Orthogonal Projection onto a Vector Subspace of \mathbb{R}^n

Linear Algebra MATH 2076

Orthogonal Complement

Definition (Orthogonal Complement of a Vector Subspace)

The *orthogonal complement* of a vector subspace \mathbb{W} in \mathbb{R}^n is

$$\mathbb{W}^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } \mathbb{W} \}.$$

 \mathbb{W}^{\perp} is a vector subspace of \mathbb{R}^n , with dim $\mathbb{W}^{\perp}=n-\dim\,\mathbb{W}$

Also, $\mathbb{R}^n=\mathbb{W}\oplus\mathbb{W}^\perp$ which means that every vector \vec{x} in \mathbb{R}^n can be written as a sum

$$\vec{x} = \vec{w} + \vec{z}$$
 where \vec{w} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

Here \vec{w} is the *orthogonal projection of* \vec{x} *onto* \mathbb{W} (the 'part' of \vec{x} that is parallel to \mathbb{W}) and \vec{z} is the *orthogonal projection of* \vec{x} *onto* \mathbb{W}^{\perp} (the 'part' of \vec{x} that is orthogonal to \mathbb{W}).

How do we find \vec{w} and \vec{z} ?

Orthogonal Projection Onto a Vector

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.

The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$.

For this to hold, we need $\vec{z} \cdot \vec{u} = 0$, which allows us to determine s. We find that

$$s = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}$$

and thus

$$\vec{p} = \mathsf{Proj}_{\vec{u}}(\vec{x}) = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}.$$

Note that $\vec{x} = \vec{p} + \vec{z}$ where $\vec{p} \parallel \vec{u}$ and $\vec{z} \perp \vec{u}$.

Orthogonal Projection onto a Vector Subspace \mathbb{W}

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{W} of \mathbb{R}^n .

Theorem (Orthogonal Decomposition Theorem)

Each vector \vec{x} in \mathbb{R}^n can be written uniquely in the form $\vec{x} = \vec{p} + \vec{z}$ where \vec{p} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

In fact,

$$\vec{p} = \sum_{i=1}^{K} \mathsf{Proj}_{\vec{b}_i}(\vec{x}) = \sum_{i=1}^{K} \frac{\vec{x} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \vec{b}_i$$
 and $\vec{z} = \vec{x} - \vec{p}$.

Definition

We call \vec{p} the *orthogonal projection of* \vec{x} *onto* \mathbb{W} , and write $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x})$.

 $\vec{p} = \mathsf{Proj}_{\mathbb{W}}(\vec{x})$ is the vector in \mathbb{W} that is nearest to \mathbb{W} , and so $\mathsf{dist}(\vec{x},\mathbb{W}) = \|\vec{x} - \vec{p}\| = \|\vec{z}\|.$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbb{W} = \mathcal{S}pan\{\vec{w_1}, \vec{w_2}\}$ where $\vec{w_1} = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$, $\vec{w_2} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$. Write $\vec{x} = \vec{p} + \vec{z}$ with \vec{p} in \mathbb{W} and $\vec{z} \perp \mathbb{W}$, and find dist (\vec{x}, \mathbb{W}) .

Since $\vec{w_1} \cdot \vec{w_2} = 0$, $\{\vec{w_1}, \vec{w_2}\}$ is an orthog basis for \mathbb{W} . Therefore, $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x}) = \vec{p_1} + \vec{p_2}$ where $\vec{p_i} = \text{Proj}_{\vec{w_i}}(\vec{x})$ for $i = 1, 2$. We compute

 $\vec{p_1} = \mathsf{Proj}_{\vec{w_1}}(\vec{x}) = \frac{\vec{x} \cdot \vec{w_1}}{\vec{w_1} \cdot \vec{w_1}} \vec{w_1} = \frac{9}{30} \vec{w_1} = \frac{3}{10} \vec{w_1}$ and

 $\vec{p}_2 = \mathsf{Proj}_{\vec{w}_2}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_2}{\vec{w}_2 \cdot \vec{w}_2} \vec{w}_2 = \frac{3}{6} \vec{w}_2 = \frac{1}{2} \vec{w}_2.$

Thus

Thus
$$3 \quad 1 \quad 1 \quad \begin{bmatrix} -2 \\ \end{bmatrix} \quad . \quad . \quad 7 \quad \begin{bmatrix} 1 \\ \end{bmatrix}$$

 $\vec{p} = \vec{p_1} + \vec{p_2} = \frac{3}{10}\vec{w_1} + \frac{1}{2}\vec{w_2} = \frac{1}{5}\begin{bmatrix} -2\\10\\1 \end{bmatrix}$ and $\vec{z} = \vec{x} - \vec{p} = \frac{7}{5}\begin{bmatrix} 1\\0\\2 \end{bmatrix}$.

$$\vec{p} = \vec{p}_1 + \vec{p}_2 = \frac{1}{10}\vec{w}_1 + \frac{1}{2}\vec{w}_2 = \frac{1}{5}\begin{bmatrix}10\\1\end{bmatrix}$$
 and $\vec{z} = \vec{x} - \vec{p} = \frac{1}{5}\begin{bmatrix}0\\2\end{bmatrix}$

Finally dist $(\vec{x}, \mathbb{W}) = \|\vec{x} - \vec{p}\| = \|\vec{z}\| = \frac{7}{5} \sqrt{5} = \frac{7}{15}$

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find $\text{Proj}_{\mathbb{W}}(\vec{x})$ where $\mathbb{W} = \mathcal{S}pan\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$. Since $\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ is an orthog basis for \mathbb{W} , $\vec{p} = \text{Proj}_{\mathbb{W}}(\vec{x}) = \vec{p}_1 + \vec{p}_2 + \vec{p}_3$ where $\vec{p}_i = \text{Proj}_{\vec{w}_i}(\vec{x})$ for $i = 1, 2, 3$. We compute

$$ec{p_1} = \mathsf{Proj}_{ec{w_1}} (ec{x}) = rac{ec{x} \cdot ec{w_1}}{ec{w_1} \cdot ec{w_1}} \, ec{w_1} = rac{4}{2} ec{w}_1 = 2 ec{w}_1, \ ec{p_2} = \mathsf{Proj}_{ec{w_2}} (ec{x}) = rac{ec{x} \cdot ec{w}_2}{ec{w}_2 \cdot ec{w}_2} \, ec{w}_2 = ec{0},$$

$$\vec{p}_3 = \mathsf{Proj}_{\vec{w}_3}(\vec{x}) = \frac{\vec{x} \cdot \vec{w}_3}{\vec{w}_3 \cdot \vec{w}_3} \, \vec{w}_3 = 4 \vec{w}_3.$$

Thus $\vec{p} = \vec{p_1} + \vec{p_2} + \vec{p_3} = 2\vec{w_1} + 4\vec{w_3} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}.$

Orthogonal Reflection Across a Vector Subspace

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{W} of \mathbb{R}^n , and \vec{x} be any vector in \mathbb{R}^n .

Note that we need an *orthogonal basis* \mathcal{B} to compute $Proj_{\mathbb{W}}(\vec{x})$.