Orthogonal Projection and Orthogonal Sets

Linear Algebra MATH 2076

Algebraic and Geometric Formulas for the Dot Product

The dot product of
$$
\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}
$$
 and $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ is
\n
$$
\vec{u} \cdot \vec{v} = u_1v_1 + u_2v_2 + \dots + u_nv_n = \sum_{i=1}^n u_iv_i = \vec{u}
$$

and also when $\vec{u} \neq \vec{0} \neq \vec{v}$,

$$
\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta
$$

where θ is the angle (in $[0, \pi]$) between \vec{u} and \vec{v} .

Thus for non-zero
$$
\vec{u}
$$
 and \vec{v} , $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$. Recall that $|\vec{x} \cdot \vec{x} = ||\vec{x}||^2$.

 θ \nearrow ū

 \cdot T \bar{v}

 \bar{v}

The dot product of \vec{u} and \vec{v} is

$$
\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.
$$

Geometric Properties

$$
\bullet \ \cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}
$$

$$
\bullet \, \vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = \vec{0}
$$

$$
\bullet \, \vec{u} \parallel \vec{v} \iff \vec{u} \cdot \vec{v} = \pm \|\vec{u}\| \|\vec{u}\|
$$

 $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$

Algebraic Properties

 \bullet $\vec{u} \cdot \vec{v}$ is a scalar

$$
\bullet \ \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}
$$

$$
\bullet \; (s\vec{u})\cdot \vec{v} = \vec{u}\cdot (s\vec{v}) = s(\vec{u}\cdot \vec{v})
$$

$$
\bullet \, (\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}
$$

Orthogonal Complement

Definition (Orthogonal Complement of a Vector Subspace)

The *orthogonal complement* of a vector subspace $\mathbb W$ in $\mathbb R^n$ is

 $\mathbb{W}^\perp = \big\{\text{all } \vec{\mathsf{x}} \text{ in } \mathbb{R}^n \text{ with } \vec{\mathsf{w}} \perp \vec{\mathsf{x}} \text{ for all } \vec{\mathsf{w}} \text{ in } \mathbb{W}\big\}.$

It is not hard to check that \mathbb{W}^{\perp} is always a vector subspace of \mathbb{R}^n .

In general, if $\mathbb W$ is a vector subspace of $\mathbb R^n$, then $\mathbb R^n=\mathbb W\oplus\mathbb W^{\perp}$ and dim $\mathbb{W}^\perp = n -$ dim $\mathbb{W}.$ This means that every vector $\vec{\mathsf{x}}$ in \mathbb{R}^n can be written as a sum

$$
\vec{x} = \vec{w} + \vec{z} \quad \text{where } \vec{w} \text{ is in } \mathbb{W} \text{ and } \vec{z} \text{ is in } \mathbb{W}^{\perp}.
$$

Here \vec{w} is the 'part' of \vec{x} that is parallel to W and \vec{z} is the 'part' of \vec{x} that is orthogonal to W. \blacksquare How do we find \vec{w} and \vec{z} ?

Orthogonal Projection Onto a Vector

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.

Note that $\vec{x} = \vec{p} + \vec{z}$ where $\vec{p} \parallel \vec{u}$ and $\vec{z} \perp \vec{u}$.

Example of Orthogonal Projection Onto a Vector

Orthogonal Sets of Vectors

A set S of vectors (say, in \mathbb{R}^n) is *orthogonal* if and only if any two vectors in S are orthogonal, i.e., for all \vec{u}, \vec{v} in S with $\vec{u} \neq \vec{v}$, $\vec{u} \cdot \vec{v} = 0$.

Theorem

Any set of non-zero orthogonal vectors is linearly independent.

Definition (Orthogonal and Orthonormal Bases)

Let $\mathbb {V}$ be a vector subspace of $\mathbb {R}^n$. We call $\mathcal B$ an *orthogonal basis* for $\mathbb {V}$ if β is both a basis and an orthogonal set of vectors. We call $\mathcal U$ an orthonormal basis for V if U is an orthogonal basis of unit vectors.

The standard basis for \mathbb{R}^n is an orthonormal basis.

If $\mathcal{B}=\{\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_k\}$ is an orthogonal basis, then $\vec{b}_i\cdot\vec{b}_j=0$ when $i\neq j.$

Coordinates Relative to an Orthogonal Basis

Let $\mathcal{B}=\{\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_k\}$ be an orthog basis for a vector subspace $\mathbb {V}$ of $\mathbb {R}^n$. For each \vec{v} in $\mathbb {V}$, we can write $\vec{v} = \sum \vec{v}$ k $i=1$ $c_i \vec{b}_i$, where c_1, c_2, \ldots, c_k are the B -coordinates for \vec{v} .

Since β is orthogonal, it is easy to find these coordinates! To find c_j , look at

$$
\vec{v} \cdot \vec{b}_j = \sum_{i=1}^k c_i \vec{b}_i \cdot \vec{b}_j = c_j \vec{b}_j \cdot \vec{b}_j
$$

so $c_j = \frac{\vec{v} \cdot \vec{b}_j}{\vec{v} \cdot \vec{v}_j}$ $\frac{\overline{b_j} + \overline{b_j}}{\overline{b_j} \cdot \overline{b_j}}$. This says that

$$
\vec{v} = \sum_{i=1}^k c_i \vec{b}_i = \sum_{i=1}^k \frac{\vec{v} \cdot \vec{b}_i}{\vec{b}_i \cdot \vec{b}_i} \vec{b}_i = \sum_{i=1}^k \text{Proj}_{\vec{b}_i}(\vec{v}) \cdot \ddot{\cdot}
$$