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Two Examples

Suppose we want to solve A~x = ~b where A is an 8× 3 matrix.

This corresponds to an SLE with 8 equations but only 3 unknowns. Such a
system is highly overdetermined, and almost surely will be inconsistent. In
fact, ~b is a vector in R8, however, dim CS(A) ≤ 3.

But, what if we (our boss) really wants a “solution”?

Suppose we want to find the “best fit” line
for the data points (1, 2), (2, 2), (3, 4)? We
see—look at the pix—that no line goes
through all 3 points. How should we
proceed?

(1, 2)
(2, 2)

(3, 4)

Recall that A~x = ~b has a solution iff ~b lies in CS(A).
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“Solving” an Inconsistent System of Linear Equations

We need to solve A~x = ~b, but ~b is not in CS(A). How should we proceed?

We search for ~x so that A~x is “as
close to ~b ” as possible. That is, we
find a vector x̂ with the property that
for any ~x ,

‖Ax̂− ~b‖ ≤ ‖A~x − ~b‖ .

Such a vector x̂ is called a least
squares solution to A~x = ~b.
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Least Squares Solution to a System of Linear Equations

A vector x̂ is a least squares solution to A~x = ~b provided for any ~x ,

‖Ax̂− ~b‖ ≤ ‖A~x − ~b‖ .

Here, when A is m × n, ~x is any vector in Rn.
Thus we must solve the minimization problem:

Find min
~x in Rn

‖A~x − ~b‖2 =
m∑
j=1

(
(A~x)j − bj

)2
How should we proceed?
Calculus works! You see this approach in a statistics course.

It’s more elegant, and easier too, to use Geometry and Linear Algebra.
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Best Approximation Theorem for Orthogonal Projection

Recall that the orthogonal projection
of a vector ~y onto a vector subspace
W gives us the vector ŷ in W that is
nearest to ~y . Let’s apply this with
~y = ~b and W = CS(A). We see that
the vector in CS(A) that is
nearest/closest to ~b is

b̂ = ProjCS(A)(~b).

Since b̂ lies in CS(A), we can solve
A~x = b̂, and any solution to this is a
least squares solution to A~x = ~b,
right?

Linear Algebra Least Squares Solutions Chapter 6, Section 5 5 / 9



Least Squares Solution to a System of Linear Equations

A vector x̂ is a least squares solution to A~x = ~b provided for any ~x ,

‖Ax̂− ~b‖ ≤ ‖A~x − ~b‖ .

Here, when A is m × n, ~x is any vector in Rn.

The vector b̂ = ProjCS(A)(~b) lies in

CS(A) and is nearest/closest to ~b,
so any solution x̂ to

A~x = b̂

is a least squares solution.

To find a least squares solution to A~x = ~b:

Calculate the orthogonal projection b̂ = ProjCS(A)(~b). Work!

Solve A~x = b̂. Not difficult, right?
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Using Geometry to Get a Least Squares Solution

We want to find a solution x̂ to A~x = b̂ = ProjCS(A)(~b).

Recall that ~b = b̂ + ~z where ~z is orthogonal to CS(A). Thus, ~z lies in the

orthogonal complement
(
CS(A)

)⊥
= NS(AT ). So,

AT~b − ATA x̂ = AT (~b − A x̂) = AT (~b − b̂) = AT~z = ~0.

That is,
A x̂ = b̂ ⇐⇒ ATA x̂ = AT~b.

Any solution x̂ to ATA~x = AT~b is a least squares solution to A~x = ~b.
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Least Squares Example

We find a least squares solution to

 1 4
−3 3
5 1

[x
y

]
=

−16
28
6

.

We compute[
1 −3 5
4 3 1

] 1 4
−3 3
5 1

 =

[
35 0
0 26

]
and

[
1 −3 5
4 3 1

]−16
28
6

 =

[
−70
26

]
.

So, we must solve [
35 0
0 26

] [
x
y

]
=

[
−70
26

]
which has the unique solution [

x
y

]
=

[
−2
1

]
.

When will we get a unique least squares solution?
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Least Squares Example—“Line Fitting”

Let’s find the “best fit” line y = b + mx for the points (1, 2), (2, 2), (3, 4).
Here b,m are the unknowns (aka, the variables) and we wish to solve the
SLE 

b + 1m = 2

b + 2m = 2

b + 3m = 4

which clearly has no solutions.

Let A =

1 1
1 2
1 3

 , ~b =

2
2
4

.

Now compute!

ATA =

[
1 1 1
1 2 3

]1 1
1 2
1 3

 =

[
3 6
6 14

]
and AT~b =

[
1 1 1
1 2 3

]2
2
4

 =

[
8

18

]
.

Performing some elementary row operations we deduce that[
3 6 8
6 14 18

]
∼
[

1 0 2
3

0 1 1

]
and thus b = 2

3 and m = 1; so y = 2
3 + x is the “best fit” line.

Linear Algebra Least Squares Solutions Chapter 6, Section 5 9 / 9


