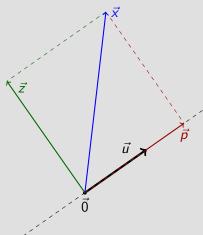
The Gram-Schmidt Orthogonalization Procedure

Linear Algebra MATH 2076

Orthogonal Projection Onto a Vector

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.



The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$.

For this to hold, we need $\vec{z} \cdot \vec{u} = 0$, which allows us to determine s. We find that

$$s = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}$$

and thus

$$\vec{p} = \mathsf{Proj}_{\vec{u}}(\vec{x}) = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}.$$

Note that $\vec{x} = \vec{p} + \vec{z}$ where $\vec{p} \parallel \vec{u}$ and $\vec{z} \perp \vec{u}$.

Orthogonal Projection onto a Vector Subspace \mathbb{W}

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

In fact,

$$\vec{p} = \sum_{i=1}^{K} \operatorname{Proj}_{\vec{b}_i}(\vec{x}) = \sum_{i=1}^{K} \frac{\vec{x} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \vec{b}_i \quad \text{and } \vec{z} = \vec{x} - \vec{p}.$$

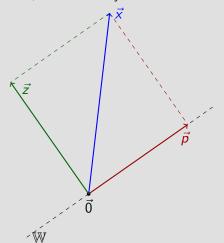
Definition

We call \vec{p} the *orthogonal projection of* \vec{x} *onto* \mathbb{W} , and write $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x})$.

Note that we need an *orthogonal basis* \mathcal{B} to compute $Proj_{\mathbb{W}}(\vec{x})$.

Orthogonal Projection Onto a Vector Subspace

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{W} of \mathbb{R}^n , and \vec{x} be any vector in \mathbb{R}^n .



The orthogonal projection of \vec{x} onto \mathbb{W} is the pictured vector \vec{p} which lies in \mathbb{W} and has the property that

$$\vec{z} = \vec{x} - \vec{p} \perp \mathbb{W}.$$

Recall that

$$\vec{p} = \mathsf{Proj}_{\mathbb{W}}(\vec{x}) = \sum_{i=1}^{k} \vec{p}_i$$

where

$$ec{p_i} = \mathsf{Proj}_{ec{b_i}}(ec{x}) = rac{ec{x} \cdot ec{b_i}}{ec{b_i} \cdot ec{b_i}} \, ec{b_i}.$$

Note that we need an *orthogonal basis* \mathcal{B} to compute $Proj_{\mathbb{W}}(\vec{x})$.

Examples

Find orthogonal projection onto $\mathbb{W} = \{x_1 + x_2 + x_3 = 0\}.$

Easy to get basis for \mathbb{W} , but how to get orthogonal basis?

Simplest way to do this problem is to find orthogonal projection onto

$$\mathbb{W}^{\perp} = \mathcal{S}pan\{\vec{n}\}$$
 where $\vec{n} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Then use fact that $\operatorname{Proj}_{\mathbb{W}} + \operatorname{Proj}_{\mathbb{W}^{\perp}} = \operatorname{Id}$, so $\operatorname{Proj}_{\mathbb{W}}(\vec{x}) = \vec{x} - \operatorname{Proj}_{\mathbb{W}^{\perp}}(\vec{x})$.

Find orthogonal projection onto

$$\mathbb{W} = \{x_1 + x_2 + x_3 + x_4 = 0, x_2 + x_3 + x_4 = 0\} = \mathcal{NS}\left(\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}\right).$$

Easy to get basis for \mathbb{W} , but how to get orthogonal basis?

Here \mathbb{W} is a 2-plane in \mathbb{R}^4 , so \mathbb{W}^{\perp} is also a 2-plane in \mathbb{R}^4 .

Given a basis, how do we get an orthogonal basis?

Linear Algebra

First Look at Gram-Schmidt Orthogonalization Procedure

This is an algorithm to produce an orthonormal basis from a basis.

We start with a basis $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ for some vector space \mathbb{W} .

Then we construct an orthogonal basis $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ for \mathbb{W} with certain nice properties.

Finally, we get an orthonormal basis $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\}$ for \mathbb{W} .

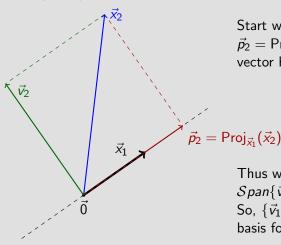
Normalization Step: For
$$1 \le i \le k$$
, $\vec{u_i} = \frac{\vec{v_i}}{\|\vec{v_i}\|}$.

First Step: $\vec{v}_1 = \vec{x}_1$.

How do we get $\vec{v}_2, \ldots, \vec{v}_k$?

Example with Basis $\{\vec{x}_1, \vec{x}_2\}$

Let $\{\vec{x_1}, \vec{x_2}\}$ be a basis for some 2-plane \mathbb{W} (in some \mathbb{R}^n).



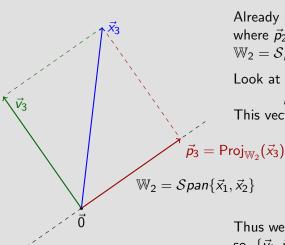
Start with orthogonal projection $\vec{p}_2 = \text{Proj}_{\vec{x}_1}(\vec{x}_2) \text{ of } \vec{x}_2 \text{ onto } \vec{x}_1.$ This vector has the property that

$$\vec{v}_2 = \vec{x}_2 - \vec{p}_2 \perp \vec{x}_1.$$

Thus we find that $\vec{v_1} = \vec{x_1} \perp \vec{v_2}$ and $Span\{\vec{v}_1,\vec{v}_2\} = Span\{\vec{x}_1,\vec{x}_2\} = \mathbb{W}.$ So, $\{\vec{v}_1, \vec{v}_2\}$ is the desired orthogonal basis for W.

Example with Basis $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$

Let $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$ be a basis for some 3-plane \mathbb{W} (in some \mathbb{R}^n).



Already have $\vec{v}_1 = \vec{x}_1$ and $\vec{v}_2 = \vec{x}_2 - \vec{p}_2$ where $\vec{p}_2 = \text{Proj}_{\vec{x}_1}(\vec{x}_2)$. Also know that $\mathbb{W}_2 = Span\{\vec{x}_1, \vec{x}_2\} = Span\{\vec{v}_1, \vec{v}_2\}.$

Look at orthogonal projection $\vec{p}_3 = \mathsf{Proj}_{\mathbb{W}_2}(\vec{x}_3) \text{ of } \vec{x}_3 \text{ onto } \mathbb{W}_2.$

This vector has the property that

$$\vec{v}_3 = \vec{x}_3 - \vec{p}_3 \perp \mathbb{W}_2.$$

Thus we find that $\vec{v}_1 \perp \vec{v}_2 \perp \vec{v}_3 \perp \vec{v}_1$, so, $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is the desired orthogonal basis for W.

Start with
$$\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
, $\vec{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. First, $\vec{v}_1 = \vec{x}_1$.

Next, $\vec{v}_2 = \vec{x}_2 - \vec{p}_2$ where $\vec{p}_2 = \text{Proj}_{\vec{v}_1}(\vec{x}_2) = \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1$, so

$$\vec{v}_2 = \vec{x}_2 - \vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$$
. Finally, $\vec{v}_3 = \vec{x}_3 - \vec{p}_3$ where $\vec{p}_3 = \text{Proj}_{\mathbb{W}_2}(\vec{x}_3)$.

First, $\vec{v}_1 = \vec{x}_1$.

Here $\vec{p}_3 = \text{Proj}_{\mathbb{W}_2}(\vec{x}_3) = \text{Proj}_{\vec{v}_1}(\vec{x}_3) + \text{Proj}_{\vec{v}_2}(\vec{x}_3)$. Now

Here
$$p_3 = \text{Proj}_{\mathbb{W}_2}(x_3) = \text{Proj}_{\vec{v}_1}(x_3) + \text{Proj}_{\vec{v}_2}(x_3)$$
. Now
$$\text{Proj}_{\vec{v}_1}(\vec{x}_3) = \frac{\vec{x}_3 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1 \text{ and } \text{Proj}_{\vec{v}_2}(\vec{x}_3) = \frac{\vec{x}_3 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2 = 0 \vec{v}_2 = \vec{0} \,.$$
 Finally, check that

Finally, check that Thus $\vec{p}_3 = \vec{x}_1$, so $ec{v_1} = egin{bmatrix} 1 \ 0 \ 1 \ \end{bmatrix}, ec{v_2} = egin{bmatrix} 1 \ 1 \ -1 \ \end{bmatrix}, ec{v_3} = egin{bmatrix} 0 \ 0 \ 0 \ 1 \end{bmatrix}$ $\vec{v}_3 = \vec{x}_3 - \vec{x}_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$ are orthogonal.

Started with basis
$$\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$$
 where $\vec{x}_1 = \begin{bmatrix} 1\\0\\1\\0\end{bmatrix}, \vec{x}_2 = \begin{bmatrix} 2\\1\\0\\0\end{bmatrix}, \vec{x}_3 = \begin{bmatrix} 1\\0\\1\\1\end{bmatrix}$.

Got orthogonal basis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ where $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

To get orthonormal basis $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$, just normalize!

Get
$$\vec{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{u}_2 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$