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Orthogonal Complement

Definition (Orthogonal Complement of a Set)

The orthogonal complement of a non-empty set W of vectors in R is

Wt = {all ¥ in R" with w L X for all w in W}.
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Definition (Orthogonal Complement of a Set)

The orthogonal complement of a non-empty set W of vectors in R is

Wt = {all ¥ in R" with w L X for all w in W}.

It is not hard to check that W is always a vector subspace of R".

In general, if W is a vector subspace of R”, then R” = W & W+ and
dim W+ = n — dim W. This means that every vector X in R” can be
written as a sum

X=w4+Z where wisin W and Zis in W+,

Orthogonal Projection S T A



Orthogonal Complement

Definition (Orthogonal Complement of a Set)

The orthogonal complement of a non-empty set W of vectors in R is

Wt = {all ¥ in R" with w L X for all w in W}.

It is not hard to check that W is always a vector subspace of R".

In general, if W is a vector subspace of R”, then R” = W & W+ and
dim W+ = n — dim W. This means that every vector X in R” can be
written as a sum

X=w4+Z where wisin W and Zis in W+,

Here w is the ‘part’ of X that is parallel to W and Z'is the ‘part’ of X that
is orthogonal to W.
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Orthogonal Complement

Definition (Orthogonal Complement of a Set)

The orthogonal complement of a non-empty set W of vectors in R is

Wt = {all ¥ in R" with w L X for all w in W}.

It is not hard to check that W is always a vector subspace of R".

In general, if W is a vector subspace of R”, then R” = W & W+ and
dim W+ = n — dim W. This means that every vector X in R” can be
written as a sum

X=w4+Z where wisin W and Zis in W+,

Here w is the ‘part’ of X that is parallel to W and Z'is the ‘part’ of X that
is orthogonal to W. How do we find w and Z7
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Orthogonal Projection Onto a Vector

Let & be a fixed vector, and X a variable vector.
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Orthogonal Projection Onto a Vector

Let & be a fixed vector, and X a variable vector.

The orthogonal projection of X onto i
is the pictured vector g which is parallel
to & (so, p = si for some scalar) and
has the property that Z7=x—p L .
For this to hold, we need Z- & = 0,

p which allows us to determine s.
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Orthogonal Projection Onto a Vector

Let & be a fixed vector, and X a variable vector.

The orthogonal projection of X onto i
is the pictured vector g which is parallel
to & (so, p = si for some scalar) and
has the property that Z7=x—p L .
For this to hold, we need Z- & = 0,

Z which allows us to determine s. We

find that oL
X+ U

S =

<y
<y
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Orthogonal Projection Onto a Vector

Let & be a fixed vector, and X a variable vector.

The orthogonal projection of X onto i
is the pictured vector g which is parallel
to & (so, p = si for some scalar) and
has the property that Z7=x—p L .
For this to hold, we need Z- & = 0,
which allows us to determine s. We

find that oL

XU

S=S5—

o-u

and thus

X0
p = Proj-(X) = =——= 1
p ia(X) = =2
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Example of Orthogonal Projection Onto a Vector
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Orthogonal Sets of Vectors

A set S of vectors (say, in R") is orthogonal if and only if any two vectors
in S are orthogonal, i.e., for all &,V in S with & v, t- vV = 0.

Any set of non-zero orthogonal vectors is linearly independent.

Definition (Orthogonal and Orthonormal Bases)

Let V be a vector subspace of R”. We call B an orthogonal basis for V if
B is a basis and B is an orthogonal set of vectors. We call ¢/ an
orthonormal basis for V if U is an orthogonal basis of unit vectors.

The standard basis for R” is an orthonormal basis.

If B = {by, by, ..., by} is an orthogonal basis, then b; - EJ =0 when i # J.
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Coordinates Relative to an Orthogonal Basis

Let B = {51, 52, e Bk} be an ortho basis for a vector subspace W of R”,
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Let B = {51, 52, e Bk} be an ortho basis for a vector subspace W of R”,
SO b,'-ijOWhen I#J
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For each v in V, we can write v = Zc,-b,-, where ¢1, ¢, ..., ¢k are the
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Coordinates Relative to an Orthogonal Basis

Let B = {51, 52, e Bk} be an ortho basis for a vector subspace W of R”,
SO b,'-ijOWhen I#J
k
For each v in V, we can write v = Zc,-b,-, where ¢1, ¢, ..., ¢k are the
i=1

B-coordinates for V.

Since B is orthogonal, it is easy to find these coordinates!
To find ¢;, look at

V- bj = ZC,‘b,‘ . bj
i=1
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Coordinates Relative to an Orthogonal Basis

Let B = {51, 52, e Bk} be an ortho basis for a vector subspace W of R”,
SO b,'-ijOWhen I#J
k
For each v in V, we can write v = Zc,-b,-, where ¢1, ¢, ..., ¢k are the
i=1

B-coordinates for V.

Since B is orthogonal, it is easy to find these coordinates!
To find ¢;, look at
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Coordinates Relative to an Orthogonal Basis

Let B = {51, 52, e Bk} be an ortho basis for a vector subspace W of R”,
SO b,'-ijOWhen I#J
k
For each v in V, we can write v = Zc,-b,-, where ¢1, ¢, ..., ¢k are the
i=1

B-coordinates for V.

Since B is orthogonal, it is easy to find these coordinates!
To find ¢;, look at

V'bj:ZC,'b,"bj:Cjbj'bj
i=1
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Coordinates Relative to an Orthogonal Basis

Let B {bl, b2, .. Bk} be an ortho basis for a vector subspace W of R”,

so bj - b—OwhenI;«éJ
k

For each v in V, we can write v = g cib;, where c1, ¢, ..., ¢ are the
i=1
B-coordinates for V.

Since B is orthogonal, it is easy to find these coordinates!

To find ¢;, look at )
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Coordinates Relative to an Orthogonal Basis

Let B {bl, b2, .. Bk} be an ortho basis for a vector subspace W of R”,

so bj - b —OwhenI;éJ
k
For each v in V, we can write v = g cib;, where c1, ¢, ..., ¢ are the
. i=1
B-coordinates for V.

Since B is orthogonal, it is easy to find these coordinates!

To find ¢;, look at )
=Y abb=gb-F
i=1

—

_J, . This says that

k
V= E cib; =
i=1

Orthogonal Projection e T YA

<l

1

SO G =

[
<



Coordinates Relative to an Orthogonal Basis

Let B {bl, b2, .. Bk} be an ortho basis for a vector subspace W of R”,

so bj - b—OwhenI;«éJ
k

For each v in V, we can write v = g cib;, where c1, ¢, ..., ¢ are the
i=1
B-coordinates for V.
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To find ¢;, look at )
=Y abb=gb-F
i=1

—

_J, . This says that

K k
V=D abi=) =
=

i=1

<l

1

SO G =

[
<

-l

<l

by =

>l
>l

i

Orthogonal Projection Sy T A



Coordinates Relative to an Orthogonal Basis

Let B {bl, b2, .. Bk} be an ortho basis for a vector subspace W of R”,

so bj - b—OwhenI;«éJ
k

For each v in V, we can write v = g cib;, where c1, ¢, ..., ¢ are the
i=1
B-coordinates for V.

Since B is orthogonal, it is easy to find these coordinates!

To find ¢;, look at )
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Orthogonal Projection onto a Vector Subspace W

Let B = {51, b,..., Ek} be an ortho basis for a vector subspace W of R".
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Let B = {51, 52, e Ek} be an ortho basis for a vector subspace W of R”.

Theorem (Orthogonal Decomposition Theorem)

Each vector X in R™ can be written uniquely in the form
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Orthogonal Projection onto a Vector Subspace W

Let B = {51, 52, e Ek} be an ortho basis for a vector subspace W of R”.

Theorem (Orthogonal Decomposition Theorem)

Each vector X in R™ can be written uniquely in the form
X=p+7
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Let B = {51, 52, e Ek} be an ortho basis for a vector subspace W of R”.

Theorem (Orthogonal Decomposition Theorem)

Each vector X in R™ can be written uniquely in the form
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Orthogonal Projection onto a Vector Subspace W

Let B = {51, 52, e Ek} be an ortho basis for a vector subspace W of R”.

Theorem (Orthogonal Decomposition Theorem)

Each vector X in R™ can be written uniquely in the form
X=p+Z7Z wherepisinW and Z is in W+,

In fact,

p= ZProjEi(i)

i=1
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Orthogonal Projection onto a Vector Subspace W
bi} be an ortho basis for a vector subspace W of R”

Let B = {by, by,
Theorem (Orthogonal Decomposition Theorem)
Each vector X in R" can be written uniquely in the form
X=p+Z wherepisinW and Z is in W+

1

l><1
| =7

K K
p=) Projg(x) =) =
i=1

i=1

In fact,

3 April 2017 7 /10
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Orthogonal Projection onto a Vector Subspace W
bi} be an ortho basis for a vector subspace W of R”

Let B = {by, by,
Theorem (Orthogonal Decomposition Theorem)
Each vector X in R" can be written uniquely in the form
X=p+Z wherepisinW and Z is in W+

sl
o.
II
X
|

><1

i

ol
-l

ipg ;

i=1

In fact,
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Orthogonal Projection onto a Vector Subspace W
. Ek} be an ortho basis for a vector subspace W of R".

Let B = {51, 52,
Theorem (Orthogonal Decomposition Theorem)
Each vector X in R" can be written uniquely in the form
X=p+Z7Z wherepisinW and Z is in W+,

In fact,

k .
F=) Projz(R) =) =—=bh
i * Y

i=1

We call p' the orthogonal projection of x onto W, and write p = Projy(X).

Definition
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Definition
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Orthogonal Projection onto a Vector Subspace W

Let B = {51, 52, e Ek} be an ortho basis for a vector subspace W of R”.

Theorem (Orthogonal Decomposition Theorem)

Each vector X in R" can be written uniquely in the form
X=p+Z7Z wherepisinW and Z is in W+,

In fact,

k
p=Y Projz(x) =) = b andZ=3—p.
=1 i=1

Definition
We call p' the orthogonal projection of x onto W, and write p = Projy(X).

p = Projy(X) is the vector in W that is nearest to W, and so
dist(X, W) = [|X — ]| = ||Z]].
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Let X = !2] and W = Span{wy, wo} where wy = | 5 | ,wp =
3

Write X = p+ Z with pin W and Z L W, and find dist(xX, W).

Since wy - wo = 0, {wy, W} is an orthog basis for W. Therefore,
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Let X = !2] and W = Span{wy, wo} where wy = | 5 | ,wp =
3

Write X = p+ Z with pin W and Z L W, and find dist(xX, W).

Since wy - wo = 0, {wy, W} is an orthog basis for W. Therefore,
p = Projyw(X) = p1 + p2 where p; = Projg (X) for i = 1,2.
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Let X = !2] and W = Span{wy, wo} where wy = | 5 [ ,wp = | 1 |.
3
Write X = p+ Z with pin W and Z L W, and find dist(xX, W).

Since wy - wo = 0, {wy, W} is an orthog basis for W. Therefore,
p = Projyw(x) = p1 + p2 where p; = Projg (X) for i = 1,2. We compute

ﬁl = Projﬁl ()?) =
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Let X = [2| and W = Span{wy,w,} where w; = | 5 | ,wo = | 1 |.

3

=5

Write X + Z with pin W and Z L W, and find dist(x, W).
Since wy - wo = 0, {wy, W} is an orthog basis for W. Therefore,
p = Projyw(x) = p1 + p2 where p; = Projg (X) for i = 1,2. We compute

Xewr
w1 =

ﬁl — Proj,;,l ()?) = VVl . V‘_;l
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Let X = !2] and W = Span{wy, wo} where wy = | 5 [ ,wp = | 1 |.
=p+

Write X + Z with p'in W and Z L W, and find dist(x, W).

Since wy - wo = 0, {wy, W} is an orthog basis for W. Therefore,

p = Projw(X) = p1 + p2 where p; = Projvvi()_(’) for i = 1,2. We compute
Xewp 9
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Let X = !2] and W = Span{wy, wo} where wy = | 5 [ ,wp = | 1 |.
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Write X + Z with p'in W and Z L W, and find dist(x, W).

Since wy - wo = 0, {wy, W} is an orthog basis for W. Therefore,

p = Projyw(x) = p1 + p2 where p; = Projg (X) for i = 1,2. We compute
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Let X = !2] and W = Span{wy, wo} where wy = | 5 [ ,wp = | 1 |.
=p+

Write X + Z with p'in W and Z L W, and find dist(x, W).

Since wy - wo = 0, {wy, W} is an orthog basis for W. Therefore,

p = Projyw(x) = p1 + p2 where p; = Projg (X) for i = 1,2. We compute
Xewp 9 3

= - W1 = 7W1 w1
wi - Wy 30 10
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Let X = !2] and W = Span{wy, wo} where wy = | 5 [ ,wp = | 1 |.
3
Write X = p+ Z with pin W and Z L W, and find dist(xX, W).

Since wy - wo = 0, {wy, W} is an orthog basis for W. Therefore,
p = Projyw(x) = p1 + p2 where p; = Projg (X) for i = 1,2. We compute

p1=FProjz (X) = ——= w1 = ~wW1 = ——~w
I Wy - W 30 10
and
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p2 = Projg, (X) = —— 5=
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Let X = !2] and W = Span{wy, wo} where wy = | 5 [ ,wp = | 1 |.
3
Write X = p+ Z with pin W and Z L W, and find dist(xX, W).

Since wy - wo = 0, {wy, W} is an orthog basis for W. Therefore,
p = Projyw(x) = p1 + p2 where p; = Projg (X) for i = 1,2. We compute
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Let X = !2] and W = Span{wy, wo} where wy = | 5 [ ,wp = | 1 |.
3
Write X = p+ Z with pin W and Z L W, and find dist(xX, W).

Since wy - wo = 0, {wy, W} is an orthog basis for W. Therefore,
p = Projyw(x) = p1 + p2 where p; = Projg (X) for i = 1,2. We compute
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Let W be a vector subspace of R".

Orthogonal Projection ST W E



Reflection Across a Vector Subspace

Proj . .
Let W be a vector subspace of R"”. Recall that R” —W, RN is the linear
transformation given by orthogonal projection onto W.
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Let W be a vector subspace of R"”. Recall that R” —W, R s the linear

transformation given by orthogonal projection onto W. If
B = {b1, by,..., bk} is an ortho basis for a vector subspace W, then
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Reflection Across a Vector Subspace

Let W be a vector subspace of R"”. Recall that R” —> R" is the linear
transformation given by orthogonal projection onto W. If
B = {b1, by,..., bk} is an ortho basis for a vector subspace W, then

k
Projyy (X Z =
i=

ol

><1

>~

P‘

The reflection of X across W is given by

where p'= Projy(X) and 2 = X — p.
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