The Gram-Schmidt Orthogonalization Procedure Linear Algebra MATH 2076 #### Orthogonal Projection Onto a Vector Let \vec{u} be a fixed vector, and \vec{x} a variable vector. The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$. For this to hold, we need $\vec{z} \cdot \vec{u} = 0$, which allows us to determine s. We find that $$s = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}$$ and thus $$\vec{p} = \mathsf{Proj}_{\vec{u}}(\vec{x}) = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}.$$ Note that $\vec{x} = \vec{p} + \vec{z}$ where $\vec{p} \parallel \vec{u}$ and $\vec{z} \perp \vec{u}$. ## Orthogonal Projection onto a Vector Subspace \mathbb{W} Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{W} of \mathbb{R}^n . #### Theorem (Orthogonal Decomposition Theorem) Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} . In fact, $$\vec{p} = \sum_{i=1}^{K} \operatorname{Proj}_{\vec{b}_i}(\vec{x}) = \sum_{i=1}^{K} \frac{\vec{x} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \vec{b}_i \quad \text{and } \vec{z} = \vec{x} - \vec{p}.$$ #### Definition We call \vec{p} the *orthogonal projection of* \vec{x} *onto* \mathbb{W} , and write $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x})$. Note that we need an *orthogonal basis* \mathcal{B} to compute $Proj_{\mathbb{W}}(\vec{x})$. ## Orthogonal Projection Onto a Vector Subspace Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{W} of \mathbb{R}^n , and \vec{x} be any vector in \mathbb{R}^n . The orthogonal projection of \vec{x} onto \mathbb{W} is the pictured vector \vec{p} which lies in \mathbb{W} and has the property that $$\vec{z} = \vec{x} - \vec{p} \perp \mathbb{W}.$$ Recall that $$\vec{p} = \mathsf{Proj}_{\mathbb{W}}(\vec{x}) = \sum_{i=1}^{k} \vec{p}_i$$ where $$ec{p_i} = \mathsf{Proj}_{ec{b_i}}(ec{x}) = rac{ec{x} \cdot ec{b_i}}{ec{b_i} \cdot ec{b_i}} \, ec{b_i}.$$ Note that we need an *orthogonal basis* \mathcal{B} to compute $Proj_{\mathbb{W}}(\vec{x})$. #### **Examples** Find orthogonal projection onto $\mathbb{W} = \{x_1 + x_2 + x_3 = 0\}.$ Easy to get basis for \mathbb{W} , but how to get orthogonal basis? Simplest way to do this problem is to find orthogonal projection onto $$\mathbb{W}^{\perp} = \mathcal{S}pan\{\vec{n}\}$$ where $\vec{n} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Then use fact that $\operatorname{Proj}_{\mathbb{W}} + \operatorname{Proj}_{\mathbb{W}^{\perp}} = \operatorname{Id}$, so $\operatorname{Proj}_{\mathbb{W}}(\vec{x}) = \vec{x} - \operatorname{Proj}_{\mathbb{W}^{\perp}}(\vec{x})$. Find orthogonal projection onto $$\mathbb{W} = \{x_1 + x_2 + x_3 + x_4 = 0, x_2 + x_3 + x_4 = 0\} = \mathcal{NS}\left(\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}\right).$$ Easy to get basis for \mathbb{W} , but how to get orthogonal basis? Here \mathbb{W} is a 2-plane in \mathbb{R}^4 , so \mathbb{W}^{\perp} is also a 2-plane in \mathbb{R}^4 . Given a basis, how do we get an orthogonal basis? Linear Algebra ## First Look at Gram-Schmidt Orthogonalization Procedure This is an algorithm to produce an orthonormal basis from a basis. We start with a basis $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ for some vector space \mathbb{W} . Then we construct an orthogonal basis $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ for \mathbb{W} with certain nice properties. Finally, we get an orthonormal basis $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\}$ for \mathbb{W} . **Normalization Step:** For $$1 \le i \le k$$, $\vec{u_i} = \frac{\vec{v_i}}{\|\vec{v_i}\|}$. First Step: $\vec{v}_1 = \vec{x}_1$. How do we get $\vec{v}_2, \ldots, \vec{v}_k$? # Example with Basis $\{\vec{x}_1, \vec{x}_2\}$ Let $\{\vec{x_1}, \vec{x_2}\}$ be a basis for some 2-plane \mathbb{W} (in some \mathbb{R}^n). Start with orthogonal projection $\vec{p}_2 = \text{Proj}_{\vec{x}_1}(\vec{x}_2) \text{ of } \vec{x}_2 \text{ onto } \vec{x}_1.$ This vector has the property that $$\vec{v}_2 = \vec{x}_2 - \vec{p}_2 \perp \vec{x}_1.$$ Thus we find that $\vec{v_1} = \vec{x_1} \perp \vec{v_2}$ and $Span\{\vec{v}_1,\vec{v}_2\} = Span\{\vec{x}_1,\vec{x}_2\} = \mathbb{W}.$ So, $\{\vec{v}_1, \vec{v}_2\}$ is the desired orthogonal basis for W. # Example with Basis $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ Let $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$ be a basis for some 3-plane \mathbb{W} (in some \mathbb{R}^n). Already have $\vec{v}_1 = \vec{x}_1$ and $\vec{v}_2 = \vec{x}_2 - \vec{p}_2$ where $\vec{p}_2 = \text{Proj}_{\vec{x}_1}(\vec{x}_2)$. Also know that $\mathbb{W}_2 = Span\{\vec{x}_1, \vec{x}_2\} = Span\{\vec{v}_1, \vec{v}_2\}.$ Look at orthogonal projection $\vec{p}_3 = \mathsf{Proj}_{\mathbb{W}_2}(\vec{x}_3) \text{ of } \vec{x}_3 \text{ onto } \mathbb{W}_2.$ This vector has the property that $$\vec{v}_3 = \vec{x}_3 - \vec{p}_3 \perp \mathbb{W}_2.$$ Thus we find that $\vec{v}_1 \perp \vec{v}_2 \perp \vec{v}_3 \perp \vec{v}_1$, so, $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is the desired orthogonal basis for W. Start with $$\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$, $\vec{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. First, $\vec{v}_1 = \vec{x}_1$. Next, $\vec{v}_2 = \vec{x}_2 - \vec{p}_2$ where $\vec{p}_2 = \text{Proj}_{\vec{v}_1}(\vec{x}_2) = \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1$, so $$\vec{v}_2 = \vec{x}_2 - \vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$$. Finally, $\vec{v}_3 = \vec{x}_3 - \vec{p}_3$ where $\vec{p}_3 = \text{Proj}_{\mathbb{W}_2}(\vec{x}_3)$. First, $\vec{v}_1 = \vec{x}_1$. Here $\vec{p}_3 = \text{Proj}_{\mathbb{W}_2}(\vec{x}_3) = \text{Proj}_{\vec{v}_1}(\vec{x}_3) + \text{Proj}_{\vec{v}_2}(\vec{x}_3)$. Now Here $$p_3 = \text{Proj}_{\mathbb{W}_2}(x_3) = \text{Proj}_{\vec{v}_1}(x_3) + \text{Proj}_{\vec{v}_2}(x_3)$$. Now $$\text{Proj}_{\vec{v}_1}(\vec{x}_3) = \frac{\vec{x}_3 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1 \text{ and } \text{Proj}_{\vec{v}_2}(\vec{x}_3) = \frac{\vec{x}_3 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2 = 0 \vec{v}_2 = \vec{0} \,.$$ Finally, check that Finally, check that Thus $\vec{p}_3 = \vec{x}_1$, so $ec{v_1} = egin{bmatrix} 1 \ 0 \ 1 \ \end{bmatrix}, ec{v_2} = egin{bmatrix} 1 \ 1 \ -1 \ \end{bmatrix}, ec{v_3} = egin{bmatrix} 0 \ 0 \ 0 \ 1 \end{bmatrix}$ $\vec{v}_3 = \vec{x}_3 - \vec{x}_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$ are orthogonal. Started with basis $$\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$$ where $\vec{x}_1 = \begin{bmatrix} 1\\0\\1\\0\end{bmatrix}, \vec{x}_2 = \begin{bmatrix} 2\\1\\0\\0\end{bmatrix}, \vec{x}_3 = \begin{bmatrix} 1\\0\\1\\1\end{bmatrix}$. Got orthogonal basis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ where $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. To get orthonormal basis $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$, just normalize! Get $$\vec{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{u}_2 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$