Orthogonal Projection

Linear Algebra MATH 2076

Definition (Orthogonal Complement of a Set)

The *orthogonal complement* of a non-empty set W of vectors in \mathbb{R}^n is

$$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$

Definition (Orthogonal Complement of a Set)

The $orthogonal\ complement$ of a non-empty set W of vectors in \mathbb{R}^n is

$$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$

It is not hard to check that W^{\perp} is always a vector subspace of \mathbb{R}^n .

Definition (Orthogonal Complement of a Set)

The $orthogonal\ complement$ of a non-empty set W of vectors in \mathbb{R}^n is

$$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$

It is not hard to check that W^{\perp} is always a vector subspace of \mathbb{R}^n .

In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then

Definition (Orthogonal Complement of a Set)

The $orthogonal\ complement$ of a non-empty set W of vectors in \mathbb{R}^n is

$$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$

It is not hard to check that W^{\perp} is always a vector subspace of \mathbb{R}^n .

In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$

Definition (Orthogonal Complement of a Set)

The $orthogonal\ complement$ of a non-empty set W of vectors in \mathbb{R}^n is

$$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$

It is not hard to check that W^{\perp} is always a vector subspace of \mathbb{R}^n .

In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$ and dim $\mathbb{W}^{\perp} = n - \dim \mathbb{W}$.

Definition (Orthogonal Complement of a Set)

The $orthogonal\ complement$ of a non-empty set W of vectors in \mathbb{R}^n is

$$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$

It is not hard to check that W^{\perp} is always a vector subspace of \mathbb{R}^n .

In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$ and dim $\mathbb{W}^{\perp} = n - \dim \mathbb{W}$. This means that every vector \vec{x} in \mathbb{R}^n can be written as a sum

 $\vec{x} = \vec{w} + \vec{z}$ where \vec{w} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

Definition (Orthogonal Complement of a Set)

The $orthogonal\ complement$ of a non-empty set W of vectors in \mathbb{R}^n is

$$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$

It is not hard to check that W^{\perp} is always a vector subspace of \mathbb{R}^n .

In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$ and dim $\mathbb{W}^{\perp} = n - \dim \mathbb{W}$. This means that every vector \vec{x} in \mathbb{R}^n can be written as a sum

$$\vec{x} = \vec{w} + \vec{z}$$
 where \vec{w} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

Here \vec{w} is the 'part' of \vec{x} that is parallel to \mathbb{W} and \vec{z} is the 'part' of \vec{x} that is orthogonal to \mathbb{W} .

Definition (Orthogonal Complement of a Set)

The $orthogonal\ complement$ of a non-empty set W of vectors in \mathbb{R}^n is

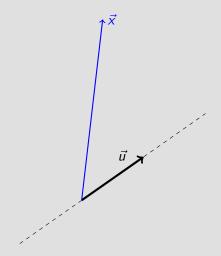
$$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$

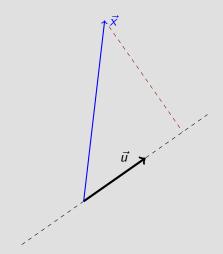
It is not hard to check that W^{\perp} is always a vector subspace of \mathbb{R}^n .

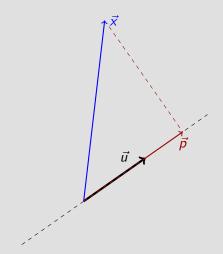
In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$ and dim $\mathbb{W}^{\perp} = n - \dim \mathbb{W}$. This means that every vector \vec{x} in \mathbb{R}^n can be written as a sum

$$\vec{x} = \vec{w} + \vec{z}$$
 where \vec{w} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

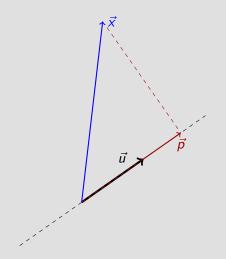
Here \vec{w} is the 'part' of \vec{x} that is parallel to \mathbb{W} and \vec{z} is the 'part' of \vec{x} that is orthogonal to \mathbb{W} . How do we find \vec{w} and \vec{z} ?





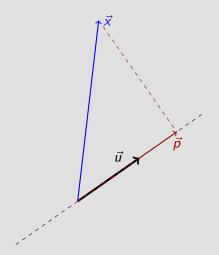


Let \vec{u} be a fixed vector, and \vec{x} a variable vector.



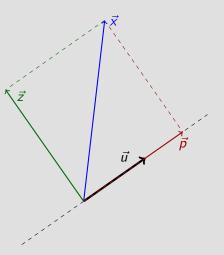
The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p}

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.



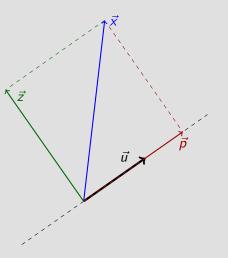
The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.



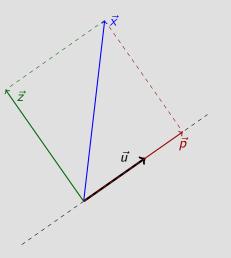
The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$.

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.



The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$. For this to hold, we need $\vec{z} \cdot \vec{u} = 0$, which allows us to determine s.

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.

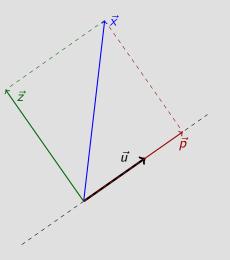


The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$. For this to hold, we need $\vec{z} \cdot \vec{u} = 0$, which allows us to determine s. We

$$s = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}$$

find that

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.



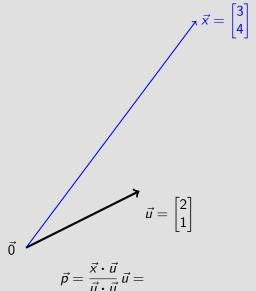
The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$. For this to hold, we need $\vec{z} \cdot \vec{u} = 0$, which allows us to determine s. We

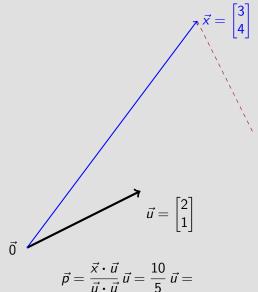
$$s = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}$$

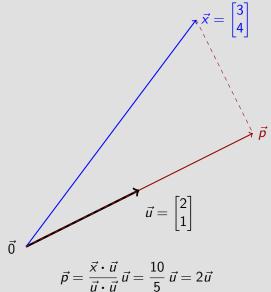
and thus

find that

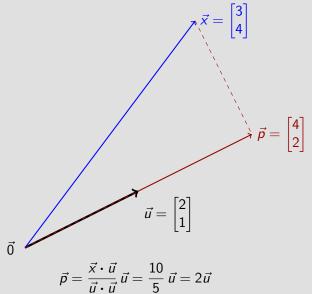
$$\vec{p} = \mathsf{Proj}_{\vec{u}}(\vec{x}) = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}.$$



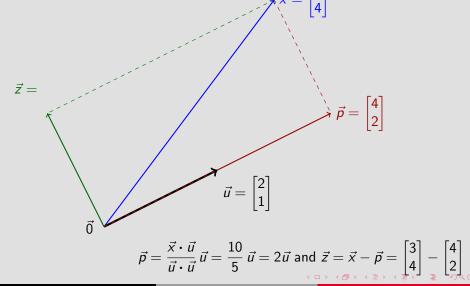




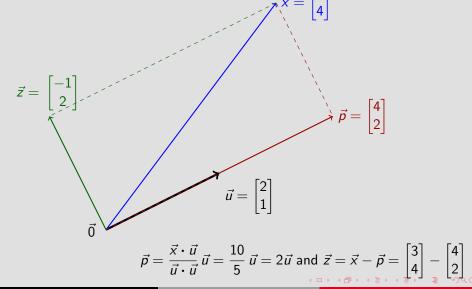
(ロ) (型) (量) (量) (量) (型) の(で)



(ロ) (리) (로) (로) 로 9Q은



Section 6.3



A set S of vectors (say, in \mathbb{R}^n) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e.,

A set S of vectors (say, in \mathbb{R}^n) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all \vec{u}, \vec{v} in S with $\vec{u} \neq \vec{v}, \vec{u} \cdot \vec{v} = 0$.

A set S of vectors (say, in \mathbb{R}^n) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all \vec{u}, \vec{v} in S with $\vec{u} \neq \vec{v}$, $\vec{u} \cdot \vec{v} = 0$.

Theorem

Any set of non-zero orthogonal vectors is linearly independent.

A set S of vectors (say, in \mathbb{R}^n) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all \vec{u}, \vec{v} in S with $\vec{u} \neq \vec{v}, \ \vec{u} \cdot \vec{v} = 0$.

Theorem

Any set of non-zero orthogonal vectors is linearly independent.

Definition (Orthogonal and Orthonormal Bases)

Let \mathbb{V} be a vector subspace of \mathbb{R}^n .

A set S of vectors (say, in \mathbb{R}^n) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all \vec{u}, \vec{v} in S with $\vec{u} \neq \vec{v}, \ \vec{u} \cdot \vec{v} = 0$.

Theorem

Any set of non-zero orthogonal vectors is linearly independent.

Definition (Orthogonal and Orthonormal Bases)

Let $\mathbb V$ be a vector subspace of $\mathbb R^n$. We call $\mathcal B$ an *orthogonal basis* for $\mathbb V$ if $\mathcal B$ is a basis and $\mathcal B$ is an orthogonal set of vectors.

Orthogonal Sets of Vectors

A set S of vectors (say, in \mathbb{R}^n) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all \vec{u}, \vec{v} in S with $\vec{u} \neq \vec{v}$, $\vec{u} \cdot \vec{v} = 0$.

Theorem

Any set of non-zero orthogonal vectors is linearly independent.

Definition (Orthogonal and Orthonormal Bases)

Let $\mathbb V$ be a vector subspace of $\mathbb R^n$. We call $\mathcal B$ an *orthogonal basis* for $\mathbb V$ if $\mathcal B$ is a basis and $\mathcal B$ is an orthogonal set of vectors. We call $\mathcal U$ an *orthonormal basis* for $\mathbb V$ if $\mathcal U$ is an orthogonal basis of *unit* vectors.

Orthogonal Sets of Vectors

A set S of vectors (say, in \mathbb{R}^n) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all \vec{u}, \vec{v} in S with $\vec{u} \neq \vec{v}$, $\vec{u} \cdot \vec{v} = 0$.

Theorem

Any set of non-zero orthogonal vectors is linearly independent.

Definition (Orthogonal and Orthonormal Bases)

Let $\mathbb V$ be a vector subspace of $\mathbb R^n$. We call $\mathcal B$ an *orthogonal basis* for $\mathbb V$ if $\mathcal B$ is a basis and $\mathcal B$ is an orthogonal set of vectors. We call $\mathcal U$ an *orthonormal basis* for $\mathbb V$ if $\mathcal U$ is an orthogonal basis of *unit* vectors.

The standard basis for \mathbb{R}^n is an orthonormal basis.

Orthogonal Sets of Vectors

A set S of vectors (say, in \mathbb{R}^n) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all \vec{u}, \vec{v} in S with $\vec{u} \neq \vec{v}, \vec{u} \cdot \vec{v} = 0$.

Theorem

Any set of non-zero orthogonal vectors is linearly independent.

Definition (Orthogonal and Orthonormal Bases)

Let $\mathbb V$ be a vector subspace of $\mathbb R^n$. We call $\mathcal B$ an *orthogonal basis* for $\mathbb V$ if $\mathcal B$ is a basis and $\mathcal B$ is an orthogonal set of vectors. We call $\mathcal U$ an *orthonormal basis* for $\mathbb V$ if $\mathcal U$ is an orthogonal basis of *unit* vectors.

The standard basis for \mathbb{R}^n is an orthonormal basis.

If $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ is an orthogonal basis, then $\vec{b}_i \cdot \vec{b}_i = 0$ when $i \neq j$.

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n , so

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n , so $\vec{b}_i \cdot \vec{b}_i = 0$ when $i \neq j$.

Let $\mathcal{B}=\{\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n , so $\vec{b}_i\cdot\vec{b}_j=0$ when $i\neq j$.

For each \vec{v} in \mathbb{V} , we can write $\vec{v} = \sum_{i=1}^{\kappa} c_i \vec{b_i}$,

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n , so $\vec{b}_i \cdot \vec{b}_j = 0$ when $i \neq j$.

For each \vec{v} in \mathbb{V} , we can write $\vec{v} = \sum_{i=1}^n c_i \vec{b_i}$, where c_1, c_2, \ldots, c_k are the \mathcal{B} -coordinates for \vec{v} .

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n , so $\vec{b}_i \cdot \vec{b}_j = 0$ when $i \neq j$.

For each \vec{v} in \mathbb{V} , we can write $\vec{v} = \sum_{i=1}^{\kappa} c_i \vec{b_i}$, where c_1, c_2, \ldots, c_k are the \mathcal{B} -coordinates for \vec{v} .

Since \mathcal{B} is orthogonal, it is *easy* to find these coordinates!

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n , so $\vec{b}_i \cdot \vec{b}_j = 0$ when $i \neq j$.

For each \vec{v} in \mathbb{V} , we can write $\vec{v} = \sum_{i=1}^{\kappa} c_i \vec{b}_i$, where c_1, c_2, \ldots, c_k are the

 \mathcal{B} -coordinates for \vec{v} .

$$\vec{v}\cdot\vec{b}_j$$

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n , so $\vec{b}_i \cdot \vec{b}_j = 0$ when $i \neq j$.

For each \vec{v} in \mathbb{V} , we can write $\vec{v} = \sum_{i=1}^{\kappa} c_i \vec{b}_i$, where c_1, c_2, \ldots, c_k are the

 \mathcal{B} -coordinates for \vec{v} .

$$\vec{v} \cdot \vec{b}_j = \sum_{i=1}^k c_i \vec{b}_i \cdot \vec{b}_j$$

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n , so $\vec{b}_i \cdot \vec{b}_j = 0$ when $i \neq j$.

For each \vec{v} in \mathbb{V} , we can write $\vec{v} = \sum_{i=1}^{\kappa} c_i \vec{b_i}$, where c_1, c_2, \ldots, c_k are the

 \mathcal{B} -coordinates for \vec{v} .

$$ec{v} \cdot ec{b}_j = \sum_{i=1}^k c_i ec{b}_i \cdot ec{b}_j = c_j ec{b}_j \cdot ec{b}_j$$

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n , so $\vec{b}_i \cdot \vec{b}_j = 0$ when $i \neq j$.

For each \vec{v} in \mathbb{V} , we can write $\vec{v} = \sum_{i=1}^n c_i \vec{b_i}$, where c_1, c_2, \ldots, c_k are the

 \mathcal{B} -coordinates for \vec{v} .

$$ec{v}\cdotec{b}_j=\sum_{i=1}^k c_iec{b}_i\cdotec{b}_j=c_jec{b}_j\cdotec{b}_j$$

so
$$c_j = \frac{\vec{v} \cdot \vec{b}_j}{\vec{b}_j \cdot \vec{b}_j}$$
.

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n , so $\vec{b}_i \cdot \vec{b}_j = 0$ when $i \neq j$.

For each \vec{v} in \mathbb{V} , we can write $\vec{v} = \sum_{i=1}^{n} c_i \vec{b}_i$, where c_1, c_2, \ldots, c_k are the

 \mathcal{B} -coordinates for \vec{v} .

Since \mathcal{B} is orthogonal, it is *easy* to find these coordinates! To find c_j , look at

$$\vec{v} \cdot \vec{b}_j = \sum_{i=1}^k c_i \vec{b}_i \cdot \vec{b}_j = c_j \vec{b}_j \cdot \vec{b}_j$$

so $c_j = \frac{\vec{v} \cdot \vec{b_j}}{\vec{b_j} \cdot \vec{b_j}}$. This says that

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n , so $\vec{b}_i \cdot \vec{b}_j = 0$ when $i \neq j$.

For each \vec{v} in \mathbb{V} , we can write $\vec{v} = \sum_{i=1}^n c_i \vec{b_i}$, where c_1, c_2, \ldots, c_k are the

 \mathcal{B} -coordinates for \vec{v} .

Since \mathcal{B} is orthogonal, it is *easy* to find these coordinates! To find c_j , look at

$$ec{v}\cdotec{b}_j=\sum_{i=1}^kc_iec{b}_i\cdotec{b}_j=c_jec{b}_j\cdotec{b}_j$$

so $c_j = \frac{\vec{v} \cdot \vec{b}_j}{\vec{b}_j \cdot \vec{b}_j}$. This says that

$$\vec{v} = \sum_{i=1}^k c_i \vec{b}_i =$$

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n , so $\vec{b}_i \cdot \vec{b}_j = 0$ when $i \neq j$.

For each \vec{v} in \mathbb{V} , we can write $\vec{v} = \sum_{i=1}^n c_i \vec{b}_i$, where c_1, c_2, \ldots, c_k are the

 \mathcal{B} -coordinates for \vec{v} .

Since \mathcal{B} is orthogonal, it is *easy* to find these coordinates! To find c_j , look at

$$\vec{v} \cdot \vec{b}_j = \sum_{i=1}^k c_i \vec{b}_i \cdot \vec{b}_j = c_j \vec{b}_j \cdot \vec{b}_j$$

so $c_j = rac{ec{v} \cdot ec{b}_j}{ec{b}_j \cdot ec{b}_j}$. This says that

$$ec{v} = \sum_{i=1}^k c_i ec{b}_i = \sum_{i=1}^k rac{ec{v} \cdot ec{b}_i}{ec{b}_i \cdot ec{b}_i} \, ec{b}_i =$$

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n , so $\vec{b_i} \cdot \vec{b_i} = 0$ when $i \neq i$.

For each $ec{v}$ in \mathbb{V} , we can write $ec{v} = \sum_{i} c_{i} ec{b}_{i}$, where $c_{1}, c_{2}, \ldots, c_{k}$ are the

 \mathcal{B} -coordinates for \vec{v} .

Since \mathcal{B} is orthogonal, it is *easy* to find these coordinates! To find c_i , look at

$$\vec{v} \cdot \vec{b}_j = \sum_{i=1}^k c_i \vec{b}_i \cdot \vec{b}_j = c_j \vec{b}_j \cdot \vec{b}_j$$

so $c_j = \frac{\vec{v} \cdot b_j}{\vec{b}_i \cdot \vec{b}_i}$. This says that

$$ec{v} = \sum_{i=1}^k c_i ec{b_i} = \sum_{i=1}^k rac{ec{v} \cdot ec{b_i}}{ec{b_i} \cdot ec{b_i}} \, ec{b_i} = \sum_{i=1}^k \mathsf{Proj}_{ec{b_i}} (ec{v}).$$

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

In fact,

$$\vec{p} = \sum_{i=1}^{\kappa} \mathsf{Proj}_{\vec{b}_i}(\vec{x})$$

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

In fact,

$$ec{p} = \sum_{i=1}^k \mathsf{Proj}_{ec{b}_i} (ec{x}) = \sum_{i=1}^k rac{ec{x} \cdot ec{b}_i}{ec{b}_i \cdot ec{b}_i} \, ec{b}_i$$

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

In fact,

$$\vec{p} = \sum_{i=1}^{K} \mathsf{Proj}_{\vec{b}_i}(\vec{x}) = \sum_{i=1}^{K} \frac{\vec{x} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \vec{b}_i$$
 and $\vec{z} = \vec{x} - \vec{p}$.

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

In fact,

$$\vec{p} = \sum_{i=1}^{K} \mathsf{Proj}_{\vec{b}_i}(\vec{x}) = \sum_{i=1}^{K} \frac{\vec{x} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \vec{b}_i$$
 and $\vec{z} = \vec{x} - \vec{p}$.

Definition

We call \vec{p} the orthogonal projection of \vec{x} onto \mathbb{W} , and write $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x})$.

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

In fact,

$$\vec{p} = \sum_{i=1}^{K} \mathsf{Proj}_{\vec{b}_i}(\vec{x}) = \sum_{i=1}^{K} \frac{\vec{x} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \vec{b}_i$$
 and $\vec{z} = \vec{x} - \vec{p}$.

Definition

We call \vec{p} the orthogonal projection of \vec{x} onto \mathbb{W} , and write $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x})$.

 $\vec{p} = \mathsf{Proj}_{\mathbb{W}}(\vec{x})$ is the vector in \mathbb{W} that is nearest to \mathbb{W} , and so

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an ortho basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

In fact,

$$\vec{p} = \sum_{i=1}^{K} \mathsf{Proj}_{\vec{b}_i}(\vec{x}) = \sum_{i=1}^{K} \frac{\vec{x} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \vec{b}_i$$
 and $\vec{z} = \vec{x} - \vec{p}$.

Definition

We call \vec{p} the orthogonal projection of \vec{x} onto \mathbb{W} , and write $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x})$.

 $\vec{p} = \mathsf{Proj}_{\mathbb{W}}(\vec{x})$ is the vector in \mathbb{W} that is nearest to \mathbb{W} , and so $\mathsf{dist}(\vec{x}, \mathbb{W}) = \|\vec{x} - \vec{p}\| = \|\vec{z}\|.$

Let $\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$.

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$.

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$. Write $\vec{x} = \vec{p} + \vec{z}$ with \vec{p} in \mathbb{W} and $\vec{z} \perp \mathbb{W}$, and find dist (\vec{x}, \mathbb{W}) .

Since $\vec{w}_1 \cdot \vec{w}_2 = 0$, $\{\vec{w}_1, \vec{w}_2\}$ is an orthog basis for \mathbb{W} . Therefore,

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$.

Since
$$\vec{w}_1 \cdot \vec{w}_2 = 0$$
, $\{\vec{w}_1, \vec{w}_2\}$ is an orthog basis for \mathbb{W} . Therefore, $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x}) = \vec{p}_1 + \vec{p}_2$ where $\vec{p}_i = \text{Proj}_{\vec{w}_i}(\vec{x})$ for $i = 1, 2$.

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$.

Since
$$\vec{w}_1 \cdot \vec{w}_2 = 0$$
, $\{\vec{w}_1, \vec{w}_2\}$ is an orthog basis for \mathbb{W} . Therefore, $\vec{p} = \operatorname{Proj}_{\mathbb{W}}(\vec{x}) = \vec{p}_1 + \vec{p}_2$ where $\vec{p}_i = \operatorname{Proj}_{\vec{w}_i}(\vec{x})$ for $i = 1, 2$. We compute $\vec{p}_1 = \operatorname{Proj}_{\vec{w}_1}(\vec{x}) =$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$.

Since
$$\vec{w}_1 \cdot \vec{w}_2 = 0$$
, $\{\vec{w}_1, \vec{w}_2\}$ is an orthog basis for \mathbb{W} . Therefore, $\vec{p} = \operatorname{Proj}_{\mathbb{W}}(\vec{x}) = \vec{p}_1 + \vec{p}_2$ where $\vec{p}_i = \operatorname{Proj}_{\vec{w}_i}(\vec{x})$ for $i = 1, 2$. We compute $\vec{p}_1 = \operatorname{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 =$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$.

Since
$$\vec{w}_1 \cdot \vec{w}_2 = 0$$
, $\{\vec{w}_1, \vec{w}_2\}$ is an orthog basis for \mathbb{W} . Therefore, $\vec{p} = \operatorname{Proj}_{\mathbb{W}}(\vec{x}) = \vec{p}_1 + \vec{p}_2$ where $\vec{p}_i = \operatorname{Proj}_{\vec{w}_i}(\vec{x})$ for $i = 1, 2$. We compute $\vec{p}_1 = \operatorname{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \frac{9}{30} \vec{w}_1 =$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$. Write $\vec{x} = \vec{p} + \vec{z}$ with \vec{p} in \mathbb{W} and $\vec{z} \perp \mathbb{W}$, and find dist (\vec{x}, \mathbb{W}) .

Since
$$\vec{w}_1 \cdot \vec{w}_2 = 0$$
, $\{\vec{w}_1, \vec{w}_2\}$ is an orthog basis for \mathbb{W} . Therefore, $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x}) = \vec{p}_1 + \vec{p}_2$ where $\vec{p}_i = \text{Proj}_{\vec{w}_i}(\vec{x})$ for $i = 1, 2$. We compute

$$\vec{p}_1 = \mathsf{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \frac{9}{30} \vec{w}_1 = \frac{3}{10} \vec{w}_1$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$.

Since
$$\vec{w}_1 \cdot \vec{w}_2 = 0$$
, $\{\vec{w}_1, \vec{w}_2\}$ is an orthog basis for \mathbb{W} . Therefore, $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x}) = \vec{p}_1 + \vec{p}_2$ where $\vec{p}_i = \text{Proj}_{\vec{w}_i}(\vec{x})$ for $i = 1, 2$. We compute $\vec{p}_1 = \text{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \frac{9}{30} \vec{w}_1 = \frac{3}{10} \vec{w}_1$

and

$$\vec{p}_2 = \mathsf{Proj}_{\vec{w}_2}(\vec{x}) =$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$.

Since
$$\vec{w}_1 \cdot \vec{w}_2 = 0$$
, $\{\vec{w}_1, \vec{w}_2\}$ is an orthog basis for \mathbb{W} . Therefore, $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x}) = \vec{p}_1 + \vec{p}_2$ where $\vec{p}_i = \text{Proj}_{\vec{w}_i}(\vec{x})$ for $i = 1, 2$. We compute $\vec{p}_1 = \text{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \frac{9}{30} \vec{w}_1 = \frac{3}{10} \vec{w}_1$

and

$$ec{p_2} = \mathsf{Proj}_{ec{w_2}}ig(ec{x}ig) = rac{ec{x} \cdot ec{w}_2}{ec{w}_2 \cdot ec{w}_2} \, ec{w}_1 =$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$.

Write $\vec{x} = \vec{p} + \vec{z}$ with \vec{p} in \mathbb{W} and $\vec{z} \perp \mathbb{W}$, and find dist (\vec{x}, \mathbb{W}) .

Since
$$\vec{w}_1 \cdot \vec{w}_2 = 0$$
, $\{\vec{w}_1, \vec{w}_2\}$ is an orthog basis for \mathbb{W} . Therefore, $\vec{p} = \operatorname{Proj}_{\mathbb{W}}(\vec{x}) = \vec{p}_1 + \vec{p}_2$ where $\vec{p}_i = \operatorname{Proj}_{\vec{w}_i}(\vec{x})$ for $i = 1, 2$. We compute $\vec{p}_1 = \operatorname{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \frac{9}{30} \vec{w}_1 = \frac{3}{10} \vec{w}_1$

and

$$ec{p_2} = \mathsf{Proj}_{ec{w_2}} (ec{x}) = rac{ec{x} \cdot ec{w_2}}{ec{w_2} \cdot ec{w_2}} \, ec{w}_1 = rac{3}{6} ec{w}_2 = rac{1}{2} ec{w}_2.$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$. Write $\vec{x} = \vec{p} + \vec{z}$ with \vec{p} in \mathbb{W} and $\vec{z} \perp \mathbb{W}$, and find dist (\vec{x}, \mathbb{W}) .

Since
$$\vec{w}_1 \cdot \vec{w}_2 = 0$$
, $\{\vec{w}_1, \vec{w}_2\}$ is an orthog basis for \mathbb{W} . Therefore, $\vec{p} = \mathsf{Proj}_{\mathbb{W}}(\vec{x}) = \vec{p}_1 + \vec{p}_2$ where $\vec{p}_i = \mathsf{Proj}_{\vec{w}_i}(\vec{x})$ for $i = 1, 2$. We compute $\vec{p}_1 = \mathsf{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \frac{9}{30} \vec{w}_1 = \frac{3}{10} \vec{w}_1$

and

$$\vec{p}_2 = \mathsf{Proj}_{\vec{w}_2}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_2}{\vec{w}_2 \cdot \vec{w}_2} \vec{w}_1 = \frac{3}{6} \vec{w}_2 = \frac{1}{2} \vec{w}_2.$$

$$\vec{p} = \vec{p_1} + \vec{p_2} = \frac{3}{10}\vec{w_1} + \frac{1}{2}\vec{w_2} =$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$. Write $\vec{x} = \vec{p} + \vec{z}$ with \vec{p} in \mathbb{W} and $\vec{z} \perp \mathbb{W}$, and find dist (\vec{x}, \mathbb{W}) .

Since $\vec{w}_1 \cdot \vec{w}_2 = 0$, $\{\vec{w}_1, \vec{w}_2\}$ is an orthog basis for \mathbb{W} . Therefore, $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x}) = \vec{p}_1 + \vec{p}_2$ where $\vec{p}_i = \text{Proj}_{\vec{w}_i}(\vec{x})$ for i = 1, 2. We compute $\vec{p}_1 = \text{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \frac{9}{30} \vec{w}_1 = \frac{3}{10} \vec{w}_1$

and

$$\vec{p}_2 = \mathsf{Proj}_{\vec{w}_2}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_2}{\vec{w}_2 \cdot \vec{w}_2} \vec{w}_1 = \frac{3}{6} \vec{w}_2 = \frac{1}{2} \vec{w}_2.$$

$$\vec{p} = \vec{p_1} + \vec{p_2} = \frac{3}{10}\vec{w_1} + \frac{1}{2}\vec{w_2} = \frac{1}{5} \begin{bmatrix} -2\\10\\1 \end{bmatrix}$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$. Write $\vec{x} = \vec{p} + \vec{z}$ with \vec{p} in \mathbb{W} and $\vec{z} \perp \mathbb{W}$, and find dist (\vec{x}, \mathbb{W}) .

Since
$$\vec{w}_1 \cdot \vec{w}_2 = 0$$
, $\{\vec{w}_1, \vec{w}_2\}$ is an orthog basis for \mathbb{W} . Therefore, $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x}) = \vec{p}_1 + \vec{p}_2$ where $\vec{p}_i = \text{Proj}_{\vec{w}_i}(\vec{x})$ for $i = 1, 2$. We compute $\vec{p}_1 = \text{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \frac{9}{30} \vec{w}_1 = \frac{3}{10} \vec{w}_1$

and

$$\vec{p}_2 = \mathsf{Proj}_{\vec{w}_2}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_2}{\vec{w}_2 \cdot \vec{w}_2} \vec{w}_1 = \frac{3}{6} \vec{w}_2 = \frac{1}{2} \vec{w}_2.$$

$$\vec{p} = \vec{p_1} + \vec{p_2} = \frac{3}{10}\vec{w_1} + \frac{1}{2}\vec{w_2} = \frac{1}{5} \begin{bmatrix} -2\\10\\1 \end{bmatrix}$$
 and $\vec{z} = \vec{x} - \vec{p} = \frac{7}{5} \begin{bmatrix} 1\\0\\2 \end{bmatrix}$.

$$\vec{p_1} = \mathsf{Proj}_{\vec{w_1}}(\vec{x}) = \frac{\vec{x} \cdot \vec{w_1}}{\vec{w_1} \cdot \vec{w_1}} \, \vec{w_1} = \frac{9}{30} \vec{w_1} = \frac{3}{10} \vec{w_1}$$
 and
$$\vec{p_2} = \mathsf{Proj}_{\vec{w_2}}(\vec{x}) = \frac{\vec{x} \cdot \vec{w_2}}{\vec{w_2} \cdot \vec{w_2}} \, \vec{w_1} = \frac{3}{6} \vec{w_2} = \frac{1}{2} \vec{w_2}.$$

Let $\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\mathbb{W} = Span\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$.

 $\vec{p} = \mathsf{Proj}_{\mathbb{W}}(\vec{x}) = \vec{p}_1 + \vec{p}_2$ where $\vec{p}_i = \mathsf{Proj}_{\vec{w}_i}(\vec{x})$ for i = 1, 2. We compute

Write $\vec{x} = \vec{p} + \vec{z}$ with \vec{p} in \mathbb{W} and $\vec{z} \perp \mathbb{W}$, and find $\text{dist}(\vec{x}, \mathbb{W})$.

Since $\vec{w}_1 \cdot \vec{w}_2 = 0$, $\{\vec{w}_1, \vec{w}_2\}$ is an orthog basis for \mathbb{W} . Therefore,

Thus $3 \quad 1 \quad 1 \quad \begin{bmatrix} -2 \\ 12 \end{bmatrix} \qquad 7 \quad \begin{bmatrix} 1 \\ 12 \end{bmatrix}$

$$\vec{p} = \vec{p}_1 + \vec{p}_2 = \frac{3}{10}\vec{w}_1 + \frac{1}{2}\vec{w}_2 = \frac{1}{5} \begin{bmatrix} -2\\10\\1 \end{bmatrix}$$
 and $\vec{z} = \vec{x} - \vec{p} = \frac{7}{5} \begin{bmatrix} 1\\0\\2 \end{bmatrix}$.

Finally dist $(\vec{x}, \mathbb{W}) = \|\vec{x} - \vec{p}\| = \|\vec{z}\| = \frac{7}{5}\sqrt{5} = \frac{7}{\sqrt{5}}$.

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$.

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\mathsf{Proj}_{\mathbb{W}}(\vec{x})$ where

 $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}.$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\mathsf{Proj}_{\mathbb{W}}(\vec{x})$ where

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\mathsf{Proj}_{\mathbb{W}}(\vec{x})$ where

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\mathsf{Proj}_{\mathbb{W}}(\vec{x})$ where

$$ec{
ho}_1 = \mathsf{Proj}_{ec{w}_1} ig(ec{x} ig) =$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\mathsf{Proj}_{\mathbb{W}}(\vec{x})$ where

$$ec{p_1} = \mathsf{Proj}_{ec{w_1}}ig(ec{x}ig) = rac{ec{x} \cdot ec{w_1}}{ec{w_1} \cdot ec{w_1}} \, ec{w}_1 =$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\text{Proj}_{\mathbb{W}}(\vec{x})$ where

$$ec{p_1} = \mathsf{Proj}_{ec{w_1}} (ec{x}) = rac{ec{x} \cdot ec{w_1}}{ec{w_1} \cdot ec{w_1}} \, ec{w_1} = rac{4}{2} ec{w_1} =$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\text{Proj}_{\mathbb{W}}(\vec{x})$ where

$$\vec{p_1} = \mathsf{Proj}_{\vec{w_1}}(\vec{x}) = \frac{\vec{x} \cdot \vec{w_1}}{\vec{w_1} \cdot \vec{w_1}} \, \vec{w_1} = \frac{4}{2} \vec{w_1} = 2 \vec{w_1},$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\text{Proj}_{\mathbb{W}}(\vec{x})$ where

$$\vec{p_1} = \operatorname{Proj}_{\vec{w_1}}(\vec{x}) = \frac{\vec{x} \cdot \vec{w_1}}{\vec{w_1} \cdot \vec{w_1}} \vec{w_1} = \frac{4}{2} \vec{w_1} = 2 \vec{w_1},$$

$$\vec{p_2} = \operatorname{Proj}_{\vec{w_2}}(\vec{x}) =$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\text{Proj}_{\mathbb{W}}(\vec{x})$ where

$$\vec{p}_1 = \mathsf{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \frac{4}{2} \vec{w}_1 = 2\vec{w}_1,$$
$$\vec{p}_2 = \mathsf{Proj}_{\vec{w}_2}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_2}{\vec{w}_2 \cdot \vec{w}_2} \vec{w}_1 =$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\text{Proj}_{\mathbb{W}}(\vec{x})$ where

$$\vec{p}_1 = \mathsf{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \, \vec{w}_1 = \frac{4}{2} \vec{w}_1 = 2 \vec{w}_1,$$
$$\vec{p}_2 = \mathsf{Proj}_{\vec{w}_2}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_2}{\vec{w}_2 \cdot \vec{w}_2} \, \vec{w}_1 = 0,$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\text{Proj}_{\mathbb{W}}(\vec{x})$ where

$$\vec{p}_1 = \operatorname{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \frac{4}{2} \vec{w}_1 = 2\vec{w}_1,$$

$$\vec{p}_2 = \operatorname{Proj}_{\vec{w}_2}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_2}{\vec{w}_2 \cdot \vec{w}_2} \vec{w}_1 = 0,$$

$$\vec{p}_3 = \operatorname{Proj}_{\vec{w}_3}(\vec{x}) =$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\text{Proj}_{\mathbb{W}}(\vec{x})$ where

$$\vec{p}_{1} = \operatorname{Proj}_{\vec{w}_{1}}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_{1}}{\vec{w}_{1} \cdot \vec{w}_{1}} \vec{w}_{1} = \frac{4}{2} \vec{w}_{1} = 2 \vec{w}_{1},$$

$$\vec{p}_{2} = \operatorname{Proj}_{\vec{w}_{2}}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_{2}}{\vec{w}_{2} \cdot \vec{w}_{2}} \vec{w}_{1} = 0,$$

$$\vec{p}_{3} = \operatorname{Proj}_{\vec{w}_{3}}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_{3}}{\vec{w}_{3} \cdot \vec{w}_{3}} \vec{w}_{1} =$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\text{Proj}_{\mathbb{W}}(\vec{x})$ where

$$\vec{p}_1 = \text{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \frac{4}{2} \vec{w}_1 = 2\vec{w}_1,$$

$$\vec{p}_2 = \text{Proj}_{\vec{w}_2}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_2}{\vec{w}_2 \cdot \vec{w}_2} \vec{w}_1 = 0,$$

$$\vec{p}_3 = \text{Proj}_{\vec{w}_3}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_3}{\vec{w}_3 \cdot \vec{w}_3} \vec{w}_1 = 4\vec{w}_3.$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\operatorname{Proj}_{\mathbb{W}}(\vec{x})$ where

$$\vec{p}_1 = \text{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \frac{4}{2} \vec{w}_1 = 2 \vec{w}_1,$$

$$\vec{p}_2 = \text{Proj}_{\vec{w}_2}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_2}{\vec{w}_2 \cdot \vec{w}_2} \vec{w}_1 = 0,$$

$$\vec{p}_3 = \text{Proj}_{\vec{w}_3}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_3}{\vec{w}_3 \cdot \vec{w}_3} \vec{w}_1 = 4 \vec{w}_3.$$

$$\vec{p} = \vec{p_1} + \vec{p_2} + \vec{p_3} = 2\vec{w_1} + 4\vec{w_3} =$$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\text{Proj}_{\mathbb{W}}(\vec{x})$ where

$$\vec{p}_1 = \text{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \frac{4}{2} \vec{w}_1 = 2\vec{w}_1,$$

$$\vec{p}_2 = \text{Proj}_{\vec{w}_2}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_2}{\vec{w}_2 \cdot \vec{w}_2} \vec{w}_1 = 0,$$

$$\vec{p}_3 = \text{Proj}_{\vec{w}_3}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_3}{\vec{w}_3 \cdot \vec{w}_3} \vec{w}_1 = 4\vec{w}_3.$$

$$\vec{p} = \vec{p}_1 + \vec{p}_2 + \vec{p}_3 = 2\vec{w}_1 + 4\vec{w}_3 = \begin{bmatrix} 2 \\ 0 \\ 2 \\ 4 \end{bmatrix}.$$

Let \mathbb{W} be a vector subspace of \mathbb{R}^n .

Let \mathbb{W} be a vector subspace of \mathbb{R}^n . Recall that $\mathbb{R}^n \xrightarrow{\text{Proj}_{\mathbb{W}}} \mathbb{R}^n$ is the linear transformation given by orthogonal projection onto \mathbb{W} .

Let \mathbb{W} be a vector subspace of \mathbb{R}^n . Recall that $\mathbb{R}^n \xrightarrow{\operatorname{Proj}_{\mathbb{W}}} \mathbb{R}^n$ is the linear transformation given by orthogonal projection onto \mathbb{W} . If $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ is an ortho basis for a vector subspace \mathbb{W} , then

$$\mathsf{Proj}_{\mathbb{W}}(\vec{x}) = \sum_{i=1}^{\kappa} \frac{\vec{x} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \vec{b}_i.$$

Let \mathbb{W} be a vector subspace of \mathbb{R}^n . Recall that $\mathbb{R}^n \xrightarrow{\text{Proj}_{\mathbb{W}}} \mathbb{R}^n$ is the linear transformation given by orthogonal projection onto \mathbb{W} . If $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ is an ortho basis for a vector subspace \mathbb{W} , then

$$\mathsf{Proj}_{\mathbb{W}}(\vec{x}) = \sum_{i=1}^{k} \frac{\vec{x} \cdot \vec{b}_{i}}{\vec{b}_{i} \cdot \vec{b}_{i}} \vec{b}_{i}.$$

The *reflection of* \vec{x} *across* \mathbb{W} is given by

$$\mathsf{Rflxn}(\vec{x}) = \vec{p} - \vec{z}$$

where $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x})$ and $\vec{z} = \vec{x} - \vec{p}$.

Let \mathbb{W} be a vector subspace of \mathbb{R}^n . Recall that $\mathbb{R}^n \xrightarrow{\text{Proj}_{\mathbb{W}}} \mathbb{R}^n$ is the linear transformation given by orthogonal projection onto \mathbb{W} . If $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ is an ortho basis for a vector subspace \mathbb{W} , then

$$\mathsf{Proj}_{\mathbb{W}}(\vec{x}) = \sum_{i=1}^{k} \frac{\vec{x} \cdot \vec{b}_{i}}{\vec{b}_{i} \cdot \vec{b}_{i}} \vec{b}_{i}.$$

The *reflection of* \vec{x} *across* \mathbb{W} is given by

$$\mathsf{Rflxn}(\vec{x}) = \vec{p} - \vec{z} = 2\vec{p} - \vec{x}$$

where $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x})$ and $\vec{z} = \vec{x} - \vec{p}$.

