# Orthogonality & Orthogonal Sets

Linear Algebra MATH 2076



The *dot product* of 
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and  $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$  is

The *dot product* of 
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and  $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$  is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

The *dot product* of 
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and  $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$  is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$$

The *dot product* of 
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and  $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$  is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}$$

Section 6.2

The *dot product* of 
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and  $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$  is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}$$

but also when  $\vec{u} \neq \vec{0} \neq \vec{v}$ ,

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$$



The *dot product* of 
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and  $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$  is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}$$

but also when  $\vec{u} \neq \vec{0} \neq \vec{v}$ ,

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$

where  $\theta$  is the angle (in  $[0,\pi]$ ) between  $\vec{u}$  and  $\vec{v}$ .



Section 6.2

The *dot product* of 
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and  $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$  is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}$$

but also when  $\vec{u} \neq \vec{0} \neq \vec{v}$ ,

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$

where  $\theta$  is the angle (in  $[0,\pi]$ ) between  $\vec{u}$  and  $\vec{v}$ .

Thus for non-zero  $\vec{u}$  and  $\vec{v}$ ,  $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$ .



The *dot product* of 
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and  $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$  is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}$$

but also when  $\vec{u} \neq \vec{0} \neq \vec{v}$ .

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$



Thus for non-zero  $\vec{u}$  and  $\vec{v}$ ,  $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$ . Recall that  $[\vec{x} \cdot \vec{x} = \|\vec{x}\|^2]$ .



Section 6.2 Orthogonality 31 March 2017

The dot product of  $\vec{u}$  and  $\vec{v}$  is

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$

**Geometric Properties** 

The dot product of  $\vec{u}$  and  $\vec{v}$  is

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$

#### **Geometric Properties**

 $\bullet \cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$ 

The dot product of  $\vec{u}$  and  $\vec{v}$  is

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$

#### **Geometric Properties**

 $\bullet \cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$ 

$$\bullet \ \vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = \vec{0}$$

The dot product of  $\vec{u}$  and  $\vec{v}$  is

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$

#### **Geometric Properties**

- $\bullet \cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$
- $\bullet \ \vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = \vec{0}$
- $\bullet \ \vec{u} \parallel \vec{v} \iff \vec{u} \cdot \vec{v} = \pm \|\vec{u}\| \|\vec{u}\|$

The dot product of  $\vec{u}$  and  $\vec{v}$  is

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$

#### **Geometric Properties**

# $\bullet \ \cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$

• 
$$\vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = \vec{0}$$

$$\bullet \ \vec{u} \parallel \vec{v} \iff \vec{u} \cdot \vec{v} = \pm \|\vec{u}\| \|\vec{u}\|$$

$$\bullet \ \vec{u} \cdot \vec{u} = ||\vec{u}||^2$$

The dot product of  $\vec{u}$  and  $\vec{v}$  is

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$

#### **Geometric Properties**

$$\bullet \cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

• 
$$\vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = \vec{0}$$

$$\bullet \ \vec{u} \parallel \vec{v} \iff \vec{u} \cdot \vec{v} = \pm \|\vec{u}\| \|\vec{u}\|$$

$$\bullet \ \vec{u} \cdot \vec{u} = ||\vec{u}||^2$$

#### **Algebraic Properties**

•  $\vec{u} \cdot \vec{v}$  is a scalar

The dot product of  $\vec{u}$  and  $\vec{v}$  is

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$

#### **Geometric Properties**

$$\bullet \cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

- $\bullet \ \vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = \vec{0}$
- $\bullet \ \vec{u} \parallel \vec{v} \iff \vec{u} \cdot \vec{v} = \pm \|\vec{u}\| \|\vec{u}\|$
- $\bullet \ \vec{u} \cdot \vec{u} = ||\vec{u}||^2$

- $\vec{u} \cdot \vec{v}$  is a scalar
- $\bullet \ \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$

The dot product of  $\vec{u}$  and  $\vec{v}$  is

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$

#### **Geometric Properties**

$$\bullet \cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

- $\bullet \ \vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = \vec{0}$
- $\bullet \ \vec{u} \parallel \vec{v} \iff \vec{u} \cdot \vec{v} = \pm \|\vec{u}\| \|\vec{u}\|$
- $\bullet \ \vec{u} \cdot \vec{u} = \|\vec{u}\|^2$

- $\vec{u} \cdot \vec{v}$  is a scalar
- $\bullet \ \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- $\bullet \ (s\vec{u}) \cdot \vec{v} = \vec{u} \cdot (s\vec{v}) = s(\vec{u} \cdot \vec{v})$

The dot product of  $\vec{u}$  and  $\vec{v}$  is

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$

#### **Geometric Properties**

$$\bullet \cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

- $\bullet \ \vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = \vec{0}$
- $\bullet \ \vec{u} \parallel \vec{v} \iff \vec{u} \cdot \vec{v} = \pm \|\vec{u}\| \|\vec{u}\|$
- $\bullet \ \vec{u} \cdot \vec{u} = \|\vec{u}\|^2$

- $\vec{u} \cdot \vec{v}$  is a scalar
- $\bullet \ \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- $\bullet (s\vec{u}) \cdot \vec{v} = \vec{u} \cdot (s\vec{v}) = s(\vec{u} \cdot \vec{v})$
- $\bullet \ (\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$

$$\|\vec{u} + \vec{v}\|^2 =$$

$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) =$$

$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \|\vec{u}\|^2 + 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$

$$\begin{aligned} \|\vec{u} + \vec{v}\|^2 &= (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \|\vec{u}\|^2 + 2 \, \vec{u} \cdot \vec{v} + \|\vec{v}\|^2 \\ &= \|\vec{u}\|^2 + \|\vec{v}\|^2 \quad \text{if and only if } \vec{u} \perp \vec{v}. \end{aligned}$$



Look at

$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \|\vec{u}\|^2 + 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$
$$= \|\vec{u}\|^2 + \|\vec{v}\|^2 \quad \text{if and only if } \vec{u} \perp \vec{v}.$$

The final equality above is known as Pyhtagoras' Theorem.



## Orthogonal Complement

The *orthogonal complement* of a *non-zero* vector  $\vec{a}$  in  $\mathbb{R}^n$  is

$$\{\vec{a}\}^{\perp} = \{\text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x}\}$$

### Orthogonal Complement

The *orthogonal complement* of a *non-zero* vector  $\vec{a}$  in  $\mathbb{R}^n$  is

$$\{\vec{a}\}^{\perp} = \{\text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x}\} = \mathcal{NS}(\vec{a}^T).$$

### Orthogonal Complement

The *orthogonal complement* of a *non-zero* vector  $\vec{a}$  in  $\mathbb{R}^n$  is

$$\{\vec{a}\}^{\perp} = \{\text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x}\} = \mathcal{NS}(\vec{a}^T).$$

It is not hard to check that  $\{\vec{a}\}^{\perp}$  is always a vector subspace of  $\mathbb{R}^n$ .

Let 
$$W = \{\vec{a}\}$$
 with  $\vec{a} \neq \vec{0}$ .

Section 6.2

Let 
$$W = \{\vec{a}\}$$
 with  $\vec{a} \neq \vec{0}$ . Then  $W^{\perp} =$ 

Let 
$$W = \{\vec{a}\}$$
 with  $\vec{a} \neq \vec{0}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A =$ 









Let  $W = \{\vec{a}\}$  with  $\vec{a} \neq \vec{0}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = \vec{a}^T$ .



6 / 1

Let 
$$W = \{\vec{a}\}$$
 with  $\vec{a} \neq \vec{0}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = \vec{a}^T$ .



Let  $W = \{\vec{a}\}$  with  $\vec{a} \neq \vec{0}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = \vec{a}^T$ .



Thus we see that:

• in  $\mathbb{R}^2$ ,  $W^{\perp}$  is a line,

Let  $W = \{\vec{a}\}$  with  $\vec{a} \neq \vec{0}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = \vec{a}^T$ .



- in  $\mathbb{R}^2$ ,  $W^{\perp}$  is a line,
- in  $\mathbb{R}^3$ ,  $W^{\perp}$  is a 2-plane,

Let  $W = \{\vec{a}\}$  with  $\vec{a} \neq \vec{0}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = \vec{a}^T$ .



- in  $\mathbb{R}^2$ ,  $W^{\perp}$  is a line,
- in  $\mathbb{R}^3$ ,  $W^{\perp}$  is a 2-plane,
- in  $\mathbb{R}^4$ ,  $W^{\perp}$  is a 3-plane,

Let  $W = \{\vec{a}\}$  with  $\vec{a} \neq \vec{0}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = \vec{a}^T$ .



- ullet in  $\mathbb{R}^2$ ,  $W^{\perp}$  is a line,
- ullet in  $\mathbb{R}^3$ ,  $W^{\perp}$  is a 2-plane,
- ullet in  $\mathbb{R}^4$ ,  $W^\perp$  is a 3-plane,
- in  $\mathbb{R}^n$ ,  $W^{\perp}$  is an (n-1)-plane, that is, a *hyperplane*.

The *orthogonal complement* of a *non-zero* vector  $\vec{a}$  in  $\mathbb{R}^n$  is

$$\{\vec{a}\}^{\perp} = \{\text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x}\}$$

The *orthogonal complement* of a *non-zero* vector  $\vec{a}$  in  $\mathbb{R}^n$  is

$$\{\vec{a}\}^{\perp} = \{\text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x}\} = \mathcal{NS}(\vec{a}^T).$$

The *orthogonal complement* of a *non-zero* vector  $\vec{a}$  in  $\mathbb{R}^n$  is

$$\{\vec{a}\}^{\perp} = \{\text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x}\} = \mathcal{NS}(\vec{a}^T).$$

This is the *hyperplane* in  $\mathbb{R}^n$  thru  $\vec{0}$  with normal vector  $\vec{a}$ .

The *orthogonal complement* of a *non-zero* vector  $\vec{a}$  in  $\mathbb{R}^n$  is

$$\{\vec{a}\}^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x} \} = \mathcal{NS}(\vec{a}^T).$$

This is the *hyperplane* in  $\mathbb{R}^n$  thru  $\vec{0}$  with normal vector  $\vec{a}$ .

#### Definition (Orthogonal Complement of a Set)

The  $orthogonal\ complement$  of a non-empty set W of vectors in  $\mathbb{R}^n$  is

$$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$

The *orthogonal complement* of a *non-zero* vector  $\vec{a}$  in  $\mathbb{R}^n$  is

$$\{\vec{a}\}^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x} \} = \mathcal{NS}(\vec{a}^T).$$

This is the *hyperplane* in  $\mathbb{R}^n$  thru  $\vec{0}$  with normal vector  $\vec{a}$ .

#### Definition (Orthogonal Complement of a Set)

The *orthogonal complement* of a non-empty set W of vectors in  $\mathbb{R}^n$  is  $W^{\perp} = \{\text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W\}.$ 

It is not hard to check that  $W^{\perp}$  is always a vector subspace of  $\mathbb{R}^n$ .

The *orthogonal complement* of a *non-zero* vector  $\vec{a}$  in  $\mathbb{R}^n$  is

$$\{\vec{a}\}^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x} \} = \mathcal{NS}(\vec{a}^T).$$

This is the *hyperplane* in  $\mathbb{R}^n$  thru  $\vec{0}$  with normal vector  $\vec{a}$ .

#### Definition (Orthogonal Complement of a Set)

The *orthogonal complement* of a non-empty set W of vectors in  $\mathbb{R}^n$  is

$$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$

It is not hard to check that  $W^{\perp}$  is always a vector subspace of  $\mathbb{R}^n$ . Please convince yourself that this is true.



Let  $W = \{\vec{v}, \vec{w}\}$  with  $\vec{v} \not\parallel \vec{w}$ .

Let  $W = \{\vec{v}, \vec{w}\}$  with  $\vec{v} \not\parallel \vec{w}$ . Then  $W^{\perp} =$ 

Let  $W = \{\vec{v}, \vec{w}\}$  with  $\vec{v} \not\parallel \vec{w}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where A =

Let  $W = \{\vec{v}, \vec{w}\}$  with  $\vec{v} \not\parallel \vec{w}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = \begin{bmatrix} \vec{v} & \vec{w} \end{bmatrix}^T$ .

Let 
$$W = \{\vec{v}, \vec{w}\}$$
 with  $\vec{v} \not\parallel \vec{w}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = \begin{bmatrix} \vec{v} & \vec{w} \end{bmatrix}^T$ .

Here we see that:

Let 
$$W = \{\vec{v}, \vec{w}\}$$
 with  $\vec{v} \not\parallel \vec{w}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = \begin{bmatrix} \vec{v} & \vec{w} \end{bmatrix}^T$ .

Here we see that:

• in  $\mathbb{R}^3$ ,  $W^{\perp}$  is a line,

Let 
$$W = \{\vec{v}, \vec{w}\}$$
 with  $\vec{v} \not\parallel \vec{w}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = \begin{bmatrix} \vec{v} & \vec{w} \end{bmatrix}^T$ .

#### Here we see that:

- in  $\mathbb{R}^3$ ,  $W^{\perp}$  is a line,
- in  $\mathbb{R}^4$ ,  $W^{\perp}$  is a 2-plane,

Let 
$$W = \{\vec{v}, \vec{w}\}$$
 with  $\vec{v} \not\parallel \vec{w}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = \begin{bmatrix} \vec{v} & \vec{w} \end{bmatrix}^T$ .

#### Here we see that:

- in  $\mathbb{R}^3$ ,  $W^{\perp}$  is a line,
- in  $\mathbb{R}^4$ ,  $W^{\perp}$  is a 2-plane,
- in  $\mathbb{R}^n$ ,  $W^{\perp}$  is an (n-2)-plane,

Section 6.2

Let 
$$W = \{\vec{v}, \vec{w}\}$$
 with  $\vec{v} \not\parallel \vec{w}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = [\vec{v} \ \vec{w}]^T$ .

Here we see that:

- in  $\mathbb{R}^3$ ,  $W^{\perp}$  is a line,
- in  $\mathbb{R}^4$ ,  $W^{\perp}$  is a 2-plane,
- in  $\mathbb{R}^n$ ,  $W^{\perp}$  is an (n-2)-plane,

In general, if  $\mathbb{W}$  is a vector subspace of  $\mathbb{R}^n$ , then

Section 6.2

8 / 1

Let 
$$W = \{\vec{v}, \vec{w}\}$$
 with  $\vec{v} \not\parallel \vec{w}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = \begin{bmatrix} \vec{v} & \vec{w} \end{bmatrix}^T$ .

Here we see that:

- in  $\mathbb{R}^3$ ,  $W^{\perp}$  is a line,
- in  $\mathbb{R}^4$ ,  $W^{\perp}$  is a 2-plane,
- in  $\mathbb{R}^n$ ,  $W^{\perp}$  is an (n-2)-plane,

In general, if  $\mathbb{W}$  is a vector subspace of  $\mathbb{R}^n$ , then  $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$ 

Let 
$$W = \{\vec{v}, \vec{w}\}$$
 with  $\vec{v} \not\parallel \vec{w}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = [\vec{v} \ \vec{w}]^T$ .

Here we see that:

- in  $\mathbb{R}^3$ ,  $W^{\perp}$  is a line,
- in  $\mathbb{R}^4$ ,  $W^{\perp}$  is a 2-plane,
- in  $\mathbb{R}^n$ ,  $W^{\perp}$  is an (n-2)-plane,

In general, if  $\mathbb{W}$  is a vector subspace of  $\mathbb{R}^n$ , then  $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$  and dim  $\mathbb{W}^{\perp} = n - \dim \mathbb{W}$ .

8 / 1

Let 
$$W = \{\vec{v}, \vec{w}\}$$
 with  $\vec{v} \not\parallel \vec{w}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = [\vec{v} \ \vec{w}]^T$ .

Here we see that:

- in  $\mathbb{R}^3$ ,  $W^{\perp}$  is a line,
- in  $\mathbb{R}^4$ ,  $W^{\perp}$  is a 2-plane,
- in  $\mathbb{R}^n$ ,  $W^{\perp}$  is an (n-2)-plane,

In general, if  $\mathbb{W}$  is a vector subspace of  $\mathbb{R}^n$ , then  $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$  and dim  $\mathbb{W}^{\perp} = n - \dim \mathbb{W}$ . This means that every vector  $\vec{x}$  in  $\mathbb{R}^n$  can be written as a sum

 $\vec{x} = \vec{w} + \vec{z}$  where  $\vec{w}$  is in  $\mathbb{W}$  and  $\vec{z}$  is in  $\mathbb{W}^{\perp}$ .

8 / 1

Let 
$$W = \{\vec{v}, \vec{w}\}$$
 with  $\vec{v} \not\parallel \vec{w}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = [\vec{v} \ \vec{w}]^T$ .

Here we see that:

- in  $\mathbb{R}^3$ ,  $W^{\perp}$  is a line,
- in  $\mathbb{R}^4$ ,  $W^{\perp}$  is a 2-plane,
- in  $\mathbb{R}^n$ ,  $W^{\perp}$  is an (n-2)-plane,

In general, if  $\mathbb{W}$  is a vector subspace of  $\mathbb{R}^n$ , then  $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$  and dim  $\mathbb{W}^{\perp} = n - \dim \mathbb{W}$ . This means that every vector  $\vec{x}$  in  $\mathbb{R}^n$  can be written as a sum

$$\vec{x} = \vec{w} + \vec{z}$$
 where  $\vec{w}$  is in  $\mathbb{W}$  and  $\vec{z}$  is in  $\mathbb{W}^{\perp}$ .

Here  $\vec{w}$  is the 'part' of  $\vec{x}$  that is parallel to  $\mathbb{W}$  and  $\vec{z}$  is the 'part' of  $\vec{x}$  that is orthogonal to  $\mathbb{W}$ .

Let 
$$W = \{\vec{v}, \vec{w}\}$$
 with  $\vec{v} \not\parallel \vec{w}$ . Then  $W^{\perp} = \mathcal{NS}(A)$  where  $A = [\vec{v} \ \vec{w}]^T$ .

Here we see that:

- in  $\mathbb{R}^3$ ,  $W^{\perp}$  is a line,
- in  $\mathbb{R}^4$ ,  $W^{\perp}$  is a 2-plane,
- in  $\mathbb{R}^n$ ,  $W^{\perp}$  is an (n-2)-plane,

In general, if  $\mathbb{W}$  is a vector subspace of  $\mathbb{R}^n$ , then  $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$  and dim  $\mathbb{W}^{\perp} = n - \dim \mathbb{W}$ . This means that every vector  $\vec{x}$  in  $\mathbb{R}^n$  can be written as a sum

$$\vec{x} = \vec{w} + \vec{z}$$
 where  $\vec{w}$  is in  $\mathbb{W}$  and  $\vec{z}$  is in  $\mathbb{W}^{\perp}$ .

Here  $\vec{w}$  is the 'part' of  $\vec{x}$  that is parallel to  $\mathbb{W}$  and  $\vec{z}$  is the 'part' of  $\vec{x}$  that is orthogonal to  $\mathbb{W}$ . How do we find  $\vec{w}$  and  $\vec{z}$ ?

Section 6.2 Orthogonality 31 March 2017 8 / 1











Let  $\vec{u}$  be a fixed vector, and  $\vec{x}$  a variable vector.



The orthogonal projection of  $\vec{x}$  onto  $\vec{u}$  is the pictured vector  $\vec{p}$ 

Let  $\vec{u}$  be a fixed vector, and  $\vec{x}$  a variable vector.



The orthogonal projection of  $\vec{x}$  onto  $\vec{u}$  is the pictured vector  $\vec{p}$  which is parallel to  $\vec{u}$  (so,  $\vec{p} = s\vec{u}$  for some scalar) and has the property that

Let  $\vec{u}$  be a fixed vector, and  $\vec{x}$  a variable vector.



The orthogonal projection of  $\vec{x}$  onto  $\vec{u}$  is the pictured vector  $\vec{p}$  which is parallel to  $\vec{u}$  (so,  $\vec{p} = s\vec{u}$  for some scalar) and has the property that  $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$ .

Let  $\vec{u}$  be a fixed vector, and  $\vec{x}$  a variable vector.



The orthogonal projection of  $\vec{x}$  onto  $\vec{u}$  is the pictured vector  $\vec{p}$  which is parallel to  $\vec{u}$  (so,  $\vec{p} = s\vec{u}$  for some scalar) and has the property that  $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$ . For this to hold, we need  $\vec{z} \cdot \vec{u} = 0$ , which allows us to determine s.

Let  $\vec{u}$  be a fixed vector, and  $\vec{x}$  a variable vector.



The orthogonal projection of  $\vec{x}$  onto  $\vec{u}$  is the pictured vector  $\vec{p}$  which is parallel to  $\vec{u}$  (so,  $\vec{p} = s\vec{u}$  for some scalar) and has the property that  $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$ . For this to hold, we need  $\vec{z} \cdot \vec{u} = 0$ , which allows us to determine s. We find that

$$s = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}$$

### Orthogonal Projection Onto a Vector

Let  $\vec{u}$  be a fixed vector, and  $\vec{x}$  a variable vector.



The orthogonal projection of  $\vec{x}$  onto  $\vec{u}$  is the pictured vector  $\vec{p}$  which is parallel to  $\vec{u}$  (so,  $\vec{p} = s\vec{u}$  for some scalar) and has the property that  $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$ . For this to hold, we need  $\vec{z} \cdot \vec{u} = 0$ , which allows us to determine s. We find that

$$s = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}$$

and thus

$$\vec{p} = \mathsf{Proj}_{\vec{u}}(\vec{x}) = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}.$$









Section 6.2







*u ⋅ u* 5



u·u 5



Section 6.2 Orthogonality 31 March 2017



$$\vec{p} = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} = \frac{10}{5} \vec{u} = 2\vec{u} \text{ and } \vec{z} = \vec{x} - \vec{p} = \begin{bmatrix} 3\\4 \end{bmatrix} - \begin{bmatrix} 4\\2 \end{bmatrix}$$

Section 6.2 Orthogonality 31 March 2017



$$\vec{p} = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} = \frac{10}{5} \vec{u} = 2\vec{u} \text{ and } \vec{z} = \vec{x} - \vec{p} = \begin{bmatrix} 3\\4 \end{bmatrix} - \begin{bmatrix} 4\\2 \end{bmatrix}$$

Section 6.2 Orthogonality 31 March 2017 10 / 1

A set S of vectors (say, in  $\mathbb{R}^n$ ) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e.,

A set S of vectors (say, in  $\mathbb{R}^n$ ) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all  $\vec{u}, \vec{v}$  in S with  $\vec{u} \neq \vec{v}, \vec{u} \cdot \vec{u} = 0$ .

A set S of vectors (say, in  $\mathbb{R}^n$ ) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all  $\vec{u}, \vec{v}$  in S with  $\vec{u} \neq \vec{v}$ ,  $\vec{u} \cdot \vec{u} = 0$ .

### **Theorem**

Any set of non-zero orthogonal vectors is linearly independent.

A set S of vectors (say, in  $\mathbb{R}^n$ ) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all  $\vec{u}, \vec{v}$  in S with  $\vec{u} \neq \vec{v}, \ \vec{u} \cdot \vec{u} = 0$ .

### **Theorem**

Any set of non-zero orthogonal vectors is linearly independent.

### Definition (Orthogonal and Orthonormal Bases)

Let  $\mathbb{V}$  be a vector subspace of  $\mathbb{R}^n$ .

A set S of vectors (say, in  $\mathbb{R}^n$ ) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all  $\vec{u}, \vec{v}$  in S with  $\vec{u} \neq \vec{v}$ ,  $\vec{u} \cdot \vec{u} = 0$ .

### **Theorem**

Any set of non-zero orthogonal vectors is linearly independent.

### Definition (Orthogonal and Orthonormal Bases)

Let  $\mathbb V$  be a vector subspace of  $\mathbb R^n$ . We call  $\mathcal B$  an *orthogonal basis* for  $\mathbb V$  if  $\mathcal B$  is a basis and  $\mathcal B$  is an orthogonal set of vectors.

A set S of vectors (say, in  $\mathbb{R}^n$ ) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all  $\vec{u}, \vec{v}$  in S with  $\vec{u} \neq \vec{v}, \vec{u} \cdot \vec{u} = 0$ .

#### **Theorem**

Any set of non-zero orthogonal vectors is linearly independent.

### Definition (Orthogonal and Orthonormal Bases)

Let  $\mathbb V$  be a vector subspace of  $\mathbb R^n$ . We call  $\mathcal B$  an *orthogonal basis* for  $\mathbb V$  if  $\mathcal B$  is a basis and  $\mathcal B$  is an orthogonal set of vectors. We call  $\mathcal U$  an *orthonormal basis* for  $\mathbb V$  if  $\mathcal U$  is an orthogonal basis of *unit* vectors.

A set S of vectors (say, in  $\mathbb{R}^n$ ) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all  $\vec{u}, \vec{v}$  in S with  $\vec{u} \neq \vec{v}$ ,  $\vec{u} \cdot \vec{u} = 0$ .

### **Theorem**

Any set of non-zero orthogonal vectors is linearly independent.

### Definition (Orthogonal and Orthonormal Bases)

Let  $\mathbb V$  be a vector subspace of  $\mathbb R^n$ . We call  $\mathcal B$  an *orthogonal basis* for  $\mathbb V$  if  $\mathcal B$  is a basis and  $\mathcal B$  is an orthogonal set of vectors. We call  $\mathcal U$  an *orthonormal basis* for  $\mathbb V$  if  $\mathcal U$  is an orthogonal basis of *unit* vectors.

The standard basis for  $\mathbb{R}^n$  is an orthonormal basis.

Let  $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$  be an ortho basis for a vector subspace  $\mathbb{V}$  of  $\mathbb{R}^n$ .

Let  $\mathcal{B}=\{\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_k\}$  be an ortho basis for a vector subspace  $\mathbb{V}$  of  $\mathbb{R}^n$ .

For each  $\vec{v}$  in  $\mathbb{V}$ , we can write  $\vec{v} = \sum_{i=1}^k c_i \vec{b}_i$ ,

Let  $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$  be an ortho basis for a vector subspace  $\mathbb{V}$  of  $\mathbb{R}^n$ .

For each  $\vec{v}$  in  $\mathbb{V}$ , we can write  $\vec{v} = \sum_{i=1}^k c_i \vec{b_i}$ , where  $c_1, c_2, \ldots, c_k$  are the  $\mathcal{B}$ -coordinates for  $\vec{v}$ .

12 / 1

Let  $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$  be an ortho basis for a vector subspace  $\mathbb{V}$  of  $\mathbb{R}^n$ .

For each  $\vec{v}$  in  $\mathbb{V}$ , we can write  $\vec{v} = \sum_{i=1}^k c_i \vec{b_i}$ , where  $c_1, c_2, \ldots, c_k$  are the

 $\mathcal{B}$ -coordinates for  $\vec{v}$ .

Since  $\mathcal B$  is orthogonal, it is easy to find these coordinates!

Let  $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$  be an ortho basis for a vector subspace  $\mathbb{V}$  of  $\mathbb{R}^n$ .

For each  $\vec{v}$  in  $\mathbb{V}$ , we can write  $\vec{v} = \sum_{i=1}^k c_i \vec{b_i}$ , where  $c_1, c_2, \ldots, c_k$  are the

 $\mathcal{B}$ -coordinates for  $\vec{v}$ .

Since  $\mathcal{B}$  is orthogonal, it is *easy* to find these coordinates! To find  $c_j$ , look at

$$ec{v}\cdotec{b}_j=\sum_{i=1}^k c_iec{b}_i\cdotec{b}_j=c_jec{b}_j\cdotec{b}_j$$

Section 6.2 Orthogonality 31 March 2017 12 / 1

Let  $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$  be an ortho basis for a vector subspace  $\mathbb{V}$  of  $\mathbb{R}^n$ .

For each  $\vec{v}$  in  $\mathbb{V}$ , we can write  $\vec{v} = \sum_{i=1}^k c_i \vec{b_i}$ , where  $c_1, c_2, \ldots, c_k$  are the

 $\mathcal{B}$ -coordinates for  $\vec{v}$ .

Since  $\mathcal{B}$  is orthogonal, it is *easy* to find these coordinates! To find  $c_j$ , look at

$$ec{v}\cdotec{b}_j = \sum_{i=1}^k c_iec{b}_i\cdotec{b}_j = c_jec{b}_j\cdotec{b}_j$$

so 
$$c_j = \frac{\vec{v} \cdot \vec{b}_j}{\vec{b}_j \cdot \vec{b}_j}$$
.

12 / 1

Section 6.2 Orthogonality 31 March 2017

Let  $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$  be an ortho basis for a vector subspace  $\mathbb{V}$  of  $\mathbb{R}^n$ .

For each  $\vec{v}$  in  $\mathbb{V}$ , we can write  $\vec{v} = \sum_{i=1}^k c_i \vec{b_i}$ , where  $c_1, c_2, \ldots, c_k$  are the

 $\mathcal{B}$ -coordinates for  $\vec{v}$ .

Since  $\mathcal{B}$  is orthogonal, it is easy to find these coordinates! To find  $c_j$ , look at

$$ec{v}\cdotec{b}_j = \sum_{i=1}^k c_iec{b}_i\cdotec{b}_j = c_jec{b}_j\cdotec{b}_j$$

so  $c_j = \frac{\vec{v} \cdot \vec{b_j}}{\vec{b_i} \cdot \vec{b_i}}$ . This says that

12 / 1

Section 6.2 Orthogonality 31 March 2017

Let  $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$  be an ortho basis for a vector subspace  $\mathbb{V}$  of  $\mathbb{R}^n$ .

For each  $\vec{v}$  in  $\mathbb{V}$ , we can write  $\vec{v} = \sum_{i=1}^k c_i \vec{b_i}$ , where  $c_1, c_2, \ldots, c_k$  are the

 $\mathcal{B}$ -coordinates for  $\vec{v}$ .

Since  $\mathcal{B}$  is orthogonal, it is *easy* to find these coordinates! To find  $c_j$ , look at

$$ec{v}\cdotec{b}_j=\sum_{i=1}^kc_iec{b}_i\cdotec{b}_j=c_jec{b}_j\cdotec{b}_j$$

so  $c_j = \frac{\vec{v} \cdot \vec{b_j}}{\vec{b_j} \cdot \vec{b_j}}$ . This says that

$$\vec{v} = \sum_{i=1}^k c_i \vec{b}_i =$$



Let  $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$  be an ortho basis for a vector subspace  $\mathbb{V}$  of  $\mathbb{R}^n$ .

For each  $\vec{v}$  in  $\mathbb{V}$ , we can write  $\vec{v} = \sum_{i=1}^k c_i \vec{b_i}$ , where  $c_1, c_2, \ldots, c_k$  are the

 $\mathcal{B}$ -coordinates for  $\vec{v}$ .

Since  $\mathcal{B}$  is orthogonal, it is *easy* to find these coordinates! To find  $c_j$ , look at

$$\vec{v} \cdot \vec{b}_j = \sum_{i=1}^k c_i \vec{b}_i \cdot \vec{b}_j = c_j \vec{b}_j \cdot \vec{b}_j$$

so  $c_j = rac{ec{v} \cdot b_j}{ec{b}_j \cdot ec{b}_j}$  . This says that

$$ec{v} = \sum_{i=1}^k c_i ec{b}_i = \sum_{i=1}^k rac{ec{v} \cdot ec{b}_i}{ec{b}_i \cdot ec{b}_i} \, ec{b}_i =$$



Let  $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$  be an ortho basis for a vector subspace  $\mathbb{V}$  of  $\mathbb{R}^n$ .

For each  $\vec{v}$  in  $\mathbb{V}$ , we can write  $\vec{v} = \sum_{i=1}^k c_i \vec{b_i}$ , where  $c_1, c_2, \ldots, c_k$  are the

 $\mathcal{B}$ -coordinates for  $\vec{v}$ .

Since  $\mathcal{B}$  is orthogonal, it is *easy* to find these coordinates! To find  $c_j$ , look at

$$\vec{v} \cdot \vec{b}_j = \sum_{i=1}^k c_i \vec{b}_i \cdot \vec{b}_j = c_j \vec{b}_j \cdot \vec{b}_j$$

so  $c_j = rac{ec{v} \cdot b_j}{ec{b}_j \cdot ec{b}_j}$  . This says that

Section 6.2 Orthogonality 31 March 2017 12 / 1