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Least Squares Solution to a System of Linear Equations

A vector x̂ is a least squares solution to A~x = ~b provided for any ~x ,

‖Ax̂− ~b‖ ≤ ‖A~x − ~b‖ .

Here, when A is m × n, ~x is any vector in Rn.

The vector b̂ = ProjCS(A)(~b) lies in

CS(A) and is nearest/closest to ~b,
so any solution x̂ to

A~x = b̂

is a least squares solution.

To find a least squares solution to A~x = ~b:

Calculate the orthogonal projection b̂ = ProjCS(A)(~b). Work!

Solve A~x = b̂. Not difficult, right?
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Using Geometry to Get a Least Squares Solution

We want to find a solution x̂ to A~x = b̂ = ProjCS(A)(~b).

Recall that ~b = b̂ + ~z where ~z is orthogonal to CS(A). Thus, ~z lies in the

orthogonal complement
(
CS(A)

)⊥
= NS(AT ). So,

AT~b − ATA x̂ = AT (~b − A x̂) = AT (~b − b̂) = AT~z = ~0.

That is,
A x̂ = b̂ ⇐⇒ ATA x̂ = AT~b.

Any solution x̂ to ATA~x = AT~b is a least squares solution to A~x = ~b.

When will we get a unique least squares solution?
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Unique Solutions to A~x = ~b

Recall the Solution Set Trichotomy. What does this tell us?

For which vectors ~b do we know that A~x = ~b definitely has a solution?

When does A~x = ~0 have a unique solution?
What does this have to do with an REF for A?
What does this mean, if it is true, about the columns of A?

What can we “do” with A if its columns are linearly independent?

If A has linearly independent columns, we can factor A as A = QR
where. . . .
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The QR Factorization

Let A be a matrix with linearly independent columns, say
A =

[
~a1 ~a2 . . . ~an

]
where ~aj = Colj(A) is in Rm.

Then A = {~a1, ~a2, . . . , ~an} is a basis for the column space CS(A).

Gram-Schmidt A to get an orthon basis U = {~u1, ~u2, . . . , ~un} for CS(A).

Then A = QR where Q =
[
~u1 ~u2 . . . ~un

]
and R is an invertible upper

triangular matrix.

Since U is orthonormal, QTQ = I , and therefore R = QTA .

Moreover, P = QQT is the standard matrix for the linear transformation
ProjCS(A). Right?
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Unique Least Squares Solutions to A~x = ~b

For any matrix A, the following are equivalent.

If A~x = ~b has a solution, it is unique.

A~x = ~0 if and only if ~x = ~0.

The columns of A are linearly independent.

A = QR with QTQ = I and R invertible upper triangular.

ATA is invertible. (ATA = (QR)TQR = RTQTQR = RTR :-)

A~x = ~b has a unique least squares solution for every ~b.

ATA~x = AT~b has the unique solution x̂ =
(
ATA

)−1
AT~b.

ATA~x = AT~b has the unique solution x̂ = R−1QT~b.
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One more look at A~x = b̂ = ProjCS(A)(~b)

Suppose A = QR with QTQ = I and R invertible upper triangular.

Since P = QQT is the standard matrix for the LT ProjCS(A),

b̂ = ProjCS(A)(~b) = P~b = QQT~b. So, we can rewrite A~x = b̂ as

QR~x = A~x = b̂ = QQT~b

and multiplying by QT (and remembering that QTQ = I ) we get

R~x = QT~b with the unique solution x̂ = R−1QT~b.

However, R is already upper triangular, so it is almost always better to
just solve R~x = QT~b.
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Finding a Least Squares Solution via A = QR

Let’s find a least squares solution to

3 −6
4 −8
0 1

[x
y

]
=

−1
7
2

.

It’s easy to find the QR-factorization for the above coefficient matrix:3 −6
4 −8
0 1

 =
1

5

3 0
4 0
0 5

[5 −10
0 1

]
.

Now we want to solve R~x = QT~b which is

[
5 −10
0 1

] [
x
y

]
=

1

5

[
3 4 0
0 0 5

]−1
7
2

 =

[
5
2

]
.

Thus

[
x̂
ŷ

]
=

[
5
2

]
. Notice that

3 −6
4 −8
0 1

[5
2

]
=

3
4
2

.
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