Gram-Schmidt Orthogonalization and the *QR* Factorization

Linear Algebra MATH 2076

The Gram-Schmidt Orthogonalization Procedure

This is an algorithm to produce an orthonormal basis from a basis.

We start with a basis $\{\vec{x_1}, \vec{x_2}, \dots, \vec{x_k}\}$ for some vector space \mathbb{W} .

Then we construct an orthogonal basis $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ for \mathbb{W} with certain nice properties.

Finally, we get an orthonormal basis $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\}$ for \mathbb{W} .

Normalization Step: For
$$1 \le i \le k$$
, $\vec{u_i} = \frac{\vec{v_i}}{\|\vec{v_i}\|}$.

First Step: $\vec{v}_1 = \vec{x}_1$.

How do we get $\vec{v}_2, \ldots, \vec{v}_k$?

Example with Basis $\{\vec{x}_1, \vec{x}_2\}$

Let $\{\vec{x}_1, \vec{x}_2\}$ be a basis for some 2-plane \mathbb{W} (in some \mathbb{R}^n).

Start with orthogonal projection $\vec{p}_2 = \operatorname{Proj}_{\vec{x}_1}(\vec{x}_2)$ of \vec{x}_2 onto \vec{x}_1 . This vector has the property that

$$\vec{v}_2 = \vec{x}_2 - \vec{p}_2 \perp \vec{x}_1.$$

$$\vec{p}_2 = \mathsf{Proj}_{\vec{x}_1}(\vec{x}_2)$$

Thus we find that $\vec{v}_1 = \vec{x}_1 \perp \vec{v}_2$ and $\mathcal{S}\mathit{pan}\{\vec{v}_1,\vec{v}_2\} = \mathcal{S}\mathit{pan}\{\vec{x}_1,\vec{x}_2\} = \mathbb{W}.$ So, $\{\vec{v}_1,\vec{v}_2\}$ is the desired orthogonal basis for $\mathbb{W}.$

Example with Basis $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$

Let $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$ be a basis for some 3-plane \mathbb{W} (in some \mathbb{R}^n).

Already have $\vec{v}_1 = \vec{x}_1$ and $\vec{v}_2 = \vec{x}_2 - \vec{p}_2$ where $\vec{p}_2 = \text{Proj}_{\vec{x}_1}(\vec{x}_2)$. Also know that $\mathbb{W}_2 = Span\{\vec{x}_1, \vec{x}_2\} = Span\{\vec{v}_1, \vec{v}_2\}.$

Look at orthogonal projection $\vec{p}_3 = \text{Proj}_{\mathbb{W}_2}(\vec{x}_3) \text{ of } \vec{x}_3 \text{ onto } \mathbb{W}_2.$

This vector has the property that

$$\vec{v}_3 = \vec{x}_3 - \vec{p}_3 \perp \mathbb{W}_2.$$

Thus we find that $\vec{v}_1 \perp \vec{v}_2 \perp \vec{v}_3 \perp \vec{v}_1$, so, $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is the desired orthogonal basis for W.

The Gram-Schmidt Orthogonalization Procedure

An algorithm to produce an orthonormal basis from a basis.

Start with a basis $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ for some vector space \mathbb{W} . For $1 \leq i < k$, set $\mathbb{W}_i = \mathcal{S}\textit{pan}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_i\}$.

Put $\vec{v}_1 = \vec{x}_1$. For $2 \le i \le k$:

Set

$$\vec{p_i} = \mathsf{Proj}_{\mathbb{W}_{i-1}}(\vec{x_i}) = \sum_{j=1}^{i-1} \mathsf{Proj}_{\vec{v_j}}(\vec{x_i}) = \sum_{j=1}^{i-1} \frac{\vec{x_i} \cdot \vec{v_j}}{\vec{v_j} \cdot \vec{v_j}} \vec{v_j} = \sum_{j=1}^{i-1} (\vec{x_i} \cdot \vec{u_j}) \vec{u_j}.$$

• Put $\vec{v}_i = \vec{x}_i - \vec{p}_i$.

Then $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ is an *orthogonal* basis for \mathbb{W} with

$$\mathbb{W}_i = \mathcal{S}pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_i\}.$$

Finally, we get an *orthonormal* basis $\{\vec{u_1}, \vec{u_2}, \dots, \vec{u_k}\}$ for \mathbb{W} by setting

$$ec{u_i} = rac{ec{v_i}}{\|ec{v_i}\|} ext{ for } 1 \leq i \leq k.$$

Start with
$$\vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\vec{x}_2 = \begin{bmatrix} -1 \\ 4 \\ 4 \end{bmatrix}$, $\vec{x}_3 = \begin{bmatrix} 4 \\ -2 \\ 2 \\ 0 \end{bmatrix}$. First, $\vec{v}_1 = \vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Next,
$$\vec{v}_2 = \vec{x}_2 - \vec{p}_2 \quad \text{where } \vec{p}_2 = \text{Proj}_{\vec{v}_1}(\vec{x}_2) \text{ and } \\ \vec{v}_3 = \vec{x}_3 - \vec{p}_3 \quad \text{where } \vec{p}_3 = \text{Proj}_{\mathbb{W}_2}(\vec{x}_3).$$

$$\vec{p}_2 = \text{Proj}_{\vec{v}_1}(\vec{x}_2) = \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{8}{4} \vec{v}_1 = 2\vec{x}_1, \quad \text{so, } \vec{v}_2 = \vec{x}_2 - 2\vec{x}_1 = \begin{bmatrix} -3 \\ 2 \\ 2 \\ -1 \end{bmatrix}$$

$$\vec{p}_3 = \text{Proj}_{\mathbb{W}_2}(\vec{x}_3) = \text{Proj}_{\vec{v}_1}(\vec{x}_3) + \text{Proj}_{\vec{v}_2}(\vec{x}_3) = \vec{x}_1 - \frac{2}{3}\vec{v}_2$$

$$\text{Proj}_{\vec{v}_1}(\vec{x}_3) = \frac{\vec{x}_3 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{4}{4} \vec{v}_1 = \vec{x}_1$$

$$\text{Proj}_{\vec{v}_2}(\vec{x}_3) = \frac{\vec{x}_3 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2 = \frac{-12}{18} \vec{v}_2 = \frac{-2}{3} \vec{v}_2$$
 So $\vec{v}_3 = \vec{x}_3 - \vec{x}_1 + \frac{2}{3} \vec{v}_2$ Finally, check orthogonality of
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -3 \\ 2 \\ 2 \\ -1 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 3 \\ -5 \\ 7 \\ -5 \end{bmatrix}.$$

Started with basis
$$\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$$
 where $\vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} -1 \\ 4 \\ 4 \\ 1 \end{bmatrix}, \vec{x}_3 = \begin{bmatrix} 4 \\ -2 \\ 2 \\ 0 \end{bmatrix}$.

Got orthogonal basis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ where

$$ec{v_1} = egin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, ec{v_2} = egin{bmatrix} -3 \\ 2 \\ 2 \\ -1 \end{bmatrix}, ec{v_3} = egin{bmatrix} 3 \\ -5 \\ 7 \\ -5 \end{bmatrix}.$$

To get orthonormal basis $\{\vec{u_1}, \vec{u_2}, \vec{u_3}\}$, just normalize!

Find that
$$\vec{u_1} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{u_2} = \frac{1}{3\sqrt{2}} \begin{bmatrix} -3 \\ 2 \\ 2 \end{bmatrix}, \vec{u_3} = \frac{1}{6\sqrt{3}} \begin{bmatrix} 3 \\ -5 \\ 7 \end{bmatrix}.$$

Starting with basis
$$\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$$
 where $\vec{x}_1 = \begin{bmatrix} -1\\1\\1\\0 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}, \vec{x}_3 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$.

Get orthogonal basis $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ where

$$ec{v_1} = egin{bmatrix} -1 \ 1 \ 1 \ 0 \end{bmatrix}, ec{v_2} = egin{bmatrix} 1 \ 2 \ -1 \ 0 \end{bmatrix}, ec{v_3} = egin{bmatrix} 1 \ 0 \ 1 \ 2 \end{bmatrix}.$$

To get orthonormal basis $\{\vec{u_1}, \vec{u_2}, \vec{u_3}\}$, just normalize!

Find that
$$\vec{u_1} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\1\\1\\0 \end{bmatrix}, \vec{u_2} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\2\\-1\\0 \end{bmatrix}, \vec{u_3} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\0\\1\\2 \end{bmatrix}.$$

The QR Factorization

Let A be a matrix with linearly independent columns, say

$$A = [\vec{a}_1 \ \vec{a}_2 \dots \vec{a}_k]$$
 where $\vec{a}_j = \operatorname{Col}_j(A)$ is in \mathbb{R}^n .

Then $\mathcal{A} = \{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_k\}$ is a basis for the column space $\mathcal{CS}(A)$.

Gram-Schmidt \mathcal{A} to get an orthon basis $\mathcal{U} = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\}$ for $\mathcal{CS}(A)$.

Then each $\vec{a_j}$ can be written as a LC of the $\mathcal U$ vectors, so we get

Thus
$$A = QR$$
 where $Q = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 \dots \vec{u}_k \end{bmatrix}$ $\vec{a}_j = \sum_{i=1}^k r_{ij} \vec{u}_i = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 \dots \vec{u}_k \end{bmatrix} \begin{bmatrix} r_{1j} \\ r_{2j} \\ \vdots \\ r_{kj} \end{bmatrix}$ and $R = [r_{ij}]$.

Since \mathcal{U} is *orthonormal*, $Q^TQ = I$, and therefore $R = Q^TA$.

A QR Factorization Example

Let
$$A = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
. Get orthon basis $\mathcal{U} = \{\vec{u_1}, \vec{u_2}, \vec{u_3}\}$ for $\mathcal{CS}(A)$ where
$$\vec{u_1} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \vec{u_2} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}, \vec{u_3} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \end{bmatrix}.$$
 Then

$$Q = \frac{1}{\sqrt{6}} \begin{bmatrix} -\sqrt{2} & 1 & 1\\ \sqrt{2} & 2 & 0\\ \sqrt{2} & -1 & 1\\ 0 & 0 & 2 \end{bmatrix}$$

SO

$$R = Q^{T} A = \frac{1}{\sqrt{6}} \begin{bmatrix} -\sqrt{2} & \sqrt{2} & \sqrt{2} & 0 \\ 1 & 2 & -1 & 0 \\ 1 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 3\sqrt{2} & 2\sqrt{2} & -\sqrt{2} \\ 0 & -2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$