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Orthogonal Projection Onto a Vector

Let ~u be a fixed vector, and ~x a variable vector.

~u

~x

~p

~z

The orthogonal projection of ~x onto ~u
is the pictured vector ~p which is parallel
to ~u (so, ~p = s~u for some scalar) and
has the property that ~z = ~x − ~p ⊥ ~u.

For this to hold, we need ~z · ~u = 0,
which allows us to determine s. We
find that

s =
~x · ~u
~u · ~u

and thus

~p = Proj~u
(
~x
)

=
~x · ~u
~u · ~u

~u .
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Orthogonal Projection onto a Vector Subspace W

Let B = {~b1, ~b2, . . . , ~bk} be an orthog basis for a vector subspace W of Rn.

Theorem (Orthogonal Decomposition Theorem)

Each vector ~x in Rn can be written uniquely in the form
~x = ~p + ~z where ~p is in W and ~z is in W⊥.

In fact,

~p =
k∑

i=1

Proj~bi

(
~x
)

=
k∑

i=1

~x · ~bi
~bi · ~bi

~bi and ~z = ~x − ~p.

Definition

We call ~p the orthogonal projection of ~x onto W, and write ~p = ProjW(~x).

Note that we need the orthogonal basis B to compute ProjW(~x).
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Examples

Find orthogonal projection onto W = {x1 + x2 + x3 = 0}.

Easy to get basis for W, but how to get orthogonal basis?

Simplest way to do this problem is to find orthogonal projection onto

W⊥ =

Span{~n} where ~n = [1 1 1]T =

1
1
1

.

Then use fact that

ProjW + ProjW⊥ = I .

Find orthogonal projection onto

W = {x1 + x2 + x3 + x4 = 0, x2 + x3 + x4 = 0}

= NS
([1 1 1 1

0 1 1 1

])
.

Easy to get basis for W, but how to get orthogonal basis?

Here W is a 2-plane in R4, so W⊥ is also a 2-plane in R4.

Given a basis, how do we get an orthogonal basis?
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First Look at Gram-Schmidt Orthogonalization Procedure

This is an algorithm to produce an orthonormal basis from a basis.

We start with a basis {~x1, ~x2, . . . , ~xk} for some vector space W.

Then we construct an orthogonal basis {~v1, ~v2, . . . , ~vk} for W with certain
nice properties.

Finally, we get an orthonormal basis {~u1, ~u2, . . . , ~uk} for W.

Normalization Step: For 1 ≤ i ≤ k, ~ui =
~vi
‖~vi‖

.

First Step: ~v1 = ~x1.

How do we get ~v2, . . . , ~vk?
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Example with Basis {~x1, ~x2}

Let {~x1, ~x2} be a basis for some 2-plane W (in some Rn).

~x1

~0

~x2

~p2

= Proj~x1(~x2)

~v2

Start with orthogonal projection
~p2 = Proj~x1(~x2) of ~x2 onto ~x1. This
vector has the property that

~v2 = ~x2 − ~p2 ⊥ ~x1.

Thus we find that ~v1 = ~x1 ⊥ ~v2 and
Span{~v1, ~v2} = Span{~x1, ~x2} = W.
So, {~v1, ~v2} is the desired orthogonal
basis for W.
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