Inner Products, Length, and Orthogonality Linear Algebra MATH 2076 Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 1 / 10 Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$ be vectors in \mathbb{R}^n . Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 2 / 10 Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is $$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$ Section 6.1 ·, ||·||, ⊥ 29 March 2017 2 / 10 Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$ be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is $$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$$ Section 6.1 • , ||·||, \(\preceq \) 29 March 2017 2 / 10 Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$ be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is $$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$ Section 6.1 •, ||•||, ⊥ 29 March 2017 2 / 10 Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is $$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$ Some Examples: Section 6.1 •, ||·||, ⊥ 29 March 2017 2 / 10 Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$ be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is $$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$ Some Examples: $$\bullet \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = -2.$$ Section 6.1 •, ||·||, \(\perp\) 29 March 2017 2 / 10 Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is $$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$ Some Examples: • For \vec{x} in \mathbb{R}^n , $\vec{x} \cdot \vec{e_i} = x_i$. Section 6.1 ·, ||·||, ⊥ 29 March 2017 2 / 10 Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$ be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is $$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$ #### Some Examples: $$\bullet \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = -2.$$ - For \vec{x} in \mathbb{R}^n , $\vec{x} \cdot \vec{e_i} = x_i$. - For \vec{x} in \mathbb{R}^n , $\vec{x} = \sum_{i=1}^n (\vec{x} \cdot \vec{e_i}) \vec{e_i}$. Section 6.1 ·, ||·||, ⊥ 29 March 2017 2 / 10 Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$ be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is $$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$ Some Examples: $$\bullet \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = -2.$$ Notice that for the standard basis vectors in \mathbb{R}^n . - For \vec{x} in \mathbb{R}^n , $\vec{x} \cdot \vec{e_i} = x_i$. - For \vec{x} in \mathbb{R}^n , $\vec{x} = \sum_{i=1}^n (\vec{x} \cdot \vec{e_i}) \vec{e_i}$. Section 6.1 Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is $$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$ Some Examples: Notice that for the standard basis verification $$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = -2.$$ $$\vec{e_i} \cdot \vec{e_j} = \delta_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j. \end{cases}$$ Notice that for the standard basis vectors in $$\vec{e_i} \cdot \vec{e_j} = \delta_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$ - For \vec{x} in \mathbb{R}^n , $\vec{x} \cdot \vec{e_i} = x_i$. - For \vec{x} in \mathbb{R}^n , $\vec{x} = \sum_{i=1}^n (\vec{x} \cdot \vec{e_i}) \vec{e_i}$. The *length* (or *norm*) of $$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$ is The *length* (or *norm*) of $$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$ is $$\|\vec{x}\| = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_n x_n}$$ The *length* (or *norm*) of $$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$ is $$\|\vec{x}\| = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_n x_n} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$ Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 3 / 10 The *length* (or *norm*) of $$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$ is $$\|\vec{x}\| = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_n x_n} = \left(\sum_{i=1}^n x_i^2\right)^{1/2} = \left(\vec{x} \cdot \vec{x}\right)^{1/2}.$$ Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 3 / 10 The *length* (or *norm*) of $$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$ is $$\|\vec{x}\| = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_n x_n} = \left(\sum_{i=1}^n x_i^2\right)^{1/2} = \left(\vec{x} \cdot \vec{x}\right)^{1/2}.$$ For example, if $$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$, then $\|\vec{v}\| = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ Section 6.1 ·, ||·||, ⊥ 29 March 2017 3 / 10 The *length* (or *norm*) of $$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$ is $$\|\vec{x}\| = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_n x_n} = \left(\sum_{i=1}^n x_i^2\right)^{1/2} = \left(\vec{x} \cdot \vec{x}\right)^{1/2}.$$ For example, if $$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$, then $\|\vec{v}\| = \sqrt{14}$. Section 6.1 •, ||•||, ⊥ 29 March 2017 3 / 10 The *length* (or *norm*) of $$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$ is $$\|\vec{x}\| = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_n x_n} = \left(\sum_{i=1}^n x_i^2\right)^{1/2} = \left(\vec{x} \cdot \vec{x}\right)^{1/2}.$$ For example, if $$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$, then $\|\vec{v}\| = \sqrt{14}$. Note that $$|\vec{x} \cdot \vec{x} = ||\vec{x}||^2$$. Section 6.1 •, ||•||, ⊥ 29 March 2017 3 / 10 Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$ be *non-zero* vectors in \mathbb{R}^n . Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$ be *non-zero* vectors in \mathbb{R}^n . Let θ be the angle (in $[0, \pi]$) between \vec{u} and \vec{v} . Section 6.1 •, ||•||, ⊥ 29 March 2017 4 / 10 Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$ be *non-zero* vectors in \mathbb{R}^n . Let θ be the angle (in $[0, \pi]$) between \vec{u} and \mathbb{R}^n . Let $\bar{\theta}$ be the angle (in $[0, \pi]$) between \vec{u} and \vec{v} . 29 March 2017 4 / 10 Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$ be *non-zero* vectors in \mathbb{R}^n . Let θ be the angle (in $[0, \pi]$) between \vec{u} and \mathbb{R}^n . Let θ be the angle (in $[0,\pi]$) between \vec{u} and \vec{v} . 29 March 2017 4 / 10 Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be *non-zero* vectors in \vec{v} \mathbb{R}^n . Let θ be the angle (in $[0,\pi]$) between \vec{u} and \vec{v} . Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be non-zero vectors in \vec{v} \mathbb{R}^n . Let $\bar{\theta}$ be the angle (in $[0, \pi]$) between \vec{u} and \vec{v} . The dot product of \vec{u} and \vec{v} is $$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$ Let $$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$ be non-zero vectors in $\vec{v} \uparrow$ $$\mathbb{R}^n. \text{ Let } \theta \text{ be the angle (in } [0, \pi]) \text{ between } \vec{u} \text{ and }$$ The *dot product* of \vec{u} and \vec{v} is \vec{v} . $$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$ Thus for non-zero $$\vec{u}$$ and \vec{v} , $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$. Let's find the angle between the pictured vectors \vec{u} , \vec{v} . Let's find the angle between the pictured vectors \vec{u} , \vec{v} . We have Let's find the angle between the pictured vectors \vec{u} , \vec{v} . We have $$\vec{u} \cdot \vec{v} = -2, \ \|\vec{u}\| = \sqrt{14}, \ \|\vec{v}\| = \sqrt{2}$$ Let's find the angle between the pictured vectors \vec{u}, \vec{v} . We have $$\vec{u} \cdot \vec{v} = -2, \ \|\vec{u}\| = \sqrt{14}, \ \|\vec{v}\| = \sqrt{2}$$ $$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{-2}{\sqrt{14}\sqrt{2}} = \frac{-1}{\sqrt{7}}$$ Let's find the angle between the pictured vectors \vec{u}, \vec{v} . We have $$\vec{u} \cdot \vec{v} = -2, \ \|\vec{u}\| = \sqrt{14}, \ \|\vec{v}\| = \sqrt{2}$$ SO $$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{-2}{\sqrt{14}\sqrt{2}} = \frac{-1}{\sqrt{7}}$$ and thus $\theta \simeq 120^{\circ}$. Section 6.1 Find the angle between the diagonals of a cube in \mathbb{R}^3 . Section 6.1 ·, $\|\cdot\|$, \bot 29 March 2017 6 / 10 Find the angle between the diagonals of a cube in \mathbb{R}^3 . Find the angle between the diagonals of a cube in \mathbb{R}^3 . Let \vec{u} be the "main diagonal", so Find the angle between the diagonals of a cube in \mathbb{R}^3 . Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e}_1+\vec{e}_2+\vec{e}_3.$ Find the angle between the diagonals of a cube in \mathbb{R}^3 . Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e_1}+\vec{e_2}+\vec{e_3}$. Let \vec{v} be the "floor diagonal", so Find the angle between the diagonals of a cube in \mathbb{R}^3 . Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e}_1+\vec{e}_2+\vec{e}_3$. Let \vec{v} be the "floor diagonal", so $\vec{v}=\vec{e}_1+\vec{e}_2$. Find the angle between the diagonals of a cube in \mathbb{R}^3 . Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e}_1+\vec{e}_2+\vec{e}_3$. Let \vec{v} be the "floor diagonal", so $\vec{v}=\vec{e}_1+\vec{e}_2$. Then Find the angle between the diagonals of a cube in \mathbb{R}^3 . Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e}_1+\vec{e}_2+\vec{e}_3$. Let \vec{v} be the "floor diagonal", so $\vec{v}=\vec{e}_1+\vec{e}_2$. Then $$\vec{u} \cdot \vec{v} = 2, \ \|\vec{u}\| = \sqrt{3}, \ \|\vec{v}\| = \sqrt{2}$$ SO Find the angle between the diagonals of a cube in \mathbb{R}^3 . Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e_1}+\vec{e_2}+\vec{e_3}$. Let \vec{v} be the "floor diagonal", so $\vec{v}=\vec{e_1}+\vec{e_2}$. Then $$\vec{u} \cdot \vec{v} = 2, \ \|\vec{u}\| = \sqrt{3}, \ \|\vec{v}\| = \sqrt{2}$$ SO $$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{2}{\sqrt{3}\sqrt{2}} = \sqrt{2/3}$$ Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 6 / 10 Find the angle between the diagonals of a cube in \mathbb{R}^3 . Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e_1}+\vec{e_2}+\vec{e_3}$. Let \vec{v} be the "floor diagonal", so $\vec{v}=\vec{e_1}+\vec{e_2}$. Then $$\vec{u} \cdot \vec{v} = 2, \ \|\vec{u}\| = \sqrt{3}, \ \|\vec{v}\| = \sqrt{2}$$ SO $$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{2}{\sqrt{3}\sqrt{2}} = \sqrt{2/3}$$ and thus $\theta \simeq 35^{\circ}$. Section 6.1 Recall that $$|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$. Section 6.1 29 March 2017 Recall that $$|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$. ### Definition (Orthogonality) Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. Section 6.1 ·, $\|\cdot\|$, \perp 29 March 2017 7 / 10 Recall that $$|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$. ### Definition (Orthogonality) Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$. Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 7 / 10 Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$. ### Definition (Orthogonality) Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$. Note that: Section 6.1 ·, $\|\cdot\|$, \perp 29 March 2017 7 / 10 Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$. ### Definition (Orthogonality) Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$. #### Note that: ullet $\vec{0}$ is orthogonal to every other vector. Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 7 / 10 Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$. ### Definition (Orthogonality) Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$. #### Note that: - ullet $\vec{0}$ is orthogonal to every other vector. - $\vec{0}$ is the *only* vector with this property. Section 6.1 •, ||·||, \(\perp\) 29 March 2017 7 / 10 Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$. ## Definition (Orthogonality) Two vectors \vec{u} , \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$. #### Note that: - ullet $\vec{0}$ is orthogonal to every other vector. - $\vec{0}$ is the *only* vector with this property. - If $\vec{x} \perp \vec{v}$ for every vector \vec{v} , then $\vec{x} = \vec{0}$. Section 6.1 ·, ||·||, ⊥ 29 March 2017 7 / 10 Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$. ## Definition (Orthogonality) Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$. #### Note that: - ullet $\vec{0}$ is orthogonal to every other vector. - $\vec{0}$ is the *only* vector with this property. - If $\vec{x} \perp \vec{v}$ for every vector \vec{v} , then $\vec{x} = \vec{0}$. Some simple examples: Section 6.1 ·, ||·||, ⊥ 29 March 2017 7 / 10 Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$. ## Definition (Orthogonality) Two vectors \vec{u} , \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$. #### Note that: - ullet $\vec{0}$ is orthogonal to every other vector. - $\vec{0}$ is the *only* vector with this property. - If $\vec{x} \perp \vec{v}$ for every vector \vec{v} , then $\vec{x} = \vec{0}$. Some simple examples: $$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \perp \begin{bmatrix} -1 \\ 1 \end{bmatrix},$$ Section 6.1 ·, ||·||, ⊥ 29 March 2017 7 / 10 Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$. ### Definition (Orthogonality) Two vectors \vec{u} , \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$. #### Note that: - \bullet $\vec{0}$ is orthogonal to every other vector. - $\vec{0}$ is the *only* vector with this property. - If $\vec{x} \perp \vec{v}$ for every vector \vec{v} , then $\vec{x} = \vec{0}$. Some simple examples: $$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \perp \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \perp \begin{bmatrix} -2 \\ 1 \end{bmatrix},$$ Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 7 / 10 Recall that $$|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$. ### Definition (Orthogonality) Two vectors \vec{u} , \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$. #### Note that: - ullet $\vec{0}$ is orthogonal to every other vector. - $\vec{0}$ is the *only* vector with this property. - If $\vec{x} \perp \vec{v}$ for every vector \vec{v} , then $\vec{x} = \vec{0}$. Some simple examples: $$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \perp \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \perp \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix} \perp \begin{bmatrix} -b \\ a \end{bmatrix}.$$ ◆ロト ◆団ト ◆ヨト ◆ヨト ヨ めへで Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 7 / 10 Look at $$\|\vec{u} + \vec{v}\|^2 =$$ Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 8 / 10 Look at $$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) =$$ Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 8 / 10 Look at $$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \|\vec{u}\|^2 + 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$ Section 6.1 •, ||·||, \(\perp\) 29 March 2017 8 / 10 Look at $$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \|\vec{u}\|^2 + 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$ $$= \|\vec{u}\|^2 + \|\vec{v}\|^2 \quad \text{if and only if } \vec{u} \perp \vec{v}.$$ Section 6.1 • , ||·||, \(\precedef \) 29 March 2017 8 / 10 Look at $$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \|\vec{u}\|^2 + 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$ $$= \|\vec{u}\|^2 + \|\vec{v}\|^2 \quad \text{if and only if } \vec{u} \perp \vec{v}.$$ The final equality above is known as Pyhtagoras' Theorem. Section 6.1 ·, ||·||, ⊥ 29 March 2017 8 / 10 The *orthogonal complement* of a *non-zero* vector \vec{a} in \mathbb{R}^n is $$\{\vec{a}\}^{\perp} = \{\text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x}\}$$ Section 6.1 ·, $\|\cdot\|$, \perp 29 March 2017 9 / 10 The *orthogonal complement* of a *non-zero* vector \vec{a} in \mathbb{R}^n is $$\{\vec{a}\}^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x} \} = \mathcal{NS}(\vec{a}^T).$$ Section 6.1 •, ||·||, \(\perp\) 29 March 2017 9 / 10 The *orthogonal complement* of a *non-zero* vector \vec{a} in \mathbb{R}^n is $$\{\vec{a}\}^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x} \} = \mathcal{NS}(\vec{a}^T).$$ This is the *hyperplane* in \mathbb{R}^n thru $\vec{0}$ with normal vector \vec{a} . Section 6.1 •, ||·||, \(\perp\) 29 March 2017 9 / 10 The *orthogonal complement* of a *non-zero* vector \vec{a} in \mathbb{R}^n is $$\{\vec{a}\}^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x} \} = \mathcal{NS}(\vec{a}^T).$$ This is the *hyperplane* in \mathbb{R}^n thru $\vec{0}$ with normal vector \vec{a} . ## Definition (Orthogonal Complement of a Set) The *orthogonal complement* of a non-empty set W of vectors in \mathbb{R}^n is $$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$ Section 6.1 ·, ||·||, ⊥ 29 March 2017 9 / 10 The *orthogonal complement* of a *non-zero* vector \vec{a} in \mathbb{R}^n is $$\{\vec{a}\}^{\perp} = \left\{ \mathsf{all} \ \vec{x} \ \mathsf{in} \ \mathbb{R}^n \ \mathsf{with} \ \vec{a} \perp \vec{x} ight\} = \mathcal{NS} \left(\vec{a}^T ight).$$ This is the *hyperplane* in \mathbb{R}^n thru $\vec{0}$ with normal vector \vec{a} . ## Definition (Orthogonal Complement of a Set) The *orthogonal complement* of a non-empty set W of vectors in \mathbb{R}^n is $$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$ It is not hard to check that W^{\perp} is always a vector subspace of \mathbb{R}^n . Section 6.1 Let $$W = \{\vec{v}, \vec{w}\}$$ with $\vec{v} \not\parallel \vec{w}$. 10 / 10 Section 6.1 ·, ||·||, ⊥ 29 March 2017 Let $$W = \{\vec{v}, \vec{w}\}$$ with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} =$ Let $$W = \{\vec{v}, \vec{w}\}$$ with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A =$ Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 10 / 10 Let $$W = \{\vec{v}, \vec{w}\}$$ with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$. 10 / 10 Let $$W = \{\vec{v}, \vec{w}\}$$ with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$. Thus we see that: 10 / 10 Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 Let $$W = \{\vec{v}, \vec{w}\}$$ with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$. Thus we see that: • in \mathbb{R}^3 , W^{\perp} is a line, Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 10 / 10 Let $$W = \{\vec{v}, \vec{w}\}$$ with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$. #### Thus we see that: - in \mathbb{R}^3 , W^{\perp} is a line, - in \mathbb{R}^4 , W^{\perp} is a 2-plane, Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 10 / 10 Let $$W = \{\vec{v}, \vec{w}\}$$ with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$. #### Thus we see that: - in \mathbb{R}^3 , W^{\perp} is a line, - in \mathbb{R}^4 , W^{\perp} is a 2-plane, - in \mathbb{R}^n , W^{\perp} is an (n-2)-plane, 10 / 10 Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 Let $$W = \{\vec{v}, \vec{w}\}$$ with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$. Thus we see that: - in \mathbb{R}^3 , W^{\perp} is a line, - in \mathbb{R}^4 , W^{\perp} is a 2-plane, - in \mathbb{R}^n , W^{\perp} is an (n-2)-plane, In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then 10 / 10 Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 Let $$W = \{\vec{v}, \vec{w}\}$$ with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$. Thus we see that: - in \mathbb{R}^3 , W^{\perp} is a line, - in \mathbb{R}^4 , W^{\perp} is a 2-plane, - in \mathbb{R}^n , W^{\perp} is an (n-2)-plane, In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$ Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 10 / 10 Let $$W = \{\vec{v}, \vec{w}\}$$ with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$. Thus we see that: - in \mathbb{R}^3 , W^{\perp} is a line, - in \mathbb{R}^4 , W^{\perp} is a 2-plane, - in \mathbb{R}^n , W^{\perp} is an (n-2)-plane, In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$ and dim $\mathbb{W}^{\perp} = n - \dim \mathbb{W}$. 10 / 10 Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 Let $$W = \{\vec{v}, \vec{w}\}$$ with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$. Thus we see that: - in \mathbb{R}^3 , W^{\perp} is a line, - in \mathbb{R}^4 , W^{\perp} is a 2-plane, - in \mathbb{R}^n , W^{\perp} is an (n-2)-plane, In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$ and dim $\mathbb{W}^{\perp} = n - \dim \mathbb{W}$. This means that every vector \vec{x} in \mathbb{R}^n can be written as a sum $\vec{x} = \vec{w} + \vec{z}$ where \vec{w} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} . Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 10 / 10