDQ^T \text{ where } Q = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \text{ and } D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}
$$

The change of variables $\vec{x} = Q\vec{u}$ then gives us

$$
\vec{x}^T A \vec{x} =
$$

$$
A = \frac{1}{5} \begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix} = QDQ^T \text{ where } Q = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \text{ and } D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}
$$

The change of variables $\vec{x} = Q\vec{u}$ then gives us

 $\vec{x}^T A \vec{x} = (Q \vec{u})^T A (Q \vec{u}) =$

 $\vec{x}^T A \vec{x} = (Q \vec{u})^T A (Q \vec{u}) = \vec{u}^T Q^T A Q \vec{u} =$

$$
\vec{x}^T A \vec{x} = (Q\vec{u})^T A (Q\vec{u}) = \vec{u}^T Q^T A Q \vec{u} = \vec{u}^T D \vec{u}.
$$

す口 ト す御 ト す 君 ト す 君 ト

 $2Q$

准

$$
\vec{x}^T A \vec{x} = (Q\vec{u})^T A (Q\vec{u}) = \vec{u}^T Q^T A Q \vec{u} = \vec{u}^T D \vec{u}.
$$

K ロ ▶ (K@) ▶ (Q) → (Q) → [Q

 $\mathcal{O} \curvearrowright$

To "see" $q(\vec{x}) = 1$ (i.e., $14x^2 - 4xy + 11y^2 = 5$),

$$
\vec{x}^T A \vec{x} = (Q\vec{u})^T A (Q\vec{u}) = \vec{u}^T Q^T A Q \vec{u} = \vec{u}^T D \vec{u}.
$$

K ロ ▶ (K@) ▶ (Q) → (Q) → [Q

 OQ

To "see" $q(\vec{x})=1$ (i.e., $14x^2-4xy+11y^2=5$), first draw $\vec{u}^T D\,\vec{u}=1.$

 $A=\frac{1}{\pi}$ 5 $\begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix} = QDQ^T$ where $Q = \frac{1}{\sqrt{2}}$ 5 $\begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ The change of variables $\vec{x} = Q\vec{u}$ then gives us $\vec{x}^T A \vec{x} = (Q \vec{u})^T A (Q \vec{u}) = \vec{u}^T Q^T A Q \vec{u} = \vec{u}^T D \vec{u}.$ To "see" $q(\vec{x})=1$ (i.e., $14x^2-4xy+11y^2=5$), first draw $\vec{u}^T D\,\vec{u}=1.$ Writing $\vec{u} = \begin{bmatrix} u & \omega \end{bmatrix}$ v we get $\vec{u}^T D \vec{u} = 2u^2 + 3v^2$.

K ロ X K @ X K R X X R X X R B

 OQ

 $A=\frac{1}{\pi}$ 5 $\begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix} = QDQ^T$ where $Q = \frac{1}{\sqrt{2}}$ 5 $\begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ The change of variables $\vec{x} = Q\vec{u}$ then gives us $\vec{x}^T A \vec{x} = (Q \vec{u})^T A (Q \vec{u}) = \vec{u}^T Q^T A Q \vec{u} = \vec{u}^T D \vec{u}.$ To "see" $q(\vec{x})=1$ (i.e., $14x^2-4xy+11y^2=5$), first draw $\vec{u}^T D\,\vec{u}=1.$ Writing $\vec{u} = \begin{bmatrix} u & \omega \end{bmatrix}$ v we get $\vec{u}^T D \vec{u} = 2u^2 + 3v^2$. So, the level curve $\vec{u}^T D\,\vec{u} = 1$ is given by $2u^2 + 3v^2 = 1$, which

K ロ X K @ X K R X X R X X R B

 OQ

 $A=\frac{1}{\pi}$ 5 $\begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix} = QDQ^T$ where $Q = \frac{1}{\sqrt{2}}$ 5 $\begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ The change of variables $\vec{x} = Q\vec{u}$ then gives us $\vec{x}^T A \vec{x} = (Q \vec{u})^T A (Q \vec{u}) = \vec{u}^T Q^T A Q \vec{u} = \vec{u}^T D \vec{u}.$ To "see" $q(\vec{x})=1$ (i.e., $14x^2-4xy+11y^2=5$), first draw $\vec{u}^T D\,\vec{u}=1.$ Writing $\vec{u} = \begin{bmatrix} u & \omega \end{bmatrix}$ v we get $\vec{u}^T D \vec{u} = 2u^2 + 3v^2$. So, the level curve ${\vec{u}}^T D\, {\vec{u}} = 1$ is given by $2u^2 + 3v^2 = 1$, which is the equation of an ellipse with vertices ($\frac{\pm 1}{\sqrt{2}}$ $(\frac{1}{2},0),(0,\frac{\pm 1}{\sqrt{3}})$ $\frac{1}{3}$) as pictured below.

K ロ X (伊 X × モ X × × モ X → 三 モ ×

 Ω

 $A=\frac{1}{\pi}$ 5 $\begin{bmatrix} 14 & -2 \\ -2 & 11 \end{bmatrix} = QDQ^T$ where $Q = \frac{1}{\sqrt{2}}$ 5 $\begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ The change of variables $\vec{x} = Q\vec{u}$ then gives us $\vec{x}^T A \vec{x} = (Q \vec{u})^T A (Q \vec{u}) = \vec{u}^T Q^T A Q \vec{u} = \vec{u}^T D \vec{u}.$ To "see" $q(\vec{x})=1$ (i.e., $14x^2-4xy+11y^2=5$), first draw $\vec{u}^T D\,\vec{u}=1.$ Writing $\vec{u} = \begin{bmatrix} u & \omega \end{bmatrix}$ v we get $\vec{u}^T D \vec{u} = 2u^2 + 3v^2$. So, the level curve ${\vec{u}}^T D\, {\vec{u}} = 1$ is given by $2u^2 + 3v^2 = 1$, which is the equation of an ellipse with vertices ($\frac{\pm 1}{\sqrt{2}}$ $(\frac{1}{2},0),(0,\frac{\pm 1}{\sqrt{3}})$ $\frac{1}{3}$) as pictured below.

We use pix for $2u^2 + 3v^2 = 1$ to draw pix for $14x^2 - 4xy + 11y^2 = 5$.

We use pix for $2u^2 + 3v^2 = 1$ to draw pix for $14x^2 - 4xy + 11y^2 = 5$. We have $\begin{bmatrix} x \\ y \end{bmatrix}$ y $\left[\right] = \vec{x} = Q\vec{u} = \begin{bmatrix} u \\ u \end{bmatrix}$ v so need both \vec{u} -plane and \vec{x} -plane.

K ロ ▶ 〈 *団* ▶ 〈 결 ▶ 〈 결 ▶

唾

 $2Q$

メロメ メ都 メイモメ メモメ

 $2Q$

准

K ロ ▶ | K @ ▶ | K 할 ▶ | K 할 ▶

造

 $2Q$

The standard basis vectors \vec{e}_1, \vec{e}_2 are mapped to \vec{q}_1, \vec{q}_2 .

The standard basis vectors \vec{e}_1, \vec{e}_2 are mapped to \vec{q}_1, \vec{q}_2 . So we see that $\vec{x} = Q\vec{u}$ is a rotation of \mathbb{R}^2 by the angle θ where tan $\theta = 2$.

The standard basis vectors \vec{e}_1, \vec{e}_2 are mapped to \vec{q}_1, \vec{q}_2 . So we see that $\vec{x} = Q\vec{u}$ is a rotation of \mathbb{R}^2 by the angle θ where tan $\theta = 2$.

K ロ ▶ (K@) ▶ (대) X (평) / 대 평

 $2Q$

The standard basis vectors \vec{e}_1, \vec{e}_2 are mapped to \vec{q}_1, \vec{q}_2 . So we see that $\vec{x} = Q \vec{u}$ is a rotation of \mathbb{R}^2 by the angle θ where tan $\theta = 2$. Thus $14x^2 - 4xy + 11y^2 = 5$ is the equation for a *rotated* ellipse with vertices

The standard basis vectors \vec{e}_1, \vec{e}_2 are mapped to \vec{q}_1, \vec{q}_2 . So we see that $\vec{x} = Q \vec{u}$ is a rotation of \mathbb{R}^2 by the angle θ where tan $\theta = 2$. Thus $14x^2 - 4xy + 11y^2 = 5$ is the equation for a *rotated* ellipse with vertices $\frac{\pm 1}{\sqrt{2}}$ $\frac{1}{2} \vec{q}_1$ and $\frac{\pm 1}{\sqrt{3}}$ $\frac{1}{3}\vec{q}_2$ as pictured above.