Diagonalization of Symmetric Matrics

Linear Algebra MATH 2076

4 **D** F

 \rightarrow

 $2Q$

Recall that a matrix A is *symmetric* if and only if $A^{\mathcal{T}}=A$.

 \leftarrow

 $2Q$

Recall that a matrix A is *symmetric* if and only if $A^{\mathcal{T}}=A$.

Theorem

Let A be a symmetric matrix. Then:

 \leftarrow

Recall that a matrix A is *symmetric* if and only if $A^{\mathcal{T}}=A$.

Theorem

Let A be a symmetric matrix. Then:

4 A has n real eigenvalues, counting according to multiplicity.

つへへ

Recall that a matrix A is *symmetric* if and only if $A^{\mathcal{T}}=A$.

Theorem

Let A be a symmetric matrix. Then:

- **1** A has n real eigenvalues, counting according to multiplicity.
- **2** For each eigenvalue, the geometric and algebraic multiplicities agree.

 299

Recall that a matrix A is *symmetric* if and only if $A^{\mathcal{T}}=A$.

Theorem

Let A be a symmetric matrix. Then:

- **1** A has n real eigenvalues, counting according to multiplicity.
- **2** For each eigenvalue, the geometric and algebraic multiplicities agree.
- ³ Different eigenspaces are automatically orthogonal.

 299

Recall that a matrix A is *symmetric* if and only if $A^{\mathcal{T}}=A$.

Theorem

Let A be a symmetric matrix. Then:

- **1** A has n real eigenvalues, counting according to multiplicity.
- **2** For each eigenvalue, the geometric and algebraic multiplicities agree.
- Different eigenspaces are automatically orthogonal.
- **4** A is orthogonally diagonalizable.

つのい

Recall that a matrix A is *symmetric* if and only if $A^{\mathcal{T}}=A$.

Theorem

Let A be a symmetric matrix. Then:

- **1** A has n real eigenvalues, counting according to multiplicity.
- **2** For each eigenvalue, the geometric and algebraic multiplicities agree.
- Different eigenspaces are automatically orthogonal.
- **4** A is orthogonally diagonalizable.

Items (1) and (2) tell us that A is diagonalizable.

 PQQ

Recall that a matrix A is *symmetric* if and only if $A^{\mathcal{T}}=A$.

Theorem

Let A be a symmetric matrix. Then:

- **1** A has n real eigenvalues, counting according to multiplicity.
- **2** For each eigenvalue, the geometric and algebraic multiplicities agree.
- ³ Different eigenspaces are automatically orthogonal.
- **4** A is orthogonally diagonalizable.

Items (1) and (2) tell us that A is diagonalizable. Thus we can write $A = PDP^{-1}$ where P is invertible and D is diagonal.

つへへ

Recall that a matrix A is *symmetric* if and only if $A^{\mathcal{T}}=A$.

Theorem

Let A be a symmetric matrix. Then:

- **1** A has n real eigenvalues, counting according to multiplicity.
- **2** For each eigenvalue, the geometric and algebraic multiplicities agree.
- ³ Different eigenspaces are automatically orthogonal.
- **4** A is orthogonally diagonalizable.

Items (1) and (2) tell us that A is diagonalizable. Thus we can write $A = PDP^{-1}$ where P is invertible and D is diagonal.

Item (3) says that if \vec{v} and \vec{w} are eigenvectors for A associated with different eigenvalues, then $\vec{v} \perp \vec{w}$.

 QQQ

 4 ロ) 4 何) 4 ヨ) 4 ヨ)

Recall that a matrix A is *symmetric* if and only if $A^{\mathcal{T}}=A$.

Theorem

Let A be a symmetric matrix. Then:

- **1** A has n real eigenvalues, counting according to multiplicity.
- **2** For each eigenvalue, the geometric and algebraic multiplicities agree.
- ³ Different eigenspaces are automatically orthogonal.
- **4** A is orthogonally diagonalizable.

Items (1) and (2) tell us that A is diagonalizable. Thus we can write $A = PDP^{-1}$ where P is invertible and D is diagonal.

Item (3) says that if \vec{v} and \vec{w} are eigenvectors for A associated with different eigenvalues, then $\vec{v} \perp \vec{w}$. This is actually easy to see!

 $2Q$

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

∢ □ ▶ ∢ *f* P

Suppose \vec{v} and \vec{w} are eigenvectors for a symmetric matrix A associated with different eigenvalues,

 \leftarrow

 $2Q$

Suppose \vec{v} and \vec{w} are eigenvectors for a symmetric matrix A associated with different eigenvalues, say $A\vec{v} = \lambda \vec{v}$ and $A\vec{w} = \mu \vec{w}$ with $\lambda \neq \mu$.

 Ω

Suppose \vec{v} and \vec{w} are eigenvectors for a symmetric matrix A associated with different eigenvalues, say $A\vec{v} = \lambda \vec{v}$ and $A\vec{w} = \mu \vec{w}$ with $\lambda \neq \mu$.

Recall that $\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w}$.

Suppose \vec{v} and \vec{w} are eigenvectors for a symmetric matrix A associated with different eigenvalues, say $A\vec{v} = \lambda \vec{v}$ and $A\vec{w} = \mu \vec{w}$ with $\lambda \neq \mu$.

Recall that $\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w}$.

Look at

$$
\lambda \vec{v} \cdot \vec{w} =
$$

Suppose \vec{v} and \vec{w} are eigenvectors for a symmetric matrix A associated with different eigenvalues, say $A\vec{v} = \lambda \vec{v}$ and $A\vec{w} = \mu \vec{w}$ with $\lambda \neq \mu$.

Recall that $\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w}$.

Look at

 $\lambda \vec{v} \cdot \vec{w} = A \vec{v} \cdot \vec{w} =$

Suppose \vec{v} and \vec{w} are eigenvectors for a symmetric matrix A associated with different eigenvalues, say $A\vec{v} = \lambda \vec{v}$ and $A\vec{w} = \mu \vec{w}$ with $\lambda \neq \mu$.

Recall that $\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w}$.

Look at

$$
\lambda \vec{v} \cdot \vec{w} = A \vec{v} \cdot \vec{w} = (A \vec{v})^T \vec{w} =
$$

Suppose \vec{v} and \vec{w} are eigenvectors for a symmetric matrix A associated with different eigenvalues, say $A\vec{v} = \lambda \vec{v}$ and $A\vec{w} = \mu \vec{w}$ with $\lambda \neq \mu$.

Recall that $\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w}$.

Look at

$$
\lambda \vec{v} \cdot \vec{w} = A \vec{v} \cdot \vec{w} = (A \vec{v})^T \vec{w} = \vec{v}^T A^T \vec{w}
$$

$$
=
$$

Suppose \vec{v} and \vec{w} are eigenvectors for a symmetric matrix A associated with different eigenvalues, say $A\vec{v} = \lambda \vec{v}$ and $A\vec{w} = \mu \vec{w}$ with $\lambda \neq \mu$.

Recall that $\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w}$.

Look at

$$
\lambda \vec{v} \cdot \vec{w} = A \vec{v} \cdot \vec{w} = (A \vec{v})^T \vec{w} = \vec{v}^T A^T \vec{w}
$$

$$
= \vec{v}^T A \vec{w} =
$$

Suppose \vec{v} and \vec{w} are eigenvectors for a symmetric matrix A associated with different eigenvalues, say $A\vec{v} = \lambda \vec{v}$ and $A\vec{w} = \mu \vec{w}$ with $\lambda \neq \mu$.

Recall that $\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w}$.

Look at

$$
\lambda \vec{v} \cdot \vec{w} = A \vec{v} \cdot \vec{w} = (A \vec{v})^T \vec{w} = \vec{v}^T A^T \vec{w}
$$

$$
= \vec{v}^T A \vec{w} = \vec{v}^T (\mu \vec{w}) =
$$

Suppose \vec{v} and \vec{w} are eigenvectors for a symmetric matrix A associated with different eigenvalues, say $A\vec{v} = \lambda \vec{v}$ and $A\vec{w} = \mu \vec{w}$ with $\lambda \neq \mu$.

Recall that $\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w}$.

Look at

$$
\lambda \vec{v} \cdot \vec{w} = A \vec{v} \cdot \vec{w} = (A \vec{v})^T \vec{w} = \vec{v}^T A^T \vec{w}
$$

$$
= \vec{v}^T A \vec{w} = \vec{v}^T (\mu \vec{w}) = \mu \vec{v}^T \vec{w}
$$

$$
=
$$

Suppose \vec{v} and \vec{w} are eigenvectors for a symmetric matrix A associated with different eigenvalues, say $A\vec{v} = \lambda \vec{v}$ and $A\vec{w} = \mu \vec{w}$ with $\lambda \neq \mu$.

Recall that $\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w}$.

Look at

$$
\lambda \vec{v} \cdot \vec{w} = A \vec{v} \cdot \vec{w} = (A \vec{v})^T \vec{w} = \vec{v}^T A^T \vec{w}
$$

$$
= \vec{v}^T A \vec{w} = \vec{v}^T (\mu \vec{w}) = \mu \vec{v}^T \vec{w}
$$

$$
= \mu \vec{v} \cdot \vec{w}
$$

Suppose \vec{v} and \vec{w} are eigenvectors for a symmetric matrix A associated with different eigenvalues, say $A\vec{v} = \lambda \vec{v}$ and $A\vec{w} = \mu \vec{w}$ with $\lambda \neq \mu$.

Recall that $\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w}$.

Look at

$$
\lambda \vec{v} \cdot \vec{w} = A \vec{v} \cdot \vec{w} = (A \vec{v})^T \vec{w} = \vec{v}^T A^T \vec{w}
$$

$$
= \vec{v}^T A \vec{w} = \vec{v}^T (\mu \vec{w}) = \mu \vec{v}^T \vec{w}
$$

$$
= \mu \vec{v} \cdot \vec{w}
$$

so

$$
(\lambda - \mu)\vec{v} \cdot \vec{w} = 0
$$

Suppose \vec{v} and \vec{w} are eigenvectors for a symmetric matrix A associated with different eigenvalues, say $A\vec{v} = \lambda \vec{v}$ and $A\vec{w} = \mu \vec{w}$ with $\lambda \neq \mu$.

Recall that $\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w}$.

Look at

$$
\lambda \vec{v} \cdot \vec{w} = A \vec{v} \cdot \vec{w} = (A \vec{v})^T \vec{w} = \vec{v}^T A^T \vec{w}
$$

$$
= \vec{v}^T A \vec{w} = \vec{v}^T (\mu \vec{w}) = \mu \vec{v}^T \vec{w}
$$

$$
= \mu \vec{v} \cdot \vec{w}
$$

so

 $(\lambda - \mu)\vec{v} \cdot \vec{w} = 0$ and therefore $\vec{v} \cdot \vec{w} = 0$.

 PQQ

The matrix
$$
A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}
$$
 has *simple* eigenvalues 3, 4, 6 with

associated eigenvectors

K ロ ▶ K 個 ▶ K 경 ▶ K 경 ▶

The matrix
$$
A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}
$$
 has *simple* eigenvalues 3, 4, 6 with
associated eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶

 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

The matrix
$$
A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}
$$
 has *simple* eigenvalues 3, 4, 6 with
associated eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

Therefore,

$$
A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}.
$$

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶

The matrix
$$
A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}
$$
 has *simple* eigenvalues 3, 4, 6 with
associated eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

Therefore,

$$
A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}.
$$

But what does this mean?

≮ロト ⊀月

 $\left\{ \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right\}$

 $2Q$

The matrix
$$
A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}
$$
 has *simple* eigenvalues 3, 4, 6 with
associated eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

The matrix
$$
A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}
$$
 has *simple* eigenvalues 3, 4, 6 with
associated eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

Notice that $\vec{v}_1 \perp \vec{v}_2 \perp \vec{v}_3 \perp \vec{v}_1$.

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶

The matrix $A =$ $\sqrt{ }$ $\overline{1}$ 4 −1 0 -1 5 -1 $0 \t -1 \t 4$ 1 \mid has *simple* eigenvalues 3, 4, 6 with associated eigenvectors $\vec{v}_1 =$ $\sqrt{ }$ $\overline{1}$ 1 1 1 1 $\Big\vert \cdot \ \vec{v}_2 =$ $\sqrt{ }$ $\overline{1}$ -1 0 1 1 $\Big\vert \cdot \vec{v}_3 =$ $\sqrt{ }$ $\overline{}$ 1 -2 1 1 $\vert \cdot$

Notice that $\vec{v}_1 \perp \vec{v}_2 \perp \vec{v}_3 \perp \vec{v}_1$. Normalize these eigenvectors to get an orthonormal eigenbasis $\{\vec{u_1}, \vec{u_2}, \vec{u_3}\}$ assoc'd with A.

The matrix $A =$ $\sqrt{ }$ $\overline{1}$ 4 −1 0 -1 5 -1 $0 \t -1 \t 4$ 1 \mid has *simple* eigenvalues 3, 4, 6 with associated eigenvectors $\vec{v}_1 =$ $\sqrt{ }$ $\overline{1}$ 1 1 1 1 $\Big\vert \cdot \ \vec{v}_2 =$ $\sqrt{ }$ $\overline{1}$ -1 0 1 1 $\Big\vert \cdot \vec{v}_3 =$ $\sqrt{ }$ $\overline{}$ 1 -2 1 1 $\vert \cdot$

Notice that $\vec{v}_1 \perp \vec{v}_2 \perp \vec{v}_3 \perp \vec{v}_1$. Normalize these eigenvectors to get an orthonormal eigenbasis $\{\vec{u_1}, \vec{u_2}, \vec{u_3}\}$ assoc'd with A. Now we can write

$$
A = QDQ^T \quad \text{where} \quad Q = \begin{bmatrix} \vec{u_1} & \vec{u_2} & \vec{u_3} \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{2} & -\sqrt{3} & 1 \\ \sqrt{2} & 0 & -2 \\ \sqrt{2} & \sqrt{3} & 1 \end{bmatrix}.
$$

The matrix $A =$ $\sqrt{ }$ $\overline{1}$ 4 −1 0 -1 5 -1 $0 \t -1 \t 4$ 1 \mid has *simple* eigenvalues 3, 4, 6 with associated eigenvectors $\vec{v}_1 =$ $\sqrt{ }$ $\overline{1}$ 1 1 1 1 $\Big\vert \cdot \ \vec{v}_2 =$ $\sqrt{ }$ $\overline{1}$ -1 0 1 1 $\Big\vert \cdot \vec{v}_3 =$ $\sqrt{ }$ $\overline{}$ 1 -2 1 1 $\vert \cdot$

Notice that $\vec{v}_1 \perp \vec{v}_2 \perp \vec{v}_3 \perp \vec{v}_1$. Normalize these eigenvectors to get an orthonormal eigenbasis $\{\vec{u_1}, \vec{u_2}, \vec{u_3}\}$ assoc'd with A. Now we can write

$$
A = QDQ^{T} \text{ where } Q = [\vec{u_1} \ \vec{u_2} \ \vec{u_3}] = \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{2} & -\sqrt{3} & 1 \\ \sqrt{2} & 0 & -2 \\ \sqrt{2} & \sqrt{3} & 1 \end{bmatrix}.
$$

Here Q is an *orthogonal* matrix (i.e., $Q^{\mathcal{T}}Q = I)$ and therefore $Q^{\mathcal{T}} = Q^{-1}.$

The matrix
$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}
$$
 has *simple* eigenvalues 3, -1 with associated eigenvectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ normalized to get $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

イロン イ部ン イヨン イヨン

The matrix
$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}
$$
 has *simple* eigenvalues 3, -1 with associated eigenvectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ normalized to get $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Notice that $\vec{v}_1 \perp \vec{v}_2$.

 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

イロン イ部ン イヨン イヨン

The matrix
$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}
$$
 has *simple* eigenvalues 3, -1 with associated eigenvectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ normalized to get $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Notice that $\vec{v}_1 \perp \vec{v}_2$.

Now we can write

$$
A = QDQ^T \quad \text{where} \quad Q = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}
$$

K ロ ▶ K 個 ▶ K 경 ▶ K 경 ▶

.

The matrix
$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}
$$
 has *simple* eigenvalues 3, -1 with associated eigenvectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ normalized to get $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.
Notice that $\vec{v}_1 \perp \vec{v}_2$.

Now we can write

$$
A = QDQ^T \quad \text{where} \quad Q = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}
$$

Here Q is an *orthogonal* matrix (i.e., $Q^{\mathcal{T}}Q = I)$ and therefore $Q^{\mathcal{T}} = Q^{-1}.$

 \leftarrow

.

 $2Q$

The matrix $A = \begin{bmatrix} 1 & 2 \ 2 & 1 \end{bmatrix}$ has *simple* eigenvalues 3, -1 with associated eigenvectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ 1 $\bigg \}$ normalized to get $\vec{v}_1 = \frac{1}{\sqrt{2}}$ 2 $\sqrt{1}$ 1 $\Big\} \ , \vec{v}_2 = \frac{1}{\sqrt{2}}$ 2 $\lceil -1 \rceil$ 1 . Notice that $\vec{v}_1 \perp \vec{v}_2$

Now we can write

$$
A = QDQ^T \quad \text{where} \quad Q = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}
$$

Here Q is an *orthogonal* matrix (i.e., $Q^{\mathcal{T}}Q = I)$ and therefore $Q^{\mathcal{T}} = Q^{-1}.$

The change of variable $\vec{x} = Q\vec{u}$ provides a great picture for the LT $\vec{y} = A\vec{x}$.

イロト イ母 トイヨ トイヨ トー ヨ

.

 Ω

$$
A = \begin{bmatrix} 4 & 3 & 1 & 1 \\ 3 & 4 & 1 & 1 \\ 1 & 1 & 4 & 3 \\ 1 & 1 & 3 & 4 \end{bmatrix}
$$
 has simple eigenvalues 9, 5 and a double eigenvalue 1 with assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$ & $\vec{v}_3 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v}_4 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$.

 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

イロン イ部ン イヨン イヨン

$A =$ $\sqrt{ }$ $\overline{}$ 4 3 1 1 3 4 1 1 1 1 4 3 1 1 3 4 1 $\overline{}$ has simple eigenvalues 9, 5 and a double eigenvalue 1 with assoc'd eigenvectors $\vec{v}_1 =$ $\sqrt{ }$ $\Big\}$ 1 1 1 1 1 $\overline{}$ $, \vec{v}_2 =$ $\sqrt{ }$ $\Big\}$ 1 1 −1 −1 1 $& \vec{v}_3 =$ $\sqrt{ }$ $\Big\}$ 1 −1 0 0 1 $, \vec{v}_4 =$ $\sqrt{ }$ $\Big\}$ 1 −1 1 −1 1 .

Notice that $\vec{v}_1 \perp \vec{v}_2 \perp \vec{v}_3 \perp \vec{v}_1$ and $\vec{v}_1 \perp \vec{v}_4 \perp \vec{v}_5$ but $\vec{v}_3 \perp \vec{v}_4$.

つへへ

$A =$ $\sqrt{ }$ $\overline{}$ 4 3 1 1 3 4 1 1 1 1 4 3 1 1 3 4 1 $\overline{}$ has simple eigenvalues 9, 5 and a double eigenvalue 1 with assoc'd eigenvectors $\vec{v}_1 =$ $\sqrt{ }$ $\Big\}$ 1 1 1 1 1 $\overline{}$ $, \vec{v}_2 =$ $\sqrt{ }$ $\Big\}$ 1 1 −1 −1 1 $& \vec{v}_3 =$ $\sqrt{ }$ $\Big\}$ 1 −1 0 0 1 $, \vec{v}_4 =$ $\sqrt{ }$ $\Big\}$ 1 −1 1 −1 1 .

Notice that $\vec{v}_1 \perp \vec{v}_2 \perp \vec{v}_3 \perp \vec{v}_1$ and $\vec{v}_1 \perp \vec{v}_4 \perp \vec{v}_2$ but $\vec{v}_3 \not\perp \vec{v}_4$. Gotta Gram-Schmidt $\{\vec{v}_3, \vec{v}_4\}$.

つのい

 $A =$ $\sqrt{ }$ $\overline{}$ 4 3 1 1 3 4 1 1 1 1 4 3 1 1 3 4 1 $\overline{}$ has simple eigenvalues 9, 5 and a double eigenvalue 1 with assoc'd eigenvectors $\vec{v}_1 =$ $\sqrt{ }$ $\Big\}$ 1 1 1 1 1 $\overline{}$ $, \vec{v}_2 =$ $\sqrt{ }$ $\Big\}$ 1 1 −1 −1 1 $& \vec{v}_3 =$ $\sqrt{ }$ $\Big\}$ 1 −1 0 0 1 $, \vec{v}_4 =$ $\sqrt{ }$ $\Big\}$ 1 −1 1 −1 1 .

Notice that $\vec{v}_1 \perp \vec{v}_2 \perp \vec{v}_3 \perp \vec{v}_1$ and $\vec{v}_1 \perp \vec{v}_4 \perp \vec{v}_2$ but $\vec{v}_3 \not\perp \vec{v}_4$. Gotta Gram-Schmidt $\{\vec{v}_3, \vec{v}_4\}$. Get new basis $\{\vec{w}_3, \vec{w}_4\}$ where $\vec{w}_3 = \vec{v}_3$ and $\vec{w}_4 = \vec{v}_4 - \text{Proj}_{\vec{v}_3}(\vec{v}_4).$

 Ω

 $A =$ $\sqrt{ }$ $\overline{}$ 4 3 1 1 3 4 1 1 1 1 4 3 1 1 3 4 1 $\overline{}$ has simple eigenvalues 9, 5 and a double eigenvalue 1 with assoc'd eigenvectors $\vec{v}_1 =$ $\sqrt{ }$ $\Big\}$ 1 1 1 1 1 $\overline{}$ $, \vec{v}_2 =$ $\sqrt{ }$ $\Big\}$ 1 1 −1 −1 1 $& \vec{v}_3 =$ $\sqrt{ }$ $\Big\}$ 1 −1 0 0 1 $, \vec{v}_4 =$ $\sqrt{ }$ $\Big\}$ 1 −1 1 −1 1 .

Notice that $\vec{v}_1 \perp \vec{v}_2 \perp \vec{v}_3 \perp \vec{v}_1$ and $\vec{v}_1 \perp \vec{v}_4 \perp \vec{v}_2$ but $\vec{v}_3 \not\perp \vec{v}_4$. Gotta Gram-Schmidt $\{\vec{v}_3, \vec{v}_4\}$. Get new basis $\{\vec{w}_3, \vec{w}_4\}$ where $\vec{w}_3 = \vec{v}_3$ and $\vec{w}_4 = \vec{v}_4 - \text{Proj}_{\vec{v}_3}(\vec{v}_4).$

Normalize $\{\vec{v_1}, \vec{v_2}, \vec{w_3}, \vec{w_4}\}$ to get an *orthonormal* eigenbasis $\{\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\}$ assoc'd with A.

 Ω

 $A =$ $\sqrt{ }$ $\overline{}$ 4 3 1 1 3 4 1 1 1 1 4 3 1 1 3 4 1 $\overline{}$ has simple eigenvalues 9, 5 and a double eigenvalue 1 with assoc'd eigenvectors $\vec{v}_1 =$ $\sqrt{ }$ $\Big\}$ 1 1 1 1 1 $\overline{}$ $, \vec{v}_2 =$ $\sqrt{ }$ $\Big\}$ 1 1 −1 −1 1 $& \vec{v}_3 =$ $\sqrt{ }$ $\Big\}$ 1 −1 0 0 1 $, \vec{v}_4 =$ $\sqrt{ }$ $\Big\}$ 1 −1 1 −1 1 .

Notice that $\vec{v}_1 \perp \vec{v}_2 \perp \vec{v}_3 \perp \vec{v}_1$ and $\vec{v}_1 \perp \vec{v}_4 \perp \vec{v}_2$ but $\vec{v}_3 \not\perp \vec{v}_4$. Gotta Gram-Schmidt $\{\vec{v}_3, \vec{v}_4\}$. Get new basis $\{\vec{w}_3, \vec{w}_4\}$ where $\vec{w}_3 = \vec{v}_3$ and $\vec{w}_4 = \vec{v}_4 - \text{Proj}_{\vec{v}_3}(\vec{v}_4).$

Normalize $\{\vec{v_1}, \vec{v_2}, \vec{w_3}, \vec{w_4}\}$ to get an *orthonormal* eigenbasis $\{\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\}$ assoc'd with A. Then we can write

$$
A = QDQ^{T} \text{ where } Q = [\vec{u_1} \ \vec{u_2} \ \vec{u_3} \ \vec{u_4}] \text{ and } D = \begin{bmatrix} 9 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.
$$

Section 7.1 **[Symmetric Matrices](#page-0-0)** 10 April 2017 10 April 2017

For the matrix $A =$ $\overline{1}$

$$
\begin{bmatrix} 4 & 3 & 1 & 1 \\ 3 & 4 & 1 & 1 \\ 1 & 1 & 4 & 3 \\ 1 & 1 & 3 & 4 \end{bmatrix}
$$

イロト (伊) (ミ) (ミ)

 $\mathcal{O} \curvearrowright \curvearrowright$

For the matrix
$$
A = \begin{bmatrix} 4 & 3 & 1 & 1 \\ 3 & 4 & 1 & 1 \\ 1 & 1 & 4 & 3 \\ 1 & 1 & 3 & 4 \end{bmatrix}
$$
 we can write
\n
$$
A = QDQ^{T} \text{ where } Q = [\vec{u_1} \ \vec{u_2} \ \vec{u_3} \ \vec{u_4}] \text{ and } D = \begin{bmatrix} 9 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.
$$

 $\mathcal{O} \rtimes \mathcal{O}$

イロン イ部ン イヨン イヨン

For the matrix
$$
A = \begin{bmatrix} 4 & 3 & 1 & 1 \\ 3 & 4 & 1 & 1 \\ 1 & 1 & 4 & 3 \\ 1 & 1 & 3 & 4 \end{bmatrix}
$$
 we can write
\n
$$
A = QDQ^{T} \text{ where } Q = [\vec{u_1} \ \vec{u_2} \ \vec{u_3} \ \vec{u_4}] \text{ and } D = \begin{bmatrix} 9 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.
$$

Here

$$
Q = \frac{1}{2} \begin{bmatrix} 1 & 1 & \sqrt{2} & 0 \\ 1 & 1 & -\sqrt{2} & 0 \\ 1 & -1 & 0 & \sqrt{2} \\ 1 & -1 & 0 & -\sqrt{2} \end{bmatrix}
$$

 \mathbb{B} +

K ロ ▶ K 倒 ▶ K 君 ▶ K

 $\mathcal{O} \curvearrowright \curvearrowright$

For the matrix
$$
A = \begin{bmatrix} 4 & 3 & 1 & 1 \\ 3 & 4 & 1 & 1 \\ 1 & 1 & 4 & 3 \\ 1 & 1 & 3 & 4 \end{bmatrix}
$$
 we can write
\n
$$
A = QDQ^{T} \text{ where } Q = [\vec{u_1} \ \vec{u_2} \ \vec{u_3} \ \vec{u_4}] \text{ and } D = \begin{bmatrix} 9 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.
$$

Here

$$
Q = \frac{1}{2} \begin{bmatrix} 1 & 1 & \sqrt{2} & 0 \\ 1 & 1 & -\sqrt{2} & 0 \\ 1 & -1 & 0 & \sqrt{2} \\ 1 & -1 & 0 & -\sqrt{2} \end{bmatrix}
$$

which is an *orthogonal* matrix (i.e., $Q^{\mathcal{T}}Q = I)$ [and](#page-46-0) [therefore](#page-0-0) $Q^{\mathcal{T}}$ = $\subset Q^{-1}$.

$$
A = \begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \end{bmatrix}
$$
 has two double eigenvalues 5, 3 with associd eigenvectors $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ & $\& \vec{v}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$, $\vec{v}_4 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$.

K ロ ▶ K 個 ▶ K 경 ▶ K 경 ▶

 $\mathcal{O} \rtimes \mathcal{O}$

$$
A = \begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \end{bmatrix} \text{ has two double eigenvalues } 5, 3 \text{ with } \text{assoc'd} \\ \text{eigenvectors } \vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \& \ \vec{v}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ -1 \\ 0 \end{bmatrix}, \vec{v}_4 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}.
$$

Notice that $\mathbb{E}(5) \perp \mathbb{E}(3)$ but $\vec{v}_1 \not\perp \vec{v}_2$ and $\vec{v}_3 \not\perp \vec{v}_4$.

∢ □ ▶ ∢ ñ

 $A \equiv 1$

 $2Q$

$$
A = \begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \end{bmatrix} \text{ has two double eigenvalues } 5, 3 \text{ with } \text{assoc'd} \\ \text{eigenvectors } \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \& \ \vec{v}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ -1 \\ 0 \end{bmatrix}, \vec{v}_4 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}.
$$

Notice that $\mathbb{E}(5) \perp \mathbb{E}(3)$ but $\vec{v}_1 \not\perp \vec{v}_2$ and $\vec{v}_3 \not\perp \vec{v}_4$. Gotta Gram-Schmidt both $\{\vec{v_1}, \vec{v_2}\}$ and $\{\vec{v_3}, \vec{v_4}\}$.

 \leftarrow

E k K

 $2Q$

$$
A = \begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \end{bmatrix} \text{ has two double eigenvalues } 5, 3 \text{ with } \text{assoc'd} \\ \text{eigenvectors } \vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \& \ \vec{v}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ -1 \\ 0 \end{bmatrix}, \vec{v}_4 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}.
$$

Notice that $\mathbb{E}(5) \perp \mathbb{E}(3)$ but $\vec{v}_1 \not\perp \vec{v}_2$ and $\vec{v}_3 \not\perp \vec{v}_4$. Gotta Gram-Schmidt both $\{\vec{v}_1, \vec{v}_2\}$ and $\{\vec{v}_3, \vec{v}_4\}$. Get new *orthogonal* bases $\{\vec{w}_1, \vec{w}_2\}$ for $\mathbb{E}(5)$ and $\{\vec{w}_3, \vec{w}_4\}$ for $\mathbb{E}(3)$.

4 E K 4

 PQQ

$$
A = \begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \end{bmatrix} \text{ has two double eigenvalues } 5, 3 \text{ with } \text{assoc'd} \\ \text{eigenvectors } \vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \& \ \vec{v}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ -1 \\ 0 \end{bmatrix}, \vec{v}_4 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}.
$$

Notice that $\mathbb{E}(5) \perp \mathbb{E}(3)$ but $\vec{v}_1 \not\perp \vec{v}_2$ and $\vec{v}_3 \not\perp \vec{v}_4$. Gotta Gram-Schmidt both $\{\vec{v}_1, \vec{v}_2\}$ and $\{\vec{v}_3, \vec{v}_4\}$. Get new *orthogonal* bases $\{\vec{w}_1, \vec{w}_2\}$ for $\mathbb{E}(5)$ and $\{\vec{w}_3, \vec{w}_4\}$ for $\mathbb{E}(3)$.

Normalize $\{\vec{w}_1,\vec{w}_2,\vec{w}_3,\vec{w}_4\}$ to get an *orthonormal* eigenbasis $\{\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\}$ assoc'd with A.

4 E > 4 E >

 PQQ

$$
A = \begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \end{bmatrix} \text{ has two double eigenvalues } 5, 3 \text{ with } \text{assoc'd} \\ \text{eigenvectors } \vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \& \ \vec{v}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ -1 \\ 0 \end{bmatrix}, \vec{v}_4 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}.
$$

Notice that $\mathbb{E}(5) \perp \mathbb{E}(3)$ but $\vec{v}_1 \not\perp \vec{v}_2$ and $\vec{v}_3 \not\perp \vec{v}_4$. Gotta Gram-Schmidt both $\{\vec{v}_1, \vec{v}_2\}$ and $\{\vec{v}_3, \vec{v}_4\}$. Get new *orthogonal* bases $\{\vec{w}_1, \vec{w}_2\}$ for $\mathbb{E}(5)$ and $\{\vec{w}_3, \vec{w}_4\}$ for $\mathbb{E}(3)$.

Normalize $\{\vec{w}_1,\vec{w}_2,\vec{w}_3,\vec{w}_4\}$ to get an *orthonormal* eigenbasis $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ assoc'd with A. Then we can write

$$
A = QDQ^{T} \text{ where } Q = [\vec{u_1} \ \vec{u_2} \ \vec{u_3} \ \vec{u_4}] \text{ and } D = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.
$$

For the matrix
$$
A = \begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \end{bmatrix}
$$

 \mathbf{I} $\overline{1}$ $\overline{1}$

K ロ ▶ K 個 ▶ K 경 ▶ K 경 ▶

 $\mathcal{O} \curvearrowright \curvearrowright$

For the matrix
$$
A = \begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \end{bmatrix}
$$
 we can write
\n
$$
A = QDQ^{T} \text{ where } Q = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 & \vec{u}_4 \end{bmatrix} \text{ and } D = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.
$$

K ロ ▶ K 個 ▶ K 경 ▶ K 경 ▶

For the matrix
$$
A = \begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \end{bmatrix}
$$
 we can write
\n
$$
A = QDQ^{T} \text{ where } Q = \begin{bmatrix} \vec{u_1} & \vec{u_2} & \vec{u_3} & \vec{u_4} \end{bmatrix} \text{ and } D = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.
$$

Here

$$
Q=\frac{1}{\sqrt{2}}\begin{bmatrix}1&0&1&0\\0&1&0&1\\1&0&-1&0\\0&1&0&-1\end{bmatrix}
$$

K ロ ▶ K 個 ▶ K 경 ▶ K 경 ▶

For the matrix
$$
A = \begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \end{bmatrix}
$$
 we can write
\n
$$
A = QDQ^{T} \text{ where } Q = \begin{bmatrix} \vec{u_1} & \vec{u_2} & \vec{u_3} & \vec{u_4} \end{bmatrix} \text{ and } D = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.
$$

Here

$$
Q=\frac{1}{\sqrt{2}}\begin{bmatrix}1&0&1&0\\0&1&0&1\\1&0&-1&0\\0&1&0&-1\end{bmatrix}
$$

which is an *orthogonal* matrix (i.e., $Q^{\mathcal{T}}Q = I)$ [and](#page-56-0) [therefore](#page-0-0) $Q^{\mathcal{T}}$ = $\subset Q^{-1}$.