Least Squares Solutions and Orthogonal Projection

> Linear Algebra MATH 2076

Two Examples

Suppose we want to solve $A\vec{x} = \vec{b}$ where A is an 8 × 3 matrix.

This corresponds to an SLE with 8 equations but only 3 unknowns. Such a system is highly overdetermined, and almost surely will be inconsistent. In fact, \vec{b} is a vector in \mathbb{R}^8 , however, dim $\mathcal{CS}(A) \leq 3$.

But, what if we (our boss) really wants a "solution"?

Suppose we want to find the "best fit" line for the data points (1,2), (2,2), (3,4)? We see—look at the pix—that no line goes through all 3 points. How should we proceed?

Recall that $A\vec{x} = \vec{b}$ has a solution iff \vec{b} lies in CS(A).

"Solving" an Inconsistent System of Linear Equations

We need to solve $A\vec{x} = \vec{b}$, but \vec{b} is **not** in CS(A). How should we proceed?

We search for \vec{x} so that $A\vec{x}$ is "as close to \vec{b} " as possible. That is, we find a vector $\hat{\mathbf{x}}$ with the property that for any \vec{x} ,

$$\|A\hat{\mathbf{x}} - \vec{b}\| \le \|A\vec{x} - \vec{b}\|.$$

Such a vector $\hat{\mathbf{x}}$ is called a *least* squares solution to $A\vec{x} = \vec{b}$.

The vector **b** is closer to $A\hat{\mathbf{x}}$ than to $A\mathbf{x}$ for other **x**.

Least Squares Solution to a System of Linear Equations

A vector $\hat{\mathbf{x}}$ is a *least squares solution* to $A\vec{x} = \vec{b}$ provided for any \vec{x} ,

$$\|A\hat{\mathbf{x}}-\vec{b}\| \le \|A\vec{x}-\vec{b}\|.$$

Here, when A is $m \times n$, \vec{x} is any vector in \mathbb{R}^n . Thus we must solve the **minimization** problem:

Find
$$\min_{\vec{x} \text{ in } \mathbb{R}^n} ||A\vec{x} - \vec{b}||^2 = \sum_{j=1}^m ((A\vec{x})_j - b_j)^2$$

How should we proceed?

Calculus works! You see this approach in a statistics course.

It's more elegant, and easier too, to use Geometry and Linear Algebra.

Best Approximation Theorem for Orthogonal Projection

Recall that the orthogonal projection of a vector \vec{y} onto a vector subspace \mathbb{W} gives us the vector \hat{y} in \mathbb{W} that is nearest to \vec{y} . Let's apply this with $\vec{y} = \vec{b}$ and $\mathbb{W} = CS(A)$. We see that the vector in CS(A) that is nearest/closest to \vec{b} is

$$\hat{\mathbf{b}} = \operatorname{Proj}_{\mathcal{CS}(A)}(\vec{b}).$$

Since $\hat{\mathbf{b}}$ lies in $\mathcal{CS}(A)$, we can solve $A\vec{x} = \hat{\mathbf{b}}$, and any solution to this is a least squares solution to $A\vec{x} = \vec{b}$, right?

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y} .

The vector **b** is closer to $A\hat{\mathbf{x}}$ than to $A\mathbf{x}$ for other **x**.

Least Squares Solution to a System of Linear Equations

A vector $\hat{\mathbf{x}}$ is a *least squares solution* to $A\vec{x} = \vec{b}$ provided for any \vec{x} ,

$$\|A\hat{\mathbf{x}} - \vec{b}\| \le \|A\vec{x} - \vec{b}\|.$$

Here, when A is $m \times n$, \vec{x} is any vector in \mathbb{R}^n .

The vector $\hat{\mathbf{b}} = \operatorname{Proj}_{\mathcal{CS}(A)}(\vec{b})$ lies in $\mathcal{CS}(A)$ and is nearest/closest to \vec{b} , so any solution $\hat{\mathbf{x}}$ to

$$A\vec{x} = \hat{\mathbf{b}}$$

is a least squares solution.

To find a least squares solution to $A\vec{x} = \vec{b}$:

• Calculate the orthogonal projection $\hat{\mathbf{b}} = \operatorname{Proj}_{\mathcal{CS}(\mathcal{A})}(\vec{b})$.

• Solve $A\vec{x} = \hat{\mathbf{b}}$.

Chapter 6, Section 5

Work!

6/9

Using Geometry to Get a Least Squares Solution

We want to find a solution $\hat{\mathbf{x}}$ to $A\vec{x} = \hat{\mathbf{b}} = \operatorname{Proj}_{\mathcal{CS}(A)}(\vec{b}).$

Recall that $\vec{b} = \hat{\mathbf{b}} + \vec{z}$ where \vec{z} is orthogonal to $\mathcal{CS}(A)$. Thus, \vec{z} lies in the orthogonal complement $(\mathcal{CS}(A))^{\perp} = \mathcal{NS}(A^{\top})$. So,

$$A^{\mathsf{T}}\vec{b} - A^{\mathsf{T}}A\hat{\mathbf{x}} = A^{\mathsf{T}}(\vec{b} - A\hat{\mathbf{x}}) = A^{\mathsf{T}}(\vec{b} - \hat{\mathbf{b}}) = A^{\mathsf{T}}\vec{z} = \vec{0}.$$

That is,

$$A\,\hat{\mathbf{x}} = \hat{\mathbf{b}} \iff A^T A\,\hat{\mathbf{x}} = A^T\,\vec{b}.$$

Any solution $\hat{\mathbf{x}}$ to $A^T A \vec{x} = A^T \vec{b}$ is a least squares solution to $A \vec{x} = \vec{b}$.

Least Squares Example

We find a least squares solution to

$$\begin{bmatrix} 1 & 4 \\ -3 & 3 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -16 \\ 28 \\ 6 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & -3 & 5 \\ 4 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ -3 & 3 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} 35 & 0 \\ 0 & 26 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & -3 & 5 \\ 4 & 3 & 1 \end{bmatrix} \begin{bmatrix} -16 \\ 28 \\ 6 \end{bmatrix} = \begin{bmatrix} -70 \\ 26 \end{bmatrix}.$$

So, we must solve

$$\begin{bmatrix} 35 & 0 \\ 0 & 26 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -70 \\ 26 \end{bmatrix}$$

which has the unique solution

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}.$$

When will we get a unique least squares solution?

Linear Algebra

Least Squares Solutions

Least Squares Example—"Line Fitting"

Let's find the "best fit" line y = b + mx for the points (1, 2), (2, 2), (3, 4). Here b, m are the unknowns (aka, the variables) and we wish to solve the SLE

$$\begin{cases} b+1m=2\\ b+2m=2\\ b+3m=4 \end{cases}$$
 Let $A = \begin{bmatrix} 1 & 1\\ 1 & 2\\ 1 & 3 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 2\\ 2\\ 4 \end{bmatrix}$.
Now compute!

which clearly has no solutions.

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 6 & 14 \end{bmatrix} \text{ and } A^{T}\vec{b} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 8 \\ 18 \end{bmatrix}.$$

Performing some elementary row operations we deduce that

$$\begin{bmatrix} 3 & 6 & 8 \\ 6 & 14 & 18 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & 1 \end{bmatrix}$$

and thus $b = \frac{2}{3}$ and m = 1; so $y = \frac{2}{3} + x$ is the "best fit" line.