Orthogonal Complements of Null Space & Column Space

Linear Algebra MATH 2076

Orthogonality

For
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$, $\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = \sum_{i=1}^n u_i v_i = \|\vec{u}\| \|\vec{v}\| \cos \theta$.

Definition (Orthogonality)

Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$.

- \bullet $\vec{0}$ is orthogonal to every other vector.
- $\vec{0}$ is the *only* vector with this property.
- If $\vec{x} \perp \vec{v}$ for every vector \vec{v} , then $\vec{x} = \vec{0}$.

The above is surprisingly useful. It says that if $\vec{x} \cdot \vec{v} = 0$ for every \vec{v} , then $\vec{x} = \vec{0}$. This is easy to see. Suppose \vec{x} has the property that $\vec{x} \cdot \vec{v} = 0$ for every \vec{v} . Apply with $\vec{v} = \vec{x}$ to get $\vec{x} \cdot \vec{x} = 0$, which says $||\vec{x}|| = 0$, so $\vec{x} = \vec{0}$.

Orthogonal Complements

Definition (Orthogonal Complement of a Set)

The *orthogonal complement* of a non-empty set W of vectors in \mathbb{R}^n is

$$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$

It is not hard to check that W^{\perp} is always a vector subspace of \mathbb{R}^n . Please convince yourself that this is true.

We examine this for the null space $\mathcal{NS}(A)$ and column space $\mathcal{CS}(A)$ of a matrix A.

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\begin{split} \mathcal{NS}(A) &= \{\vec{x} \mid A\vec{x} = \vec{0}\} \quad \text{and} \\ \mathcal{CS}(A) &= \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ &= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ &= \mathcal{R}ng(T) \end{split}$$

Orthogonal Complement of a Column Space

Let A be an $m \times n$ matrix. When is \vec{y} in $(\mathcal{CS}(A))^{\perp}$?

Recall that $\mathcal{CS}(A)$ consists of all vectors $A\vec{x}$ where \vec{x} ranges over all of \mathbb{R}^n .

So, \vec{y} is in $(\mathcal{CS}(A))^{\perp}$ iff for all \vec{x} in \mathbb{R}^n , $\vec{y} \perp A\vec{x}$, or

$$(A^T \vec{y}) \cdot \vec{x} = (A^T \vec{y})^T \vec{x} = \vec{y}^T A \vec{x} = \vec{y} \cdot (A \vec{x}) = 0;$$

but this says that $A^T \vec{y} = \vec{0}$, or equivalently, \vec{y} is in $\mathcal{NS}(A^T)$.

We conclude that $\mathcal{CS}(A)^{\perp} = \mathcal{NS}(A^T)$.

Also,
$$\mathcal{CS}(A^T)^{\perp} = \mathcal{NS}(A)$$
. But, $(\mathbb{W}^{\perp})^{\perp} = \mathbb{W}$, so $\mathcal{NS}(A)^{\perp} = \mathcal{CS}(A^T)$.

The Four Fundamental Vector SubSpaces Assoc'd with A

Each $m \times n$ matrix A has four associated canonical vector subspaces.

These are:

- the null space $\mathcal{NS}(A)$ of A (a vector subspace of \mathbb{R}^n),
- the column space $\mathcal{CS}(A)$ of A (a vector subspace of \mathbb{R}^m),
- the orthogonal complement $\mathcal{CS}(A)^{\perp} = \mathcal{NS}(A^T)$ (a VSS of \mathbb{R}^m),
- the orthogonal complement $\mathcal{NS}(A)^{\perp} = \mathcal{CS}(A^T)$ (a VSS of \mathbb{R}^n).

Let's look at a picture for these four subspaces.

Chapter 6, Section 1, OC

For an $m \times n$ matrix $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$

$$\begin{split} \mathcal{NS}(A) &= \{\vec{x} \mid A\vec{x} = \vec{0}\} \quad \text{and} \\ \mathcal{CS}(A) &= \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ &= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ &= \mathcal{R}ng(T) \text{ (when } \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m \text{ is } T(\vec{x}) = A\vec{x} \text{)} \end{split}$$

