The Gram-Schmidt Orthogonalization Procedure

Linear Algebra MATH 2076

Orthogonal Projection Onto a Vector

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.

The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$. For this to hold, we need $\vec{z} \cdot \vec{u} = 0$, which allows us to determine s. We find that

$$s = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}$$

and thus

$$\vec{p} = \mathsf{Proj}_{\vec{u}}(\vec{x}) = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}.$$

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

In fact,

$$ec{p} = \sum_{i=1}^{\kappa} \mathsf{Proj}_{ec{b_i}}(ec{x}) = \sum_{i=1}^{\kappa} rac{ec{x} \cdot ec{b_i}}{ec{b_i} \cdot ec{b_i}} \, ec{b_i} \quad ext{and } ec{z} = ec{x} - ec{p}.$$

Definition

We call \vec{p} the *orthogonal projection of* \vec{x} *onto* \mathbb{W} , and write $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x})$.

Orthogonal Projection onto a Vector Subspace \mathbb{W}

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

In fact,

$$\vec{p} = \sum_{i=1}^{\kappa} \mathsf{Proj}_{\vec{b}_i}(\vec{x}) = \sum_{i=1}^{\kappa} \frac{\vec{x} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \vec{b}_i$$
 and $\vec{z} = \vec{x} - \vec{p}$.

Definition

We call \vec{p} the *orthogonal projection of* \vec{x} *onto* \mathbb{W} , and write $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x})$.

Note that we need the *orthogonal basis* $\mathcal B$ to compute $\mathsf{Proj}_{\mathbb W}(\vec x)$.

4□ > 4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{W} of \mathbb{R}^n , and \vec{x} be any vector in \mathbb{R}^n .

The orthogonal projection of \vec{x} onto \mathbb{W} is the pictured vector \vec{p} which lies in \mathbb{W} and has the property that

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{W} of \mathbb{R}^n , and \vec{x} be any vector in \mathbb{R}^n .

The orthogonal projection of \vec{x} onto \mathbb{W} is the pictured vector \vec{p} which lies in \mathbb{W} and has the property that

$$\vec{z} = \vec{x} - \vec{p} \perp \mathbb{W}.$$

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{W} of \mathbb{R}^n , and \vec{x} be any vector in \mathbb{R}^n .

The orthogonal projection of \vec{x} onto \mathbb{W} is the pictured vector \vec{p} which lies in \mathbb{W} and has the property that

$$\vec{z} = \vec{x} - \vec{p} \perp \mathbb{W}.$$

We find that

$$ec{p} = \mathsf{Proj}_{\mathbb{W}}(ec{x}) = \sum_{i=1}^k ec{p_i}$$

where

$$ec{p_i} = \mathsf{Proj}_{ec{b_i}} (ec{x}) = rac{ec{x} \cdot ec{b_i}}{ec{b_i} \cdot ec{b_i}} \, ec{b_i}.$$

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{W} of \mathbb{R}^n , and \vec{x} be any vector in \mathbb{R}^n .

The orthogonal projection of \vec{x} onto \mathbb{W} is the pictured vector \vec{p} which lies in \mathbb{W} and has the property that

$$\vec{z} = \vec{x} - \vec{p} \perp \mathbb{W}.$$

We find that

$$\vec{p} = \mathsf{Proj}_{\mathbb{W}}(\vec{x}) = \sum_{i=1}^{k} \vec{p_i}$$

where

$$ec{
ho_i} = \mathsf{Proj}_{ec{b_i}} (ec{x}) = rac{ec{x} \cdot ec{b_i}}{ec{b_i} \cdot ec{b_i}} \, ec{b_i}.$$

Note that we need the *orthogonal basis* \mathcal{B} to compute $Proj_{\mathbb{W}}(\vec{x})$.

Find orthogonal projection onto $\mathbb{W} = \{x_1 + x_2 + x_3 = 0\}.$

Find orthogonal projection onto $\mathbb{W} = \{x_1 + x_2 + x_3 = 0\}.$

Easy to get basis for \mathbb{W} , but how to get orthogonal basis?

Find orthogonal projection onto $\mathbb{W} = \{x_1 + x_2 + x_3 = 0\}.$

Easy to get basis for \mathbb{W} , but how to get orthogonal basis? Simplest way to do <u>this</u> problem is to find orthogonal projection onto

$$\mathbb{W}^{\perp} =$$

Find orthogonal projection onto $\mathbb{W} = \{x_1 + x_2 + x_3 = 0\}.$

Easy to get basis for \mathbb{W} , but how to get orthogonal basis? Simplest way to do <u>this</u> problem is to find orthogonal projection onto

$$\mathbb{W}^{\perp} = \mathcal{S} pan\{\vec{n}\} \text{ where } \vec{n} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

Find orthogonal projection onto $\mathbb{W} = \{x_1 + x_2 + x_3 = 0\}.$

Easy to get basis for W, but how to get orthogonal basis?

Simplest way to do <u>this</u> problem is to find orthogonal projection onto $\lceil 1 \rceil$

$$\mathbb{W}^{\perp} = \mathcal{S}\mathit{pan}\{\vec{n}\}\$$
where $\vec{n} = \begin{bmatrix}1 \ 1 \ 1\end{bmatrix}^T = \begin{bmatrix}1 \ 1 \ 1\end{bmatrix}$. Then use fact that $\mathsf{Proj}_{\mathbb{W}} + \mathsf{Proj}_{\mathbb{W}^{\perp}} = I$.

Find orthogonal projection onto $\mathbb{W} = \{x_1 + x_2 + x_3 = 0\}.$

Easy to get basis for \mathbb{W} , but how to get orthogonal basis?

Simplest way to do this problem is to find orthogonal projection onto

$$\mathbb{W}^{\perp} = \mathcal{S}pan\{\vec{n}\}$$
 where $\vec{n} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Then use fact that $\mathsf{Proj}_{\mathbb{W}} + \mathsf{Proj}_{\mathbb{W}} = I$.

Find orthogonal projection onto

$$\mathbb{W} = \{x_1 + x_2 + x_3 + x_4 = 0, x_2 + x_3 + x_4 = 0\}$$

Find orthogonal projection onto $\mathbb{W} = \{x_1 + x_2 + x_3 = 0\}.$

Easy to get basis for \mathbb{W} , but how to get orthogonal basis?

Simplest way to do this problem is to find orthogonal projection onto

$$\mathbb{W}^{\perp} = \mathcal{S}pan\{\vec{n}\}$$
 where $\vec{n} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Then use fact that $\mathsf{Proj}_{\mathbb{W}} + \mathsf{Proj}_{\mathbb{W}} = I$.

Find orthogonal projection onto

$$\mathbb{W} = \{x_1 + x_2 + x_3 + x_4 = 0, x_2 + x_3 + x_4 = 0\} = \mathcal{NS}\left(\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}\right).$$

Find orthogonal projection onto $\mathbb{W} = \{x_1 + x_2 + x_3 = 0\}.$

Easy to get basis for \mathbb{W} , but how to get orthogonal basis?

Simplest way to do this problem is to find orthogonal projection onto

$$\mathbb{W}^{\perp} = \mathcal{S}pan\{\vec{n}\}$$
 where $\vec{n} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Then use fact that $\mathsf{Proj}_{\mathbb{W}} + \mathsf{Proj}_{\mathbb{W}} = I$.

Find orthogonal projection onto

$$\mathbb{W} = \{x_1 + x_2 + x_3 + x_4 = 0, x_2 + x_3 + x_4 = 0\} = \mathcal{NS}\left(\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}\right).$$

Easy to get basis for W, but how to get orthogonal basis?

Find orthogonal projection onto $\mathbb{W} = \{x_1 + x_2 + x_3 = 0\}.$

Easy to get basis for W, but how to get orthogonal basis?

Simplest way to do this problem is to find orthogonal projection onto

$$\mathbb{W}^{\perp} = \mathcal{S}pan\{\vec{n}\}$$
 where $\vec{n} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Then use fact that $\mathsf{Proj}_{\mathbb{W}} + \mathsf{Proj}_{\mathbb{W}} = I$.

Find orthogonal projection onto

$$\mathbb{W} = \{x_1 + x_2 + x_3 + x_4 = 0, x_2 + x_3 + x_4 = 0\} = \mathcal{NS}\left(\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}\right).$$

Easy to get basis for \mathbb{W} , but how to get orthogonal basis? Here \mathbb{W} is a 2-plane in \mathbb{R}^4 , so \mathbb{W}^\perp is also a 2-plane in \mathbb{R}^4 .

Find orthogonal projection onto $\mathbb{W} = \{x_1 + x_2 + x_3 = 0\}.$

Easy to get basis for W, but how to get orthogonal basis?

Simplest way to do this problem is to find orthogonal projection onto

$$\mathbb{W}^{\perp} = \mathcal{S}pan\{\vec{n}\}$$
 where $\vec{n} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Then use fact that $\mathsf{Proj}_{\mathbb{W}} + \mathsf{Proj}_{\mathbb{W}} = I$.

Find orthogonal projection onto

$$\mathbb{W} = \{x_1 + x_2 + x_3 + x_4 = 0, x_2 + x_3 + x_4 = 0\} = \mathcal{NS}\left(\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}\right).$$

Easy to get basis for \mathbb{W} , but how to get orthogonal basis?

Here \mathbb{W} is a 2-plane in \mathbb{R}^4 , so \mathbb{W}^{\perp} is also a 2-plane in \mathbb{R}^4 .

Given a basis, how do we get an orthogonal basis?

Section 6.4 Gram Schmidt Orthog 5 April 2017 5 / 13

This is an algorithm to produce an orthonormal basis from a basis.

This is an algorithm to produce an orthonormal basis from a basis.

We start with a basis $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ for some vector space \mathbb{W} .

This is an algorithm to produce an orthonormal basis from a basis.

We start with a basis $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ for some vector space \mathbb{W} .

Then we construct an orthogonal basis $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ for \mathbb{W} with certain nice properties.

This is an algorithm to produce an orthonormal basis from a basis.

We start with a basis $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ for some vector space \mathbb{W} .

Then we construct an orthogonal basis $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ for \mathbb{W} with certain nice properties.

Finally, we get an orthonormal basis $\{\vec{u_1}, \vec{u_2}, \dots, \vec{u_k}\}$ for \mathbb{W} .

This is an algorithm to produce an orthonormal basis from a basis.

We start with a basis $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ for some vector space \mathbb{W} .

Then we construct an orthogonal basis $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ for \mathbb{W} with certain nice properties.

Finally, we get an orthonormal basis $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\}$ for \mathbb{W} .

Normalization Step: For $1 \le i \le k$, $\vec{u_i} = \frac{\vec{v_i}}{\|\vec{v_i}\|}$.

This is an algorithm to produce an orthonormal basis from a basis.

We start with a basis $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ for some vector space \mathbb{W} .

Then we construct an orthogonal basis $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ for \mathbb{W} with certain nice properties.

Finally, we get an orthonormal basis $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\}$ for \mathbb{W} .

Normalization Step: For
$$1 \le i \le k$$
, $\vec{u_i} = \frac{\vec{v_i}}{\|\vec{v_i}\|}$.

First Step: $\vec{v}_1 = \vec{x}_1$.

This is an algorithm to produce an orthonormal basis from a basis.

We start with a basis $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ for some vector space \mathbb{W} .

Then we construct an orthogonal basis $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ for \mathbb{W} with certain nice properties.

Finally, we get an orthonormal basis $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\}$ for \mathbb{W} .

Normalization Step: For
$$1 \le i \le k$$
, $\vec{u_i} = \frac{\vec{v_i}}{\|\vec{v_i}\|}$.

First Step: $\vec{v}_1 = \vec{x}_1$.

How do we get $\vec{v}_2, \ldots, \vec{v}_k$?

Let $\{\vec{x}_1, \vec{x}_2\}$ be a basis for some 2-plane \mathbb{W} (in some \mathbb{R}^n).

Start with orthogonal projection $\vec{p}_2 = \mathsf{Proj}_{\vec{x}_1}(\vec{x}_2)$ of \vec{x}_2 onto \vec{x}_1 .

Example with Basis $\{\vec{x}_1, \vec{x}_2\}$

Let $\{\vec{x}_1, \vec{x}_2\}$ be a basis for some 2-plane \mathbb{W} (in some \mathbb{R}^n).

Start with orthogonal projection $\vec{p}_2 = \text{Proj}_{\vec{x}_1}(\vec{x}_2)$ of \vec{x}_2 onto \vec{x}_1 . This vector has the property that

Example with Basis $\{\vec{x}_1, \vec{x}_2\}$

Let $\{\vec{x}_1, \vec{x}_2\}$ be a basis for some 2-plane \mathbb{W} (in some \mathbb{R}^n).

Start with orthogonal projection $\vec{p}_2 = \mathsf{Proj}_{\vec{x}_1}(\vec{x}_2)$ of \vec{x}_2 onto \vec{x}_1 . This vector has the property that

$$\vec{v}_2 = \vec{x}_2 - \vec{p}_2 \perp \vec{x}_1.$$

Example with Basis $\{\vec{x_1}, \vec{x_2}\}$

Let $\{\vec{x}_1, \vec{x}_2\}$ be a basis for some 2-plane \mathbb{W} (in some \mathbb{R}^n).

Start with orthogonal projection $\vec{p}_2 = \text{Proj}_{\vec{x}_1}(\vec{x}_2)$ of \vec{x}_2 onto \vec{x}_1 . This vector has the property that

$$\vec{v}_2 = \vec{x}_2 - \vec{p}_2 \perp \vec{x}_1.$$

$$\vec{p}_2 = \mathsf{Proj}_{\vec{x}_1}(\vec{x}_2)$$

Thus we find that $\vec{v}_1 = \vec{x}_1 \perp \vec{v}_2$ and $\mathcal{S}pan\{\vec{v}_1, \vec{v}_2\} = \mathcal{S}pan\{\vec{x}_1, \vec{x}_2\} = \mathbb{W}$.

Example with Basis $\{\vec{x}_1, \vec{x}_2\}$

Let $\{\vec{x}_1, \vec{x}_2\}$ be a basis for some 2-plane \mathbb{W} (in some \mathbb{R}^n).

Start with orthogonal projection $\vec{p}_2 = \text{Proj}_{\vec{x}_1}(\vec{x}_2)$ of \vec{x}_2 onto \vec{x}_1 . This vector has the property that

$$\vec{v}_2 = \vec{x}_2 - \vec{p}_2 \perp \vec{x}_1.$$

$$\vec{p}_2 = \mathsf{Proj}_{\vec{x}_1}(\vec{x}_2)$$

Thus we find that $\vec{v}_1 = \vec{x}_1 \perp \vec{v}_2$ and $\mathcal{S}\mathit{pan}\{\vec{v}_1,\vec{v}_2\} = \mathcal{S}\mathit{pan}\{\vec{x}_1,\vec{x}_2\} = \mathbb{W}.$ So, $\{\vec{v}_1,\vec{v}_2\}$ is the desired orthogonal basis for $\mathbb{W}.$

Let $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ be a basis for some 3-plane \mathbb{W} (in some \mathbb{R}^n).

Already have $\vec{v}_1 = \vec{x}_1$ and $\vec{v}_2 = \vec{x}_2 - \vec{p}_2$ where $\vec{p}_2 = \text{Proj}_{\vec{x}_1}(\vec{x}_2)$.

Let $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ be a basis for some 3-plane \mathbb{W} (in some \mathbb{R}^n).

Let $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ be a basis for some 3-plane \mathbb{W} (in some \mathbb{R}^n).

Let $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ be a basis for some 3-plane \mathbb{W} (in some \mathbb{R}^n).

Let $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ be a basis for some 3-plane \mathbb{W} (in some \mathbb{R}^n).

Let $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ be a basis for some 3-plane \mathbb{W} (in some \mathbb{R}^n).

Let $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ be a basis for some 3-plane \mathbb{W} (in some \mathbb{R}^n).

Let $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ be a basis for some 3-plane \mathbb{W} (in some \mathbb{R}^n).

Let $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ be a basis for some 3-plane \mathbb{W} (in some \mathbb{R}^n).

Already have $\vec{v}_1 = \vec{x}_1$ and $\vec{v}_2 = \vec{x}_2 - \vec{p}_2$ where $\vec{p}_2 = \text{Proj}_{\vec{x}_1}(\vec{x}_2)$. Also know that $\mathbb{W}_2 = \mathcal{S}\textit{pan}\{\vec{x}_1,\vec{x}_2\} = \mathcal{S}\textit{pan}\{\vec{v}_1,\vec{v}_2\}$.

Look at orthogonal projection $\vec{p_3} = \mathsf{Proj}_{\mathbb{W}_2}(\vec{x_3}) \text{ of } \vec{x_3} \text{ onto } \mathbb{W}_2.$ This vector has the property that

$$ec{v}_3 = ec{x}_3 - ec{p}_3 \perp \mathbb{W}_2.$$

Let $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$ be a basis for some 3-plane \mathbb{W} (in some \mathbb{R}^n).

Already have $\vec{v}_1 = \vec{x}_1$ and $\vec{v}_2 = \vec{x}_2 - \vec{p}_2$ where $\vec{p}_2 = \text{Proj}_{\vec{x}_1}(\vec{x}_2)$. Also know that $\mathbb{W}_2 = Span\{\vec{x}_1, \vec{x}_2\} = Span\{\vec{v}_1, \vec{v}_2\}.$

Look at orthogonal projection $\vec{p}_3 = \mathsf{Proj}_{\mathbb{W}_2}(\vec{x}_3) \text{ of } \vec{x}_3 \text{ onto } \mathbb{W}_2.$ This vector has the property that

$$\vec{v}_3 = \vec{x}_3 - \vec{p}_3 \perp \mathbb{W}_2.$$

$$\vec{p}_3 = \mathsf{Proj}_{\mathbb{W}_2}(\vec{x}_3)$$

Thus we find that $\vec{v_1} \perp \vec{v_2} \perp \vec{v_3} \perp \vec{v_1}$,

Let $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$ be a basis for some 3-plane \mathbb{W} (in some \mathbb{R}^n).

Already have $\vec{v}_1 = \vec{x}_1$ and $\vec{v}_2 = \vec{x}_2 - \vec{p}_2$ where $\vec{p}_2 = \text{Proj}_{\vec{x}_1}(\vec{x}_2)$. Also know that $\mathbb{W}_2 = Span\{\vec{x}_1, \vec{x}_2\} = Span\{\vec{v}_1, \vec{v}_2\}.$

Look at orthogonal projection $\vec{p}_3 = \mathsf{Proj}_{\mathbb{W}_2}(\vec{x}_3) \text{ of } \vec{x}_3 \text{ onto } \mathbb{W}_2.$ This vector has the property that

$$\vec{v}_3 = \vec{x}_3 - \vec{p}_3 \perp \mathbb{W}_2.$$

Thus we find that $\vec{v}_1 \perp \vec{v}_2 \perp \vec{v}_3 \perp \vec{v}_1$, so, $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is the desired orthogonal basis for W.

Start with
$$\vec{x_1} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \vec{x_2} = \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}, \vec{x_3} = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}.$$

Start with
$$\vec{x}_1 = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$$
, $\vec{x}_2 = \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}$, $\vec{x}_3 = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$. First, $\vec{v}_1 = \vec{x}_1$.

Start with
$$\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \vec{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

First, $\vec{v}_1 = \vec{x}_1$.

Next,
$$\vec{v}_2 = \vec{x}_2 - \vec{p}_2$$
 where

Start with
$$\vec{x_1} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$$
, $\vec{x_2} = \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}$, $\vec{x_3} = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$. First, $\vec{v_1} = \vec{x_1}$.

Next,
$$\vec{v}_2 = \vec{x}_2 - \vec{p}_2$$
 where $\vec{p}_2 = \text{Proj}_{\vec{v}_1}(\vec{x}_2) = \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1$, so

Start with
$$\vec{x_1} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$$
, $\vec{x_2} = \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}$, $\vec{x_3} = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$. First, $\vec{v_1} = \vec{x_1}$.

Next,
$$\vec{v}_2 = \vec{x}_2 - \vec{p}_2$$
 where $\vec{p}_2 = \text{Proj}_{\vec{v}_1}(\vec{x}_2) = \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1$, so

$$ec{v}_2 = ec{x}_2 - ec{x}_1 = egin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}.$$

Start with
$$\vec{x_1} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \vec{x_2} = \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}, \vec{x_3} = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$$
. First, $\vec{v_1} = \vec{x_1}$.

Next,
$$\vec{v}_2 = \vec{x}_2 - \vec{p}_2$$
 where $\vec{p}_2 = \text{Proj}_{\vec{v}_1}(\vec{x}_2) = \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1$, so

$$ec{v_2} = ec{x_2} - ec{x_1} = egin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$$
 . Finally, $ec{v_3} = ec{x_3} - ec{p_3}$ where $ec{p_3} = \mathsf{Proj}_{\mathbb{W}_2}(ec{x_3})$.

Start with
$$\vec{x_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{x_2} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \vec{x_3} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$
. First, $\vec{v_1} = \vec{x_1}$.

Next,
$$\vec{v}_2 = \vec{x}_2 - \vec{p}_2$$
 where $\vec{p}_2 = \text{Proj}_{\vec{v}_1}(\vec{x}_2) = \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1$, so

$$\vec{v}_2 = \vec{x}_2 - \vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$$
. Finally, $\vec{v}_3 = \vec{x}_3 - \vec{p}_3$ where $\vec{p}_3 = \mathsf{Proj}_{\mathbb{W}_2}(\vec{x}_3)$.

Here
$$\vec{p}_3 = \mathsf{Proj}_{\mathbb{W}_2}(\vec{x}_3) = \mathsf{Proj}_{\vec{v}_1}(\vec{x}_3) + \mathsf{Proj}_{\vec{v}_2}(\vec{x}_3)$$
.

Start with
$$\vec{x_1} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \vec{x_2} = \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}, \vec{x_3} = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$$
. First, $\vec{v_1} = \vec{x_1}$.

Next,
$$\vec{v}_2 = \vec{x}_2 - \vec{p}_2$$
 where $\vec{p}_2 = \text{Proj}_{\vec{v}_1}(\vec{x}_2) = \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1$, so

$$\vec{v}_2 = \vec{x}_2 - \vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$$
. Finally, $\vec{v}_3 = \vec{x}_3 - \vec{p}_3$ where $\vec{p}_3 = \mathsf{Proj}_{\mathbb{W}_2}(\vec{x}_3)$.

Here
$$\vec{p}_3 = \mathsf{Proj}_{\mathbb{W}_2}(\vec{x}_3) = \mathsf{Proj}_{\vec{v}_1}(\vec{x}_3) + \mathsf{Proj}_{\vec{v}_2}(\vec{x}_3)$$
. Now

$$\mathsf{Proj}_{\vec{v}_1}(\vec{x}_3) = \frac{\vec{x}_3 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \ \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1 \ \text{and} \ \mathsf{Proj}_{\vec{v}_2}(\vec{x}_3) = \frac{\vec{x}_3 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \ \vec{v}_2 = 0 \ \vec{v}_2 = \vec{0} \ .$$

$$\operatorname{Proj}_{\vec{v_1}}(\vec{x_3}) = \frac{x_3 \cdot v_1}{\vec{v_1} \cdot \vec{v_1}} \vec{v_1} = \frac{2}{2} \vec{v_1} = \vec{x_1} \text{ and } \operatorname{Proj}_{\vec{v_2}}(\vec{x_3}) = \frac{x_3 \cdot v_2}{\vec{v_2} \cdot \vec{v_2}} \vec{v_2} = 0 \vec{v_2} = \vec{0}.$$
Thus $\vec{p_3} = \vec{x_1}$, so

Here $\vec{p}_3 = \text{Proj}_{\mathbb{W}_2}(\vec{x}_3) = \text{Proj}_{\vec{v}_1}(\vec{x}_3) + \text{Proj}_{\vec{v}_2}(\vec{x}_3)$. Now

 $\vec{v}_2 = \vec{x}_2 - \vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$. Finally, $\vec{v}_3 = \vec{x}_3 - \vec{p}_3$ where $\vec{p}_3 = \mathsf{Proj}_{\mathbb{W}_2}(\vec{x}_3)$.

Next, $\vec{v}_2 = \vec{x}_2 - \vec{p}_2$ where $\vec{p}_2 = \text{Proj}_{\vec{v}_1}(\vec{x}_2) = \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1$, so

First, $\vec{v}_1 = \vec{x}_1$.

Start with $\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\vec{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

 $\mathsf{Proj}_{\vec{v_1}}(\vec{x_3}) = \frac{\vec{x_3} \cdot \vec{v_1}}{\vec{v_1} \cdot \vec{v_1}} \vec{v_1} = \frac{2}{2} \vec{v_1} = \vec{x_1} \text{ and } \mathsf{Proj}_{\vec{v_2}}(\vec{x_3}) = \frac{\vec{x_3} \cdot \vec{v_2}}{\vec{v_2} \cdot \vec{v_2}} \vec{v_2} = \vec{0} \vec{v_2} = \vec{0} .$

$$\vec{v}_3 = \vec{x}_3 - \vec{x}_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
.

Start with
$$\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
, $\vec{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. First, $\vec{v}_1 = \vec{x}_1$.

Next, $\vec{v}_2 = \vec{x}_2 - \vec{p}_2$ where $\vec{p}_2 = \operatorname{Proj}_{\vec{v}_1}(\vec{x}_2) = \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1$, so

$$\vec{v}_2 = \vec{x}_2 - \vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$$
. Finally, $\vec{v}_3 = \vec{x}_3 - \vec{p}_3$ where $\vec{p}_3 = \operatorname{Proj}_{\mathbb{W}_2}(\vec{x}_3)$.

First, $\vec{v}_1 = \vec{x}_1$.

Here $\vec{p}_3 = \mathsf{Proj}_{\mathbb{W}_2}(\vec{x}_3) = \mathsf{Proj}_{\vec{v}_1}(\vec{x}_3) + \mathsf{Proj}_{\vec{v}_2}(\vec{x}_3)$. Now

$$\text{Proj}_{\vec{v}_1}(\vec{x}_3) = \frac{\vec{x}_3 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \, \vec{v}_1 = \frac{2}{2} \vec{v}_1 = \vec{x}_1 \text{ and } \text{Proj}_{\vec{v}_2}(\vec{x}_3) = \frac{\vec{x}_3 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \, \vec{v}_2 = 0 \, \vec{v}_2 = \vec{0} \, .$$

$$\text{Thus } \vec{p}_3 = \vec{x}_1, \text{ so}$$
 Finally, check that
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

 $ec{v_1} = egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix}, ec{v_2} = egin{bmatrix} 1 \ 1 \ -1 \end{bmatrix}, ec{v_3} = egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}$ $\vec{v}_3 = \vec{x}_3 - \vec{x}_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 are orthogonal.

Started with basis
$$\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$$
 where $\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \vec{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$

Started with basis
$$\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$$
 where $\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \vec{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$

Got orthogonal basis
$$\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}$$
 where $\vec{v}_1=\begin{bmatrix}1\\0\\1\\0\end{bmatrix},\vec{v}_2=\begin{bmatrix}1\\1\\-1\\0\end{bmatrix},\vec{v}_3=\begin{bmatrix}0\\0\\0\\1\end{bmatrix}.$

Started with basis
$$\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$$
 where $\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \vec{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$
Got orthogonal basis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ where $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$

To get orthonormal basis $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$, just normalize!

Started with basis
$$\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$$
 where $\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \vec{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$.

Got orthogonal basis
$$\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$$
 where $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$

To get orthonormal basis $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$, just normalize!

Get
$$\vec{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{u}_2 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Start with
$$\vec{x_1} = \begin{bmatrix} -1\\1\\1\\0 \end{bmatrix}, \vec{x_2} = \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}, \vec{x_3} = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}.$$

Start with
$$\vec{x_1} = \begin{bmatrix} -1\\1\\1\\0 \end{bmatrix}, \vec{x_2} = \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}, \vec{x_3} = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}.$$

First,
$$\vec{v}_1 = \vec{x}_1$$
.

Start with
$$\vec{x}_1 = \begin{bmatrix} -1\\1\\1\\0 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}, \vec{x}_3 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}.$$

First, $\vec{v}_1 = \vec{x}_1$.

Next,
$$\vec{v}_2 = \vec{x}_2 - \vec{p}_2$$
 where

Start with
$$\vec{x}_1 = \begin{bmatrix} -1\\1\\1\\0 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}, \vec{x}_3 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$$
. First, $\vec{v}_1 = \vec{x}_1$. Next, $\vec{v}_2 = \vec{x}_2 - \vec{p}_2$ where $\vec{p}_2 = \operatorname{Proj}_{\vec{v}_1}(\vec{x}_2) = \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{2}{3} \vec{v}_1 = \frac{2}{3} \vec{x}_1$, so