Orthogonal Projection onto a Vector Subspace of \mathbb{R}^n

Linear Algebra MATH 2076

Orthogonal Complement

Definition (Orthogonal Complement of a Vector Subspace)

The *orthogonal complement* of a vector subspace $\mathbb W$ in $\mathbb R^n$ is $\mathbb{W}^\perp = \big\{\text{all \vec{x} in \mathbb{R}^n with $\vec{w} \perp \vec{x}$ for all \vec{w} in \mathbb{W}}\big\}.$

 \mathbb{W}^{\perp} is a vector subspace of \mathbb{R}^n , with dim $\mathbb{W}^{\perp} = n -$ dim \mathbb{W}

Also, $\mathbb{R}^n=\mathbb{W}\oplus\mathbb{W}^\perp$ which means that every vector $\vec{\mathsf{x}}$ in \mathbb{R}^n can be written as a sum

 $\vec{x} = \vec{w} + \vec{z}$ where \vec{w} is in W and \vec{z} is in W[⊥].

Here \vec{w} is the *orthogonal projection of* \vec{x} *onto* W (the 'part' of \vec{x} that is parallel to W) and \vec{z} is the orthogonal projection of \vec{x} onto \mathbb{W}^{\perp} (the 'part' of \vec{x} that is orthogonal to W).

How do we find \vec{w} and \vec{z} ?

Orthogonal Projection Onto a Vector

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.

Orthogonal Projection onto a Vector Subspace W

Let $\mathcal{B}=\{\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_k\}$ be an orthog basis for a vector subspace $\mathbb W$ of $\mathbb R^n$.

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in W and \vec{z} is in W[⊥].

In fact,

$$
\vec{p} = \sum_{i=1}^k \text{Proj}_{\vec{b}_i}(\vec{x}) = \sum_{i=1}^k \frac{\vec{x} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \ \ \vec{b}_i \quad \text{and } \vec{z} = \vec{x} - \vec{p}.
$$

Definition

We call \vec{p} the *orthogonal projection of* \vec{x} *onto* W, and write $\vec{p} = \text{Proj}_{\text{WW}}(\vec{x})$.

 \vec{p} = Proj $\vec{w}(\vec{x})$ is the vector in W that is nearest to W, and so dist($(\vec{x}, \mathbb{W}) = ||\vec{x} - \vec{p}|| = ||\vec{z}||$.

Let
$$
\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}
$$
 and $\mathbb{W} = \text{Span}\{\vec{w}_1, \vec{w}_2\}$ where $\vec{w}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$.
Write $\vec{x} = \vec{p} + \vec{z}$ with \vec{p} in \mathbb{W} and $\vec{z} \perp \mathbb{W}$, and find $dist(\vec{x}, \mathbb{W})$.

Since $\vec{w}_1 \cdot \vec{w}_2 = 0$, $\{\vec{w}_1, \vec{w}_2\}$ is an orthog basis for W. Therefore, $\vec{\rho} = \mathsf{Proj}_{\mathbb{W}}(\vec{x}) = \vec{\rho}_1 + \vec{\rho}_2$ where $\vec{\rho}_i = \mathsf{Proj}_{\vec{w}_i}(\vec{x})$ for $i = 1, 2$. We compute $\vec{\rho}_1 = \mathsf{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_2}$ $\frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1}$ $\vec{w}_1 = \frac{9}{30}$ $\frac{9}{30}$ $\vec{w}_1 = \frac{3}{10}$ $rac{\text{v}}{10}$ \vec{w}_1

and

$$
\vec{p}_2 = \text{Proj}_{\vec{w}_2}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_2}{\vec{w}_2 \cdot \vec{w}_2} \vec{w}_2 = \frac{3}{6} \vec{w}_2 = \frac{1}{2} \vec{w}_2.
$$

Thus

$$
\vec{p} = \vec{p}_1 + \vec{p}_2 = \frac{3}{10}\vec{w}_1 + \frac{1}{2}\vec{w}_2 = \frac{1}{5}\begin{bmatrix} -2\\10\\1 \end{bmatrix} \text{ and } \vec{z} = \vec{x} - \vec{p} = \frac{7}{5}\begin{bmatrix} 1\\0\\2 \end{bmatrix}.
$$

Finally $dist(\vec{x}, \mathbb{W}) = ||\vec{x} - \vec{p}|| = ||\vec{z}|| = \frac{7}{5}\sqrt{5} = \frac{7}{\sqrt{5}}.$

 $\sqrt{5}$

Let
$$
\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}
$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\text{Proj}_W(\vec{x})$ where $\vec{w} = \text{Span}\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$. Since $\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ is an orthog basis for \mathbb{W} , $\vec{p} = \text{Proj}_W(\vec{x}) = \vec{p}_1 + \vec{p}_2 + \vec{p}_3$ where $\vec{p}_i = \text{Proj}_{\vec{w}_i}(\vec{x})$ for $i = 1, 2, 3$. We compute

$$
\vec{p}_1 = \text{Proj}_{\vec{w}_1}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_1}{\vec{w}_1 \cdot \vec{w}_1} \vec{w}_1 = \frac{4}{2} \vec{w}_1 = 2\vec{w}_1,
$$
\n
$$
\vec{p}_2 = \text{Proj}_{\vec{w}_2}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_2}{\vec{w}_2 \cdot \vec{w}_2} \vec{w}_2 = \vec{0},
$$
\n
$$
\vec{p}_3 = \text{Proj}_{\vec{w}_3}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_3}{\vec{w}_3 \cdot \vec{w}_3} \vec{w}_3 = 4\vec{w}_3.
$$

Thus

$$
\vec{p} = \vec{p}_1 + \vec{p}_2 + \vec{p}_3 = 2\vec{w}_1 + 4\vec{w}_3 = \begin{bmatrix} 2 \\ 0 \\ 2 \\ 4 \end{bmatrix}.
$$

Orthogonal Reflection Across a Vector Subspace

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_k\}$ be an orthog basis for a vector subspace $\mathbb W$ of \mathbb{R}^n , and \vec{x} be any vector in \mathbb{R}^n .

The pictured vector $\vec{r} = \vec{p} - \vec{z}$ is called the *reflection of* \vec{x} across W. Since $\vec{x} = \vec{p} + \vec{z}$, $\vec{r} = 2\vec{p} - \vec{x}$, and thus

$$
Rflxn_{\mathbb{W}}(\vec{x}) = 2 \operatorname{Proj}_{\mathbb{W}}(\vec{x}) - \vec{x}
$$

= (2 \operatorname{Proj}_{\mathbb{W}} - Id)(\vec{x}).

 \bar{r} Note that we need an *orthogonal basis B* to compute $\text{Proj}_W(\vec{x})$.