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Algebraic Definition for Dot Product

u Vi
— u2 — V2 . — — .
let = | . |,v= | .| bevectorsin R". The dot product of i and V is
Un Vn

<y

n
V=wmvi+wvm+- -+ uv, = E uivi=a'v.
i=1

Some Examples: Notice that for the standard basis vectors in
17 1 R",
@ |2 -] 0| =-2
3 -1

@ For X inR", X-¢& = x;.
o For XxinR", x=37,(X-&)é.
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@ For X inR", X-¢& = x;.
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The Length or Norm of a Vector
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The length (or norm) of X = | | is
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X2
The length (or norm) of X = | | is

Xn

I1X]| = V/x1x1 + xax2 + -+ - + XnXp
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The Length or Norm of a Vector

X1
X2
The length (or norm) of X = | | is

Xn
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The Length or Norm of a Vector
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For example, if V= |2/, then ||V]| =
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The Length or Norm of a Vector

X1
X2
The length (or norm) of X = | | is
Xn
S n 2\ 1/2 Y
”XH:\/X1X1+X2X2+---—|—xnx,,:(Zx,.> :(X.X) )

i=1

1
For example, if vV = |2, then ||V| = V14.
3

Note that | X - X = ||X]|2.
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Geometric Definition for Dot Product

u1 Vi
. up| V2 . v
let = | . | ,v= | .| be non-zero vectors in
; : 0 i
Un Vn
R". Let 6 be the angle (in [0, 7]) between & and

V.
The dot product of i and V is

—

<

-V = ||d]|||V]| cos 6.

Thus for non-zero & and vV, |cosf =
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An Example

N

1
7= |2 Let's find the angle between the pictured
3 vectors 7, V. We have

7-v=-2, ||d = V14, ||V = V2

SO

0.V —2 -1
cos 6 u-v

, o lalivl ~ viava T va
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An Example

N

1
7= |2 Let's find the angle between the pictured
3 vectors 7, V. We have

—»

7= =2, |dll = V4, |7] = V2

SO

sl — u-v —2 -1
y 1Ml ~ viavz V7
and thus 6 ~ 120°.
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Another Example

Find the angle between the diagonals of a cube in R3.
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Another Example
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Another Example

Find the angle between the diagonals of a cube in R3.

Let & be the “main diagonal”’, so
i=é + &+ 6é.

Let v be the “floor diagonal”, so
V=o2¢€ +6.
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Another Example

Find the angle between the diagonals of a cube in R3.

Let & be the “main diagonal”’, so
i=é + &+ 6é.

Let v be the “floor diagonal”, so
V=2¢1+&. Then
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Another Example

Find the angle between the diagonals of a cube in R3.

Let & be the “main diagonal”’, so
U=6 +6& + 6&.

Let v be the “floor diagonal”, so
V=¢ + 6. Then

g-v=2, ||d = V3, |7 = V2

SO
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Another Example

Find the angle between the diagonals of a cube in R3.

Let ' be the "main diagonal”, so
i =€ + & + 6.

Let v be the “floor diagonal”, so
V=¢ + 6. Then

V=2, |dl =3, |1Vl = v2

SO

o-v 2
cosl) = ———— = =+/2/3
1AVl v3v2
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Another Example

Find the angle between the diagonals of a cube in R3.

Let ' be the "main diagonal”, so
i =€ + & + 6.

—

Let v be the “floor diagonal”, so
V=¢ + 6. Then

V=2, |dl =3, |1Vl = v2

SO

o-v 2
cosl) = ———— = =+/2/3
1AVl v3v2

and thus 6 ~ 35°.
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Orthogonality

Recall that |+ v = ||| V]| cos 6 |
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A Useful Formula

Look at
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il L IRy ki



A Useful Formula

Look at

[T+ 7|2 = (G+ V) (G+ V) =

il L IRy ki



A Useful Formula

Look at

[T+ 7|2 = (G+ V) - (G+ V) = |d))*+2d- 7+ |V

il L IRy ki



A Useful Formula

Look at

|G+ V|2 = (a+7) - (a+7) =|d@fP+2d- 7+ |7
= ||d@|® + ||V||? if and only if & L V.
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A Useful Formula

Look at

|G+ V|2 = (a+7) - (a+7) =|d@fP+2d- 7+ |7
= ||d@|® + ||V||? if and only if & L V.

The final equality above is known as Pyhtagoras’ Theorem.
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Orthogonal Complement

The orthogonal complement of a non-zero vector & in R" is

{a}* = {all X in R" with & L x}
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The orthogonal complement of a non-zero vector & in R" is
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Orthogonal Complement
The orthogonal complement of a non-zero vector 3 in R” is

{&} ={all xin R" with 3 L x} = N'S(3T).

This is the hyperplane in R" thru 0 with normal vector &.
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Orthogonal Complement

The orthogonal complement of a non-zero vector 3 in R” is
{&} ={all xin R" with 3 L x} = N'S(3T).

This is the hyperplane in R" thru 0 with normal vector &.

Definition (Orthogonal Complement of a Set)

The orthogonal complement of a non-empty set W of vectors in R” is

W+ = {all ¥ in R” with w L X for all w in W}.
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Orthogonal Complement

The orthogonal complement of a non-zero vector 3 in R” is
{a}+ = {all X in R" with 3 L 5} = NS(a7).

This is the hyperplane in R" thru 0 with normal vector &.

Definition (Orthogonal Complement of a Set)

The orthogonal complement of a non-empty set W of vectors in R” is

W+ = {all ¥ in R” with w L X for all w in W}.

It is not hard to check that W= is always a vector subspace of R".
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An Example with W = {v, w

Let W = {V,w} with V |J w.
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An Example with W = {v, w

Let W = {V,w} with V |y w. Then W' = N'S(A) where A= [V w].
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o in R* W+ is a 2-plane,

e in R", W' is an (n — 2)-plane,
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An Example with W = {v, w

Let W = {V,w} with V |y w. Then W' = N'S(A) where A= [V w].

Thus we see that:
e in R3, W is a line,

e in R* W is a 2-plane,

e in R", W' is an (n — 2)-plane,

In general, if W is a vector subspace of R”, then R" = W ¢ W+
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An Example with W = {v, w

Let W = {V,w} with V |y w. Then W' = N'S(A) where A= [V w].

Thus we see that:
e in R3, W is a line,
o in R* W+ is a 2-plane,
e in R", W' is an (n — 2)-plane,

In general, if W is a vector subspace of R”, then R” = W & W+ and
dim Wt = n — dim W.
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An Example with W = {v, w

Let W = {V,w} with V |y w. Then W' = N'S(A) where A= [V w].
Thus we see that:

e in R3, W is a line,

e in R* W is a 2-plane,

e in R", W' is an (n — 2)-plane,
In general, if W is a vector subspace of R”, then R” = W & W+ and

dim W+ = n — dim W. This means that every vector X in R” can be
written as a sum X = w + Z where w is in W and Z is in W+,
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