Orthogonal Complements of Null Space & Column Space

Linear Algebra MATH 2076

Orthogonality

For
$$
\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}
$$
, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$, $\boxed{\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = \sum_{i=1}^n u_i v_i = ||\vec{u}|| ||\vec{v}|| \cos \theta}$.

Definition (Orthogonality)

Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$.

- $\overrightarrow{0}$ is orthogonal to every other vector.
- $\overline{0}$ is the *only* vector with this property.
- If $\vec{x} \perp \vec{v}$ for every vector \vec{v} , then $\vec{x} = \vec{0}$.

The above is surprisingly useful. It says that if $\vec{x} \cdot \vec{v} = 0$ for every \vec{v} , then $\vec{x} = \vec{0}$. This is easy to see. Suppose \vec{x} has the property that $\vec{x} \cdot \vec{v} = 0$ for every \vec{v} . Apply with $\vec{v} = \vec{x}$ to get $\vec{x} \cdot \vec{x} = 0$, which says $\|\vec{x}\| = 0$, so $\vec{x} = \vec{0}$.

Definition (Orthogonal Complement of a Set)

The orthogonal complement of a non-empty set W of vectors in \mathbb{R}^n is

 $W^{\perp} = \{$ all \vec{x} in \mathbb{R}^n with $\vec{w} \perp \vec{x}$ for all \vec{w} in $W\}$.

It is not hard to check that W^{\perp} is always a vector subspace of $\mathbb{R}^{n}.$ Please convince yourself that this is true.

We examine this for the null space $NS(A)$ and column space $CS(A)$ of a matrix A.

 $A=\left[\vec a_1\,\,\vec a_2\,\,\ldots\,\,\vec a_n\right]$ an $m\times n$ matrix and $\mathbb R^n\stackrel{\mathcal{T}}{\to}\mathbb R^m$ is $\mathcal{T}(\vec x)=A\vec x$

$$
\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \} \text{ and}
$$

\n
$$
\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n \}
$$

\n
$$
= \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}
$$

\n
$$
= \mathcal{R}ng(\mathcal{T})
$$

Orthogonal Complement of a Column Space

Let A be an $m\times n$ matrix. When is \vec{y} in $\bigl(\mathcal{CS}(A)\bigr)^\perp$?

Recall that $\mathcal{CS}(A)$ consists of all vectors $A\vec{x}$ where \vec{x} ranges over all of \mathbb{R}^n .

So, \vec{y} is in $\left(\mathcal{CS}(A)\right)^\perp$ iff for all \vec{x} in \mathbb{R}^n , $\vec{y}\perp A\vec{x}$, or

$$
(A^T\vec{y}) \cdot \vec{x} = (A^T\vec{y})^T\vec{x} = \vec{y}^T A \vec{x} = \vec{y} \cdot (A\vec{x}) = 0;
$$

but this says that $A^T \vec{y} = \vec{0}$, or equivalently, \vec{y} is in $\mathcal{N} \mathcal{S} (A^T)$.

We conclude that $\big| \mathcal{CS}(A)^\perp = \mathcal{NS}(A^{\mathcal{T}})\big|.$

Also, $\mathcal{CS}(A^{\mathcal{T}})^{\perp}=\mathcal{NS}(A)$. But, $(\mathbb{W}^{\perp})^{\perp}=\mathbb{W}$, so $\left\lvert \mathcal{NS}(A)^{\perp}=\mathcal{CS}(A^{\mathcal{T}})\right\rvert$.

Each $m \times n$ matrix A has four associated canonical vector subspaces.

These are:

- the null space $\mathcal{NS}(A)$ of A (a vector subspace of $\mathbb{R}^n)$,
- the column space $\mathcal{CS}(A)$ of A (a vector subspace of \mathbb{R}^m),
- the orthogonal complement $\mathcal{CS}(A)^\perp=\mathcal{NS}(A^\mathcal{T})$ (a VSS of $\mathbb{R}^m)$,
- the orthogonal complement $\mathcal{N}\mathcal{S}(A)^{\perp}=\mathcal{CS}(A^{\mathcal{T}})$ (a VSS of $\mathbb{R}^n).$

Let's look at a picture for these four subspaces.

For an $m \times n$ matrix $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix}$

$$
\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\} \text{ and}
$$

\n
$$
\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}
$$

\n
$$
= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}
$$

\n
$$
= \mathcal{R}ng(\mathcal{T}) \text{ (when } \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m \text{ is } \mathcal{T}(\vec{x}) = A\vec{x}\text{)}
$$

