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Algebraic Definition for Dot Product

Let ~u =


u1
u2
...
un

 , ~v =


v1
v2
...
vn

 be vectors in Rn.

The dot product of ~u and ~v is

~u · ~v = u1v1 + u2v2 + · · ·+ unvn

=
n∑

i=1

uivi = ~uT~v .

Some Examples:

1
2
3

 ·

 1
0
−1

 = −2.

For ~x in Rn, ~x · ~ei = xi .

For ~x in Rn, ~x =
∑n

i=1

(
~x · ~ei

)
~ei .

Notice that for the standard basis vectors in
Rn,

~ei · ~ej = δij =

{
0 if i 6= j

1 if i = j .
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The Length or Norm of a Vector

The length (or norm) of ~x =


x1
x2
...
xn

 is

‖~x‖ =
√
x1x1 + x2x2 + · · ·+ xnxn

=
( n∑
i=1

x2i

)1/2
=
(
~x · ~x

)1/2
.

For example, if ~v =

1
2
3

, then ‖~v‖ =

√
14.

Note that ~x · ~x = ‖~x‖2.
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Geometric Definition for Dot Product

Let ~u =


u1
u2
...
un

 , ~v =


v1
v2
...
vn

 be non-zero vectors in

Rn.

Let θ be the angle (in [0, π]) between ~u and
~v .

~u

~v

θ

The dot product of ~u and ~v is

~u · ~v = ‖~u‖‖~v‖ cos θ.

Thus for non-zero ~u and ~v , cos θ =
~u · ~v
‖~u‖‖~v‖

.
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An Example

x

y

z
~u =

1
2
3



~v =

 1
0
−1



Let’s find the angle between the pictured
vectors ~u, ~v . We have

~u · ~v = −2, ‖~u‖ =
√

14, ‖~v‖ =
√

2

so

cos θ =
~u · ~v
‖~u‖‖~v‖

=
−2√
14
√

2
=
−1√

7

and thus θ ' 120◦.
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Another Example

Find the angle between the diagonals of a cube in R3.

x y

z

Let ~u be the “main diagonal”, so

~u = ~e1 + ~e2 + ~e3.

Let ~v be the “floor diagonal”, so

~v = ~e1 + ~e2.

Then

~u · ~v = 2, ‖~u‖ =
√

3, ‖~v‖ =
√

2

so

cos θ =
~u · ~v
‖~u‖‖~v‖

=
2√

3
√

2
=
√

2/3

and thus θ ' 35◦.
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~u = ~e1 + ~e2 + ~e3.
Let ~v be the “floor diagonal”, so
~v = ~e1 + ~e2. Then

~u · ~v = 2, ‖~u‖ =
√

3, ‖~v‖ =
√

2

so

cos θ =
~u · ~v
‖~u‖‖~v‖

=
2√

3
√

2
=
√
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Orthogonality

Recall that ~u · ~v = ‖~u‖‖~v‖ cos θ .

Definition (Orthogonality)

Two vectors ~u, ~v in Rn are orthogonal if and only if ~u · ~v = 0.

When this
holds, we write ~u ⊥ ~v .

Note that:

~0 is orthogonal to every other vector.

~0 is the only vector with this property.

If ~x ⊥ ~v for every vector ~v , then ~x = ~0.

Some simple examples:

[
1
1

]
⊥
[
−1
1

]
,

[
1
2

]
⊥
[
−2
1

]
,

[
a
b

]
⊥
[
−b
a

]
.
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A Useful Formula

Look at

‖~u + ~v‖2 =

(
~u + ~v

)
·
(
~u + ~v

)
= ‖~u‖2 + 2 ~u · ~v + ‖~v‖2

= ‖~u‖2 + ‖~v‖2 if and only if ~u ⊥ ~v .

The final equality above is known as Pyhtagoras’ Theorem.
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Orthogonal Complement

The orthogonal complement of a non-zero vector ~a in Rn is

{~a }⊥ =
{

all ~x in Rn with ~a ⊥ ~x
}

= NS
(
~aT
)
.

This is the hyperplane in Rn thru ~0 with normal vector ~a.

Definition (Orthogonal Complement of a Set)

The orthogonal complement of a non-empty set W of vectors in Rn is

W⊥ =
{

all ~x in Rn with ~w ⊥ ~x for all ~w in W
}
.

It is not hard to check that W⊥ is always a vector subspace of Rn.
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An Example with W = {~v , ~w}

Let W = {~v , ~w} with ~v 6‖ ~w .

Then W⊥ =

NS(A) where A =
[
~v ~w

]
.

Thus we see that:

in R3, W⊥ is a line,

in R4, W⊥ is a 2-plane,

in Rn, W⊥ is an (n − 2)-plane,

In general, if W is a vector subspace of Rn, then Rn = W⊕W⊥ and
dim W⊥ = n − dim W. This means that every vector ~x in Rn can be
written as a sum ~x = ~w + ~z where ~w is in W and ~z is in W⊥.
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