Least Squares Solutions and the *QR* Factorization

> Linear Algebra MATH 2076

Least Squares Solution to a System of Linear Equations

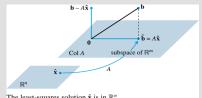
A vector $\hat{\mathbf{x}}$ is a *least squares solution* to $A\vec{x} = \vec{b}$ provided for any \vec{x} ,

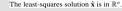
$$\|A\hat{\mathbf{x}} - \vec{b}\| \le \|A\vec{x} - \vec{b}\|.$$

Here, when A is $m \times n$, \vec{x} is any vector in \mathbb{R}^n .

The vector $\hat{\mathbf{b}} = \operatorname{Proj}_{\mathcal{CS}(A)}(\vec{b})$ lies in $\mathcal{CS}(A)$ and is nearest/closest to \vec{b} , so any solution $\hat{\mathbf{x}}$ to

$$A\vec{x} = \hat{\mathbf{b}}$$





is a least squares solution.

To find a least squares solution to $A\vec{x} = \vec{b}$:

• Calculate the orthogonal projection $\hat{\mathbf{b}} = \operatorname{Proj}_{\mathcal{CS}(\mathcal{A})}(\vec{b})$.

• Solve $A\vec{x} = \hat{\mathbf{b}}$.

Linear Algebra

Not difficult, right?

Work!

Using Geometry to Get a Least Squares Solution

We want to find a solution $\hat{\mathbf{x}}$ to $A\vec{x} = \hat{\mathbf{b}} = \operatorname{Proj}_{\mathcal{CS}(A)}(\vec{b})$.

Recall that $\vec{b} = \hat{\mathbf{b}} + \vec{z}$ where \vec{z} is orthogonal to $\mathcal{CS}(A)$. Thus, \vec{z} lies in the orthogonal complement $(\mathcal{CS}(A))^{\perp} = \mathcal{NS}(A^{\top})$. So,

$$A^{\mathsf{T}}\vec{b} - A^{\mathsf{T}}A\hat{\mathbf{x}} = A^{\mathsf{T}}(\vec{b} - A\hat{\mathbf{x}}) = A^{\mathsf{T}}(\vec{b} - \hat{\mathbf{b}}) = A^{\mathsf{T}}\vec{z} = \vec{0}.$$

That is,

$$A\,\hat{\mathbf{x}} = \hat{\mathbf{b}} \iff A^T A\,\hat{\mathbf{x}} = A^T\,\vec{b}.$$

Any solution $\hat{\mathbf{x}}$ to $\begin{bmatrix} A^T A \vec{x} = A^T \vec{b} \end{bmatrix}$ is a least squares solution to $A \vec{x} = \vec{b}$.

When will we get a unique least squares solution?

Recall the Solution Set Trichotomy. What does this tell us?

For which vectors \vec{b} do we know that $A\vec{x} = \vec{b}$ definitely has a solution?

When does $A\vec{x} = \vec{0}$ have a unique solution? What does this have to do with an REF for *A*? What does this mean, if it is true, about the columns of *A*?

What can we "do" with A if its columns are linearly independent?

If A has linearly independent columns, we can factor A as A = QR where....

The QR Factorization

Let A be a matrix with linearly independent columns, say $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} \dots \vec{a_n} \end{bmatrix} \text{ where } \vec{a_j} = \operatorname{Col}_j(A) \text{ is in } \mathbb{R}^m.$ Then $\mathcal{A} = \{ \vec{a_1}, \vec{a_2}, \dots, \vec{a_n} \}$ is a basis for the column space $\mathcal{CS}(A)$.

Gram-Schmidt \mathcal{A} to get an orthon basis $\mathcal{U} = \{\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}\}$ for $\mathcal{CS}(\mathcal{A})$. Then A = QR where $Q = [\vec{u_1} \ \vec{u_2} \dots \vec{u_n}]$ and R is an *invertible* upper triangular matrix.

Since \mathcal{U} is *orthonormal*, $Q^T Q = I$, and therefore $R = Q^T A$.

Moreover, $P = QQ^T$ is the standard matrix for the linear transformation $Proj_{CS(A)}$. Right?

Unique Least Squares Solutions to $A\vec{x} = \vec{b}$

For any matrix A, the following are equivalent.

- If $A\vec{x} = \vec{b}$ has a solution, it is unique.
- $A\vec{x} = \vec{0}$ if and only if $\vec{x} = \vec{0}$.
- The columns of A are linearly independent.
- A = QR with $Q^{T}Q = I$ and R invertible upper triangular.
- $A^T A$ is invertible. $(A^T A = (QR)^T QR = R^T Q^T QR = R^T R :-)$
- $A\vec{x} = \vec{b}$ has a unique least squares solution for every \vec{b} .
- $A^T A \vec{x} = A^T \vec{b}$ has the unique solution $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \vec{b}$.
- $A^T A \vec{x} = A^T \vec{b}$ has the unique solution $\hat{\mathbf{x}} = R^{-1} Q^T \vec{b}$.

One more look at $A\vec{x} = \hat{\mathbf{b}} = \operatorname{Proj}_{\mathcal{CS}(A)}(\vec{b})$

Suppose A = QR with $Q^{T}Q = I$ and R invertible upper triangular.

Since $P = QQ^{T}$ is the standard matrix for the LT $\operatorname{Proj}_{\mathcal{CS}(A)}$, $\hat{\mathbf{b}} = \operatorname{Proj}_{\mathcal{CS}(A)}(\vec{b}) = P\vec{b} = QQ^{T}\vec{b}$. So, we can rewrite $A\vec{x} = \hat{\mathbf{b}}$ as

$$QR\vec{x} = A\vec{x} = \hat{\mathbf{b}} = QQ^T\vec{b}$$

and multiplying by Q^T (and remembering that $Q^T Q = I$) we get

$$R\vec{x} = Q^T\vec{b}$$
 with the unique solution $\hat{\mathbf{x}} = R^{-1}Q^T\vec{b}$.

However, R is already upper triangular, so it is almost always better to just solve $R\vec{x} = Q^T\vec{b}$.

Finding a Least Squares Solution via A = QR

Let's find a least squares solution to

$$\begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 7 \\ 2 \end{bmatrix}.$$

It's easy to find the QR-factorization for the above coefficient matrix:

$$\begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 3 & 0 \\ 4 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix}$$

Now we want to solve $R\vec{x} = Q^T\vec{b}$ which is

$$\begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 3 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} -1 \\ 7 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

Thus $\begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$. Notice that $\begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix}$.

Linear Algebra