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Definition for the Dot Product

uy Vi
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The dot productof ’= | . | andv=| | is
Up Vi
n
UV =uv+upvy+ -+ uyv, = E ujvi = LTT\7
i=1
but also when & # 0 # v, v

—

a7 = |7 cos

<y

where 6 is the angle (in [0, 7]) between & and V.

Thus for non-zero & and V, |cosf = H ﬁHH‘Q” . Recall that | x- X = ||X||?|.
||| v
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Properties of the Dot Product

The dot product of & and V is
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Properties of the Dot Product

The dot product of & and V is
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Properties of the Dot Product

The dot product of & and

Vv is

Algebraic Properties
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Properties of the Dot Product

The dot product of & and V is

g-v=d"v=d|v|cosd.
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Properties of the Dot Product

The dot product of & and V is

i-v=a"v=|d||v| cosb.
Geometric Properties Algebraic Properties
0 cosl — f‘z @ /- Vis a scalar
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e ulv e u-v=0 o (si)-7=d-(s7)=s(d-7)
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A Useful Formula
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Orthogonality BN =PI



A Useful Formula

Look at

[T+ 7|2 = (G+ V) (G+ V) =

Orthogonality BN =PI



A Useful Formula

Look at

[T+ 7|2 = (G+ V) - (G+ V) = |d))*+2d- 7+ |V

Orthogonality BN =PI



A Useful Formula

Look at
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Orthogonality BN =PI



A Useful Formula

Look at

|G+ V|2 = (a+7) - (a+7) =|d@fP+2d- 7+ |7
= ||d@|® + ||V||? if and only if & L V.

The final equality above is known as Pyhtagoras’ Theorem.
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Orthogonal Complement

The orthogonal complement of a non-zero vector 3 in R” is

{7} = {all X in R" with & L X}
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Orthogonal Complement

The orthogonal complement of a non-zero vector 3 in R” is

{7} = {all ¥in R" with 5 L ¥} = N'S(3").

It is not hard to check that {3} is always a vector subspace of R”.

Orthogonality BN =PI



An Example with W = {a}

Let W = {3} with & # 0.
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An Example with W = {a}

Let W = {3} with §# 0. Then W' = N'S(A) where A= 37

15— Thus we see that:

)0° e in R2, W is a line,

e in R3, W is a 2-plane,
e in R* W is a 3-plane,

e in R", W' is an (n — 1)-plane,
that is, a hyperplane.

L

Rn
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Orthogonal Complement

The orthogonal complement of a non-zero vector & in R" is

{3} = {all Xin R" with 3 L X}
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Orthogonal Complement

The orthogonal complement of a non-zero vector & in R" is
{3} ={all Xin R" with 3 L x} = NS(a").

This is the hyperplane in R" thru 0 with normal vector &.

Definition (Orthogonal Complement of a Set)

The orthogonal complement of a non-empty set W of vectors in R” is

W+ = {all X in R” with w L X for all w in W}.
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Orthogonal Complement

The orthogonal complement of a non-zero vector & in R" is
{3} ={all Xin R" with 3 L x} = NS(a").

This is the hyperplane in R" thru 0 with normal vector &.

Definition (Orthogonal Complement of a Set)

The orthogonal complement of a non-empty set W of vectors in R” is

W+ = {all X in R” with w L X for all w in W}.

It is not hard to check that W is always a vector subspace of R".
Please convince yourself that this is true.
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An Example with W = {v, w

Let W = {V,w} with V }f w.
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An Example with W = {v, w
Let W = {V,w} with V}f w. Then W = N'S(A) where A= [V W] T

Here we see that:

e in R3, W is a line,
o in R* W+ is a 2-plane,

o in R”, W is an (n — 2)-plane,

In general, if W is a vector subspace of R”, then R” = W @ W+
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An Example with W = {v, w

Let W = {V,w} with V}f w. Then W = N'S(A) where A= [V W] T

Here we see that:
e in R3, W is a line,
o in R* W+ is a 2-plane,

o in R”, W is an (n — 2)-plane,

In general, if W is a vector subspace of R”, then R" = W & W+ and
dim W+ = n —dim W.
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An Example with W = {v, w
Let W = {V,w} with V}f w. Then W = N'S(A) where A= [V W] T
Here we see that:
e in R3, W is a line,
e in R W is a 2-plane,
o in R”, W is an (n — 2)-plane,
In general, if W is a vector subspace of R”, then R" = W & W+ and

dim W' = n — dim W. This means that every vector X in R” can be
written as a sum

X=w4Z where wisin W and 7 is in WL,
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e in R W is a 2-plane,
o in R”, W is an (n — 2)-plane,
In general, if W is a vector subspace of R”, then R" = W & W+ and

dim W' = n — dim W. This means that every vector X in R” can be
written as a sum

X=w4Z where wisin W and 7 is in WL,

Here w is the ‘part’ of X that is parallel to W and Z is the ‘part’ of X that
is orthogonal to W.
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An Example with W = {v, w
Let W = {V,w} with V}f w. Then W = N'S(A) where A= [V W] T
Here we see that:
e in R3, W is a line,
e in R W is a 2-plane,
o in R”, W is an (n — 2)-plane,
In general, if W is a vector subspace of R”, then R" = W & W+ and

dim W' = n — dim W. This means that every vector X in R” can be
written as a sum

X=w4Z where wisin W and 7 is in WL,

Here w is the ‘part’ of X that is parallel to W and Z is the ‘part’ of X that
is orthogonal to W. How do we find w and Z7
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Orthogonal Projection Onto a Vector

Let & be a fixed vector, and X a variable vector.
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Orthogonal Projection Onto a Vector

Let & be a fixed vector, and X a variable vector.

The orthogonal projection of X onto i
is the pictured vector g which is parallel
to & (so, p = su for some scalar) and
has the property that Z7=x—p L 0.
For this to hold, we need Z- 7 = 0,
which allows us to determine s.
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Orthogonal Projection Onto a Vector

Let & be a fixed vector, and X a variable vector.

The orthogonal projection of X onto i
is the pictured vector g which is parallel
to & (so, p = su for some scalar) and
has the property that Z7=x—p L 0.
For this to hold, we need Z- 7 = 0,
which allows us to determine s. We

. find that

R

S =

<y
<y
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Orthogonal Projection Onto a Vector

Let o be a fixed vector, and X a variable vector.
The orthogonal projection of X onto i
is the pictured vector g which is parallel
to & (so, p = su for some scalar) and
has the property that Z7=x—p L 0.
For this to hold, we need Z'- 7 = 0,
which allows us to determine s. We

. find that

X0
5SS =75
u-u
and thus
. oo XU
p = Proj;(X) = =——=u
i(X) = ==

31 March 2017 9/1

Orthogonality



Example of Orthogonal Projection Onto a Vector

(=)

Orthogonality =T O



Example of Orthogonal Projection Onto a Vector

Orthogonality =T O



Example of Orthogonal Projection Onto a Vector
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Example of Orthogonal Projection Onto a Vector

23
\\_ 4
. 2
YT
0
L X-u_, 10
p:_' _‘u:—u:
u-u 5
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B is a basis and B is an orthogonal set of vectors. We call ¢/ an
orthonormal basis for V if U is an orthogonal basis of unit vectors.

Orthogonality ST i



Orthogonal Sets of Vectors

A set S of vectors (say, in R") is orthogonal if and only if any two vectors
in S are orthogonal, i.e., for all &,V in S with o= v, i+ 7= 0.

Any set of non-zero orthogonal vectors is linearly independent.

Definition (Orthogonal and Orthonormal Bases)

Let V be a vector subspace of R". We call B an orthogonal basis for V if
B is a basis and B is an orthogonal set of vectors. We call ¢/ an
orthonormal basis for V if U is an orthogonal basis of unit vectors.

The standard basis for R” is an orthonormal basis.
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Coordinates Relative to an Orthogonal Basis

Let B = {51, 52, e Bk} be an ortho basis for a vector subspace V of R”.
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For each v in V, we can write v = ZC,’E,‘,
i=1

Orthogonality =Ty



Coordinates Relative to an Orthogonal Basis

Let B = {51, 52, e Bk} be an ortho basis for a vector subspace V of R”.
k

For each v in V, we can write vV = Zc,-b,-, where c¢1, ¢, ..., ¢k are the
i=1

B-coordinates for V.

Orthogonality =Ty



Coordinates Relative to an Orthogonal Basis

Let B = {51, 52, e Bk} be an ortho basis for a vector subspace V of R”.
k

For each v in V, we can write vV = Zc,-b,-, where c¢1, ¢, ..., ¢k are the
i=1

B-coordinates for V.

Since B is orthogonal, it is easy to find these coordinates!

Orthogonality =Ty



Coordinates Relative to an Orthogonal Basis

Let B = {51, 52, e Bk} be an ortho basis for a vector subspace V of R”.
k
For each v in V, we can write vV = Zc,-b,-, where c¢1, ¢, ..., ¢k are the

i=1
B-coordinates for V.

Since B is orthogonal, it is easy to find these coordinates!
To find ¢;, look at

Orthogonality =Ty



Coordinates Relative to an Orthogonal Basis

Let B = {51, 52, e Bk} be an ortho basis for a vector subspace V of R”.
k

For each v in V, we can write vV = Zc,-b,-, where c¢1, ¢, ..., ¢k are the
i=1

B-coordinates for V.

Since B is orthogonal, it is easy to find these coordinates!
To find ¢;, look at
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Let B = {51, 52, e Bk} be an ortho basis for a vector subspace V of R”.
k

For each v in V, we can write vV = Zc,-b,-, where c¢1, ¢, ..., ¢k are the
i=1

B-coordinates for V.

Since B is orthogonal, it is easy to find these coordinates!
To find ¢;, look at
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Let B = {51, 52, e Bk} be an ortho basis for a vector subspace V of R”.
k
For each v in V, we can write vV = Z cibj, where ¢1, ¢, ..., ck are the

i=1
B-coordinates for V.
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For each v in V, we can write vV = Z cibj, where ¢1, ¢, ..., ck are the
i=1

B-coordinates for V.
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