Orthogonal Projection Example

Linear Algebra MATH 2076

Orthogonal Projection onto a Vector Subspace $\mathbb W$

Let
$$\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2\}$$
 where $\vec{w}_1 = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$.
• We give an explicit formula for $\operatorname{Proj}_{\mathbb{W}}(\vec{x})$ where $\vec{x} = \begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}$
• We use our formula to find $\operatorname{Proj}_{\mathbb{W}}(\vec{v})$ when $\vec{v} = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$.
• Then we find the distance d from $\vec{v} = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$ to \mathbb{W} .

•

Orthogonal Projection Onto $\mathbb{W} = Span\{\vec{w_1}, \vec{w_2}\}$

Recall that the LT $\mathbb{R}^n \xrightarrow{\operatorname{Proj}_{\mathbb{W}}} \mathbb{R}^n$ (orthogonal projection onto \mathbb{W}) is given by

$$\operatorname{Proj}_{\mathbb{W}}(\vec{x}) = \sum_{i=1}^{k} rac{\vec{x} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \, \vec{b}_i$$
 ;

this requires that $\mathcal{B} = \{\vec{b_1}, \vec{b_2}, \dots, \vec{b_k}\}$ be an orthog basis for \mathbb{W} . Alternatively, if $\mathcal{U} = \{\vec{u_1}, \vec{u_2}, \dots, \vec{u_k}\}$ is an *orthon* basis for \mathbb{W} , then

$$\boxed{\operatorname{Proj}_{\mathbb{W}}(\vec{x}) = P\vec{x}} \text{ where } P = \sum_{i=1}^{k} \vec{u_i} \ \vec{u_i}^{T} = U U^{T} \text{ and } U = \begin{bmatrix} \vec{u_1} \ \vec{u_2} \cdots \vec{u_k} \end{bmatrix}.$$

$$\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2\} \text{ and }$$
$$\vec{w}_1 = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}.$$

Evidently, $\mathcal{B} = \{\vec{w_1}, \vec{w_2}\}$ is a basis for \mathbb{W} , but \mathcal{B} is **not** orthogonal! So what now? We write $\vec{w_2} = \vec{p} + \vec{v_2}$ where $\vec{p} \parallel \vec{w_1} \perp \vec{v_2}$. Then $\{\vec{w_1}, \vec{v_2}\}$ is an *orthogonal* basis for \mathbb{W} !

3 / 1

Have
$$\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2\}; \vec{w}_1 = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
. Put $\vec{v}_1 = \vec{w}_1 = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$
Want $\vec{w}_2 = \vec{p} + \vec{v}_2$ where $\vec{p} \parallel \vec{v}_1 \perp \vec{v}_2$. Take

$$\vec{p} = \operatorname{Proj}_{\vec{v}_1}(\vec{w}_2) = rac{\vec{w}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \ \vec{v}_1 = \vec{v}_1,$$

SO

$$\vec{v}_2 = \vec{w}_2 - \vec{p} = \vec{w}_2 - \vec{v}_1 = \vec{w}_2 - \vec{w}_1 = \begin{bmatrix} 0\\1\\0\\1\end{bmatrix}$$

Clearly $\{\vec{v}_1, \vec{v}_2\}$ is an *orthogonal* basis for \mathbb{W} ! Even better, setting $\vec{u}_i = \frac{\vec{v}_i}{|\vec{v}_i|}$, get an *orthonormal* basis $\mathcal{U} = \{\vec{u}_1, \vec{u}_2\}$ for \mathbb{W} . Then, $P = UU^T = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 \end{bmatrix} \begin{bmatrix} \vec{u}_1 & \vec{u}_2 \end{bmatrix}^T$ is the standard matrix for the LT $\operatorname{Proj}_{\mathbb{W}}$. Have orthonormal basis $\mathcal{U} = \{\vec{u_1}, \vec{u_2}\}$ for $\mathbb{W} = Span\{\vec{w_1}, \vec{w_2}\}$ where

$$ec{u_i} = rac{ec{v_i}}{|ec{v_i}|} = rac{1}{\sqrt{2}} \, ec{v_i} \, .$$

Then,

$$P = UU^{T} = \begin{bmatrix} \vec{u}_{1} & \vec{u}_{2} \end{bmatrix} \begin{bmatrix} \vec{u}_{1} & \vec{u}_{2} \end{bmatrix}^{T} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

is the standard matrix for the linear transformation $\mathsf{Proj}_{\mathbb{W}}.$ Thus

$$\operatorname{Proj}_{\mathbb{W}}(\vec{x}) = P\vec{x} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x_1 + x_3 \\ x_2 + x_4 \\ x_1 + x_3 \\ x_2 + x_4 \end{bmatrix}.$$

So, $\vec{p} = \operatorname{Proj}_{\mathbb{W}}\left(\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 3 \\ 2 \\ 3 \end{bmatrix}.$
 $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$

Finding the Distance *d* from \vec{v} to the Subspace \mathbb{W}

