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A “Best Fit” Line
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A “Best Fit” Polynomial
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Another “Best Fit” Polynomial
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Finding a “Best Fit” Parabola

Let’s find the polynomial p(t) = c0 + c1t + c2t
2 whose graph “best fits”

the data points (1, 7), (2, 2), (3, 1), (4, 3).
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Modest efforts reveal that the QR-factorization is given via
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So, we must solve
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Finding a “Best Fit” Parabola

We must solve2 5 15
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Clearly c2 = 7/4 = 1.75. Here it is
much easier to use back substitution!
Then c1 + 5c2 = −1.3, so c1 = −10.05.
Next c0 = 13

4 −
5
2c1 −

15
2 c2 = 15.25.

Thus our “best fit” polynomial is

p(t) = 15.25− 10.05t + 1.75t2.

Notice that
p(1) = 6.95 6= 7,p(4) = 3.05 6= 3.
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