Orthogonal Projection and Orthogonal Sets

Linear Algebra MATH 2076

Algebraic and Geometric Formulas for the Dot Product

The *dot product* of
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}$$

and also when $\vec{u} \neq \vec{0} \neq \vec{v}$,

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$

where θ is the angle (in $[0, \pi]$) between \vec{u} and \vec{v} . Thus for non-zero \vec{u} and \vec{v} , $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$. Recall that $\vec{x} \cdot \vec{x} = \|\vec{x}\|^2$.

Properties of the Dot Product

The dot product of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$

Geometric Properties

$$\bullet \ \cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

- $\vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = \vec{0}$
- $\bullet \ \vec{u} \parallel \vec{v} \iff \vec{u} \cdot \vec{v} = \pm \|\vec{u}\| \|\vec{u}\|$
- $\bullet \ \vec{u} \cdot \vec{u} = \|\vec{u}\|^2$

Algebraic Properties

- $\vec{u} \cdot \vec{v}$ is a scalar
- $\bullet \ \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- $\bullet (s\vec{u}) \cdot \vec{v} = \vec{u} \cdot (s\vec{v}) = s(\vec{u} \cdot \vec{v})$
- $\bullet \ (\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$

Orthogonal Complement

Definition (Orthogonal Complement of a Vector Subspace)

The *orthogonal complement* of a vector subspace \mathbb{W} in \mathbb{R}^n is

$$\mathbb{W}^{\perp} = \big\{ \mathsf{all} \; \vec{x} \; \mathsf{in} \; \mathbb{R}^n \; \mathsf{with} \; \vec{w} \perp \vec{x} \; \mathsf{for} \; \mathsf{all} \; \vec{w} \; \mathsf{in} \; \mathbb{W} \big\}.$$

It is not hard to check that \mathbb{W}^{\perp} is always a vector subspace of \mathbb{R}^{n} .

In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$ and dim $\mathbb{W}^{\perp} = n - \dim \mathbb{W}$. This means that every vector \vec{x} in \mathbb{R}^n can be written as a sum

$$\vec{x} = \vec{w} + \vec{z}$$
 where \vec{w} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

Here \vec{w} is the 'part' of \vec{x} that is parallel to \mathbb{W} and \vec{z} is the 'part' of \vec{x} that is orthogonal to \mathbb{W} . How do we find \vec{w} and \vec{z} ?

Orthogonal Projection Onto a Vector

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.

The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$. For this to hold, we need $\vec{z} \cdot \vec{u} = 0$, which

allows us to determine
$$s$$
. We find that
$$s = \frac{\vec{x} \cdot \vec{u}}{\vec{r} \cdot \vec{r}}$$

and thus

$$\vec{p} = \mathsf{Proj}_{\vec{u}}(\vec{x}) = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}.$$

Note that $\vec{x} = \vec{p} + \vec{z}$ where $\vec{p} \parallel \vec{u}$ and $\vec{z} \perp \vec{u}$.

Example of Orthogonal Projection Onto a Vector

Orthogonal Sets of Vectors

A set S of vectors (say, in \mathbb{R}^n) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all \vec{u}, \vec{v} in S with $\vec{u} \neq \vec{v}$, $\vec{u} \cdot \vec{v} = 0$.

Theorem

Any set of non-zero orthogonal vectors is linearly independent.

Definition (Orthogonal and Orthonormal Bases)

Let $\mathbb V$ be a vector subspace of $\mathbb R^n$. We call $\mathcal B$ an *orthogonal basis* for $\mathbb V$ if $\mathcal B$ is both a basis and an orthogonal set of vectors. We call $\mathcal U$ an *orthonormal basis* for $\mathbb V$ if $\mathcal U$ is an orthogonal basis of *unit* vectors.

The standard basis for \mathbb{R}^n is an orthonormal basis.

If $\mathcal{B}=\{\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_k\}$ is an orthogonal basis, then $\vec{b}_i\cdot\vec{b}_j=0$ when $i\neq j$.

Coordinates Relative to an Orthogonal Basis

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$ be an orthog basis for a vector subspace \mathbb{V} of \mathbb{R}^n .

For each \vec{v} in \mathbb{V} , we can write $\vec{v} = \sum_{i=1}^n c_i \vec{b}_i$, where c_1, c_2, \ldots, c_k are the

 \mathcal{B} -coordinates for \vec{v} .

Since \mathcal{B} is orthogonal, it is *easy* to find these coordinates! To find c_j , look at

$$\vec{v} \cdot \vec{b}_j = \sum_{i=1}^k c_i \vec{b}_i \cdot \vec{b}_j = c_j \vec{b}_j \cdot \vec{b}_j$$

so $c_j = rac{ec{v} \cdot b_j}{ec{b}_j \cdot ec{b}_j}$. This says that

$$\vec{v} = \sum_{i=1}^k c_i \vec{b}_i = \sum_{i=1}^k \frac{\vec{v} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \vec{b}_i = \sum_{i=1}^k \mathsf{Proj}_{\vec{b}_i} (\vec{v}).$$