The Gram-Schmidt Orthogonalization Procedure

Linear Algebra MATH 2076

Orthogonal Projection Onto a Vector

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.

Orthogonal Projection onto a Vector Subspace W

Let $\mathcal{B}=\{\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_k\}$ be an orthog basis for a vector subspace $\mathbb W$ of $\mathbb R^n$.

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in W and \vec{z} is in W[⊥].

In fact,

$$
\vec{p} = \sum_{i=1}^k \text{Proj}_{\vec{b}_i}(\vec{x}) = \sum_{i=1}^k \frac{\vec{x} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \ \ \vec{b}_i \quad \text{and } \vec{z} = \vec{x} - \vec{p}.
$$

Definition

We call \vec{p} the *orthogonal projection of* \vec{x} *onto* W, and write $\vec{p} = \text{Proj}_{\text{WW}}(\vec{x})$.

Note that we need an *orthogonal basis B* to compute $\text{Proj}_W(\vec{x})$.

Orthogonal Projection Onto a Vector Subspace

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_k\}$ be an orthog basis for a vector subspace $\mathbb W$ of \mathbb{R}^n , and \vec{x} be any vector in \mathbb{R}^n .

The *orthogonal projection of* \vec{x} *onto* W is the pictured vector \vec{p} which lies in W and has the property that

 $\vec{z} = \vec{x} - \vec{p} \perp \mathbb{W}$.

Recall that

$$
\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x}) = \sum_{i=1}^{k} \vec{p}_i
$$

where

$$
\vec{p}_i = \text{Proj}_{\vec{b}_i}(\vec{x}) = \frac{\vec{x} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \vec{b}_i.
$$

Note that we need an *orthogonal basis B* to compute $\text{Proj}_W(\vec{x})$.

Examples

Find orthogonal projection onto $W = \{x_1 + x_2 + x_3 = 0\}.$

Easy to get basis for W, but how to get orthogonal basis? Simplest way to do this problem is to find orthogonal projection onto $\mathbb{W}^{\perp}=\mathcal{S}$ pan $\{\vec{n}\}$ where $\vec{n}=[1\;1\;1]^{\mathcal{T}}=$ $\sqrt{ }$ $\overline{1}$ 1 1 1 1 \vert . Then use fact that $\mathsf{Proj}_{\mathbb{W}} + \mathsf{Proj}_{\mathbb{W}^\perp} = \mathsf{Id}$, so $\mathsf{Proj}_{\mathbb{W}}(\vec{\mathsf{x}}) = \vec{\mathsf{x}} - \mathsf{Proj}_{\mathbb{W}^\perp}(\vec{\mathsf{x}}).$

Find orthogonal projection onto

$$
\mathbb{W} = \{x_1 + x_2 + x_3 + x_4 = 0, x_2 + x_3 + x_4 = 0\} = \mathcal{NS} \Big(\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \Big).
$$

Easy to get basis for W, but how to get orthogonal basis? Here $\mathbb W$ is a 2-plane in $\mathbb R^4$, so $\mathbb W^{\perp}$ is also a 2-plane in $\mathbb R^4.$

Given a basis, how do we get an orthogonal basis?

First Look at Gram-Schmidt Orthogonalization Procedure

This is an algorithm to produce an orthonormal basis from a basis.

We start with a basis $\{\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k\}$ for some vector space W.

Then we construct an orthogonal basis $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\}$ for W with certain nice properties.

Finally, we get an orthonormal basis $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\}$ for W.

Normalization Step: For $1\leq i\leq k$, $\vec{u}_i=\frac{\vec{v}_i}{\|\vec{x}_i\|^2}$ $\frac{\vec{v}_i}{\|\vec{v}_i\|}$.

First Step: $\vec{v}_1 = \vec{x}_1$.

How do we get $\vec{v}_2, \ldots, \vec{v}_k$?

Example with Basis $\{\vec{x}_1, \vec{x}_2\}$

Let $\{\vec{x_1}, \vec{x_2}\}$ be a basis for some 2-plane $\mathbb W$ (in some $\mathbb R^n$).

Example with Basis $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$

Let $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ be a basis for some 3-plane $\mathbb W$ (in some $\mathbb R^n$).

Start with
$$
\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}
$$
, $\vec{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. First, $\vec{v}_1 = \vec{x}_1$.
\nNext, $\vec{v}_2 = \vec{x}_2 - \vec{p}_2$ where $\vec{p}_2 = \text{Proj}_{\vec{v}_1}(\vec{x}_2) = \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1$, so
\n $\vec{v}_2 = \vec{x}_2 - \vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$. Finally, $\vec{v}_3 = \vec{x}_3 - \vec{p}_3$ where $\vec{p}_3 = \text{Proj}_{\vec{w}_2}(\vec{x}_3)$.
\nHere $\vec{p}_3 = \text{Proj}_{\vec{w}_2}(\vec{x}_3) = \text{Proj}_{\vec{v}_1}(\vec{x}_3) + \text{Proj}_{\vec{v}_2}(\vec{x}_3)$. Now
\n
$$
\text{Proj}_{\vec{v}_1}(\vec{x}_3) = \frac{\vec{x}_3 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1
$$
 and $\text{Proj}_{\vec{v}_2}(\vec{x}_3) = \frac{\vec{x}_3 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2 = \text{Op}_2 = \vec{0}$.

Thus $\vec{p}_3 = \vec{x}_1$, so $\vec{v}_3 = \vec{x}_3 - \vec{x}_1 =$ \lceil \parallel $\overline{0}$ 0 0 1 1 \parallel . Finally, check that $\vec{v}_1 =$ $\sqrt{ }$ 1 0 1 0 1 $, \vec{v}_2 =$ $\sqrt{ }$ 1 1 −1 0 1 $\begin{matrix} \end{matrix}$ $, \vec{v}_3 =$ $\sqrt{ }$ $\overline{0}$ 0 0 1 1 $\begin{matrix} \end{matrix}$ are orthogonal.

Started with basis
$$
\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}
$$
 where $\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$.

\nGot orthogonal basis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ where $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$.

\nTo set orthogonal basis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ where $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$.

.

To get orthonormal basis $\{u_1, u_2, u_3\}$, just normalize!

Get
$$
\vec{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{u}_2 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.
$$