Inner Products, Length, and Orthogonality

Linear Algebra MATH 2076

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 1 / 10

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 be vectors in \mathbb{R}^n .

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 2 / 10

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

Section 6.1 ·, ||·||, ⊥ 29 March 2017 2 / 10

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$$

Section 6.1 • , ||·||, \(\preceq \) 29 March 2017 2 / 10

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$

Section 6.1 •, ||•||, ⊥ 29 March 2017 2 / 10

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$

Some Examples:

Section 6.1 •, ||·||, ⊥ 29 March 2017 2 / 10

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$

Some Examples:

$$\bullet \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = -2.$$

Section 6.1 •, ||·||, \(\perp\) 29 March 2017 2 / 10

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$

Some Examples:

• For \vec{x} in \mathbb{R}^n , $\vec{x} \cdot \vec{e_i} = x_i$.

Section 6.1 ·, ||·||, ⊥ 29 March 2017 2 / 10

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$

Some Examples:

$$\bullet \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = -2.$$

- For \vec{x} in \mathbb{R}^n , $\vec{x} \cdot \vec{e_i} = x_i$.
- For \vec{x} in \mathbb{R}^n , $\vec{x} = \sum_{i=1}^n (\vec{x} \cdot \vec{e_i}) \vec{e_i}$.

Section 6.1 ·, ||·||, ⊥ 29 March 2017 2 / 10

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$

Some Examples:

$$\bullet \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = -2.$$

Notice that for the standard basis vectors in \mathbb{R}^n .

- For \vec{x} in \mathbb{R}^n , $\vec{x} \cdot \vec{e_i} = x_i$.
- For \vec{x} in \mathbb{R}^n , $\vec{x} = \sum_{i=1}^n (\vec{x} \cdot \vec{e_i}) \vec{e_i}$.

Section 6.1

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$

Some Examples:

Notice that for the standard basis verification
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = -2.$$

$$\vec{e_i} \cdot \vec{e_j} = \delta_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j. \end{cases}$$

Notice that for the standard basis vectors in

$$\vec{e_i} \cdot \vec{e_j} = \delta_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

- For \vec{x} in \mathbb{R}^n , $\vec{x} \cdot \vec{e_i} = x_i$.
- For \vec{x} in \mathbb{R}^n , $\vec{x} = \sum_{i=1}^n (\vec{x} \cdot \vec{e_i}) \vec{e_i}$.

The *length* (or *norm*) of
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 is

The *length* (or *norm*) of
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 is

$$\|\vec{x}\| = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_n x_n}$$

The *length* (or *norm*) of
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 is

$$\|\vec{x}\| = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_n x_n} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 3 / 10

The *length* (or *norm*) of
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 is

$$\|\vec{x}\| = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_n x_n} = \left(\sum_{i=1}^n x_i^2\right)^{1/2} = \left(\vec{x} \cdot \vec{x}\right)^{1/2}.$$

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 3 / 10

The *length* (or *norm*) of
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 is

$$\|\vec{x}\| = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_n x_n} = \left(\sum_{i=1}^n x_i^2\right)^{1/2} = \left(\vec{x} \cdot \vec{x}\right)^{1/2}.$$

For example, if
$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, then $\|\vec{v}\| = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Section 6.1 ·, ||·||, ⊥ 29 March 2017 3 / 10

The *length* (or *norm*) of
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 is

$$\|\vec{x}\| = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_n x_n} = \left(\sum_{i=1}^n x_i^2\right)^{1/2} = \left(\vec{x} \cdot \vec{x}\right)^{1/2}.$$

For example, if
$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, then $\|\vec{v}\| = \sqrt{14}$.

Section 6.1 •, ||•||, ⊥ 29 March 2017 3 / 10

The *length* (or *norm*) of
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 is

$$\|\vec{x}\| = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_n x_n} = \left(\sum_{i=1}^n x_i^2\right)^{1/2} = \left(\vec{x} \cdot \vec{x}\right)^{1/2}.$$

For example, if
$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, then $\|\vec{v}\| = \sqrt{14}$.

Note that
$$|\vec{x} \cdot \vec{x} = ||\vec{x}||^2$$
.

Section 6.1 •, ||•||, ⊥ 29 March 2017 3 / 10

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 be *non-zero* vectors in \mathbb{R}^n .

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 be *non-zero* vectors in

 \mathbb{R}^n . Let θ be the angle (in $[0, \pi]$) between \vec{u} and \vec{v} .

Section 6.1 •, ||•||, ⊥ 29 March 2017 4 / 10

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 be *non-zero* vectors in \mathbb{R}^n . Let θ be the angle (in $[0, \pi]$) between \vec{u} and

 \mathbb{R}^n . Let $\bar{\theta}$ be the angle (in $[0, \pi]$) between \vec{u} and \vec{v} .

29 March 2017

4 / 10

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 be *non-zero* vectors in \mathbb{R}^n . Let θ be the angle (in $[0, \pi]$) between \vec{u} and

 \mathbb{R}^n . Let θ be the angle (in $[0,\pi]$) between \vec{u} and \vec{v} .

29 March 2017

4 / 10

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be *non-zero* vectors in \vec{v}

 \mathbb{R}^n . Let θ be the angle (in $[0,\pi]$) between \vec{u} and \vec{v} .

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be non-zero vectors in \vec{v}

 \mathbb{R}^n . Let $\bar{\theta}$ be the angle (in $[0, \pi]$) between \vec{u} and \vec{v} .

The dot product of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 be non-zero vectors in $\vec{v} \uparrow$

$$\mathbb{R}^n. \text{ Let } \theta \text{ be the angle (in } [0, \pi]) \text{ between } \vec{u} \text{ and }$$

The *dot product* of \vec{u} and \vec{v} is

 \vec{v} .

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$

Thus for non-zero
$$\vec{u}$$
 and \vec{v} , $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$.

Let's find the angle between the pictured vectors \vec{u} , \vec{v} .

Let's find the angle between the pictured vectors \vec{u} , \vec{v} . We have

Let's find the angle between the pictured vectors \vec{u} , \vec{v} . We have

$$\vec{u} \cdot \vec{v} = -2, \ \|\vec{u}\| = \sqrt{14}, \ \|\vec{v}\| = \sqrt{2}$$

Let's find the angle between the pictured vectors \vec{u}, \vec{v} . We have

$$\vec{u} \cdot \vec{v} = -2, \ \|\vec{u}\| = \sqrt{14}, \ \|\vec{v}\| = \sqrt{2}$$

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{-2}{\sqrt{14}\sqrt{2}} = \frac{-1}{\sqrt{7}}$$

Let's find the angle between the pictured vectors \vec{u}, \vec{v} . We have

$$\vec{u} \cdot \vec{v} = -2, \ \|\vec{u}\| = \sqrt{14}, \ \|\vec{v}\| = \sqrt{2}$$

SO

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{-2}{\sqrt{14}\sqrt{2}} = \frac{-1}{\sqrt{7}}$$

and thus $\theta \simeq 120^{\circ}$.

Section 6.1

Find the angle between the diagonals of a cube in \mathbb{R}^3 .

Section 6.1 ·, $\|\cdot\|$, \bot 29 March 2017 6 / 10

Find the angle between the diagonals of a cube in \mathbb{R}^3 .

Find the angle between the diagonals of a cube in \mathbb{R}^3 .

Let \vec{u} be the "main diagonal", so

Find the angle between the diagonals of a cube in \mathbb{R}^3 .

Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e}_1+\vec{e}_2+\vec{e}_3.$

Find the angle between the diagonals of a cube in \mathbb{R}^3 .

Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e_1}+\vec{e_2}+\vec{e_3}$. Let \vec{v} be the "floor diagonal", so

Find the angle between the diagonals of a cube in \mathbb{R}^3 .

Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e}_1+\vec{e}_2+\vec{e}_3$. Let \vec{v} be the "floor diagonal", so $\vec{v}=\vec{e}_1+\vec{e}_2$.

Find the angle between the diagonals of a cube in \mathbb{R}^3 .

Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e}_1+\vec{e}_2+\vec{e}_3$. Let \vec{v} be the "floor diagonal", so $\vec{v}=\vec{e}_1+\vec{e}_2$. Then

Find the angle between the diagonals of a cube in \mathbb{R}^3 .

Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e}_1+\vec{e}_2+\vec{e}_3$. Let \vec{v} be the "floor diagonal", so $\vec{v}=\vec{e}_1+\vec{e}_2$. Then

$$\vec{u} \cdot \vec{v} = 2, \ \|\vec{u}\| = \sqrt{3}, \ \|\vec{v}\| = \sqrt{2}$$

SO

Find the angle between the diagonals of a cube in \mathbb{R}^3 .

Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e_1}+\vec{e_2}+\vec{e_3}$. Let \vec{v} be the "floor diagonal", so $\vec{v}=\vec{e_1}+\vec{e_2}$. Then

$$\vec{u} \cdot \vec{v} = 2, \ \|\vec{u}\| = \sqrt{3}, \ \|\vec{v}\| = \sqrt{2}$$

SO

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{2}{\sqrt{3}\sqrt{2}} = \sqrt{2/3}$$

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 6 / 10

Find the angle between the diagonals of a cube in \mathbb{R}^3 .

Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e_1}+\vec{e_2}+\vec{e_3}$. Let \vec{v} be the "floor diagonal", so $\vec{v}=\vec{e_1}+\vec{e_2}$. Then

$$\vec{u} \cdot \vec{v} = 2, \ \|\vec{u}\| = \sqrt{3}, \ \|\vec{v}\| = \sqrt{2}$$

SO

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{2}{\sqrt{3}\sqrt{2}} = \sqrt{2/3}$$

and thus $\theta \simeq 35^{\circ}$.

Section 6.1

Recall that
$$|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$
.

Section 6.1 29 March 2017

Recall that
$$|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$
.

Definition (Orthogonality)

Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$.

Section 6.1 ·, $\|\cdot\|$, \perp 29 March 2017 7 / 10

Recall that
$$|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$
.

Definition (Orthogonality)

Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$.

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 7 / 10

Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$.

Definition (Orthogonality)

Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$.

Note that:

Section 6.1 ·, $\|\cdot\|$, \perp 29 March 2017 7 / 10

Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$.

Definition (Orthogonality)

Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$.

Note that:

ullet $\vec{0}$ is orthogonal to every other vector.

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 7 / 10

Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$.

Definition (Orthogonality)

Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$.

Note that:

- ullet $\vec{0}$ is orthogonal to every other vector.
- $\vec{0}$ is the *only* vector with this property.

Section 6.1 •, ||·||, \(\perp\) 29 March 2017 7 / 10

Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$.

Definition (Orthogonality)

Two vectors \vec{u} , \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$.

Note that:

- ullet $\vec{0}$ is orthogonal to every other vector.
- $\vec{0}$ is the *only* vector with this property.
- If $\vec{x} \perp \vec{v}$ for every vector \vec{v} , then $\vec{x} = \vec{0}$.

Section 6.1 ·, ||·||, ⊥ 29 March 2017 7 / 10

Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$.

Definition (Orthogonality)

Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$.

Note that:

- ullet $\vec{0}$ is orthogonal to every other vector.
- $\vec{0}$ is the *only* vector with this property.
- If $\vec{x} \perp \vec{v}$ for every vector \vec{v} , then $\vec{x} = \vec{0}$.

Some simple examples:

Section 6.1 ·, ||·||, ⊥ 29 March 2017 7 / 10

Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$.

Definition (Orthogonality)

Two vectors \vec{u} , \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$.

Note that:

- ullet $\vec{0}$ is orthogonal to every other vector.
- $\vec{0}$ is the *only* vector with this property.
- If $\vec{x} \perp \vec{v}$ for every vector \vec{v} , then $\vec{x} = \vec{0}$.

Some simple examples:

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \perp \begin{bmatrix} -1 \\ 1 \end{bmatrix},$$

Section 6.1 ·, ||·||, ⊥ 29 March 2017 7 / 10

Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$.

Definition (Orthogonality)

Two vectors \vec{u} , \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$.

Note that:

- \bullet $\vec{0}$ is orthogonal to every other vector.
- $\vec{0}$ is the *only* vector with this property.
- If $\vec{x} \perp \vec{v}$ for every vector \vec{v} , then $\vec{x} = \vec{0}$.

Some simple examples:

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \perp \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \perp \begin{bmatrix} -2 \\ 1 \end{bmatrix},$$

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 7 / 10

Recall that
$$|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$
.

Definition (Orthogonality)

Two vectors \vec{u} , \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$.

Note that:

- ullet $\vec{0}$ is orthogonal to every other vector.
- $\vec{0}$ is the *only* vector with this property.
- If $\vec{x} \perp \vec{v}$ for every vector \vec{v} , then $\vec{x} = \vec{0}$.

Some simple examples:

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \perp \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \perp \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix} \perp \begin{bmatrix} -b \\ a \end{bmatrix}.$$

◆ロト ◆団ト ◆ヨト ◆ヨト ヨ めへで

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 7 / 10

Look at

$$\|\vec{u} + \vec{v}\|^2 =$$

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 8 / 10

Look at

$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) =$$

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 8 / 10

Look at

$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \|\vec{u}\|^2 + 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$

Section 6.1 •, ||·||, \(\perp\) 29 March 2017 8 / 10

Look at

$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \|\vec{u}\|^2 + 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$
$$= \|\vec{u}\|^2 + \|\vec{v}\|^2 \quad \text{if and only if } \vec{u} \perp \vec{v}.$$

Section 6.1 • , ||·||, \(\precedef \) 29 March 2017 8 / 10

Look at

$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \|\vec{u}\|^2 + 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$
$$= \|\vec{u}\|^2 + \|\vec{v}\|^2 \quad \text{if and only if } \vec{u} \perp \vec{v}.$$

The final equality above is known as Pyhtagoras' Theorem.

Section 6.1 ·, ||·||, ⊥ 29 March 2017 8 / 10

The *orthogonal complement* of a *non-zero* vector \vec{a} in \mathbb{R}^n is

$$\{\vec{a}\}^{\perp} = \{\text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x}\}$$

Section 6.1 ·, $\|\cdot\|$, \perp 29 March 2017 9 / 10

The *orthogonal complement* of a *non-zero* vector \vec{a} in \mathbb{R}^n is

$$\{\vec{a}\}^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x} \} = \mathcal{NS}(\vec{a}^T).$$

Section 6.1 •, ||·||, \(\perp\) 29 March 2017 9 / 10

The *orthogonal complement* of a *non-zero* vector \vec{a} in \mathbb{R}^n is

$$\{\vec{a}\}^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x} \} = \mathcal{NS}(\vec{a}^T).$$

This is the *hyperplane* in \mathbb{R}^n thru $\vec{0}$ with normal vector \vec{a} .

Section 6.1 •, ||·||, \(\perp\) 29 March 2017 9 / 10

The *orthogonal complement* of a *non-zero* vector \vec{a} in \mathbb{R}^n is

$$\{\vec{a}\}^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x} \} = \mathcal{NS}(\vec{a}^T).$$

This is the *hyperplane* in \mathbb{R}^n thru $\vec{0}$ with normal vector \vec{a} .

Definition (Orthogonal Complement of a Set)

The *orthogonal complement* of a non-empty set W of vectors in \mathbb{R}^n is

$$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$

Section 6.1 ·, ||·||, ⊥ 29 March 2017 9 / 10

The *orthogonal complement* of a *non-zero* vector \vec{a} in \mathbb{R}^n is

$$\{\vec{a}\}^{\perp} = \left\{ \mathsf{all} \ \vec{x} \ \mathsf{in} \ \mathbb{R}^n \ \mathsf{with} \ \vec{a} \perp \vec{x}
ight\} = \mathcal{NS} \left(\vec{a}^T
ight).$$

This is the *hyperplane* in \mathbb{R}^n thru $\vec{0}$ with normal vector \vec{a} .

Definition (Orthogonal Complement of a Set)

The *orthogonal complement* of a non-empty set W of vectors in \mathbb{R}^n is

$$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$

It is not hard to check that W^{\perp} is always a vector subspace of \mathbb{R}^n .

Section 6.1

Let
$$W = \{\vec{v}, \vec{w}\}$$
 with $\vec{v} \not\parallel \vec{w}$.

10 / 10

Section 6.1 ·, ||·||, ⊥ 29 March 2017

Let
$$W = \{\vec{v}, \vec{w}\}$$
 with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} =$

Let
$$W = \{\vec{v}, \vec{w}\}$$
 with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A =$

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 10 / 10

Let
$$W = \{\vec{v}, \vec{w}\}$$
 with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$.

10 / 10

Let
$$W = \{\vec{v}, \vec{w}\}$$
 with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$.

Thus we see that:

10 / 10

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017

Let
$$W = \{\vec{v}, \vec{w}\}$$
 with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$.

Thus we see that:

• in \mathbb{R}^3 , W^{\perp} is a line,

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 10 / 10

Let
$$W = \{\vec{v}, \vec{w}\}$$
 with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$.

Thus we see that:

- in \mathbb{R}^3 , W^{\perp} is a line,
- in \mathbb{R}^4 , W^{\perp} is a 2-plane,

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 10 / 10

Let
$$W = \{\vec{v}, \vec{w}\}$$
 with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$.

Thus we see that:

- in \mathbb{R}^3 , W^{\perp} is a line,
- in \mathbb{R}^4 , W^{\perp} is a 2-plane,
- in \mathbb{R}^n , W^{\perp} is an (n-2)-plane,

10 / 10

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017

Let
$$W = \{\vec{v}, \vec{w}\}$$
 with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$.

Thus we see that:

- in \mathbb{R}^3 , W^{\perp} is a line,
- in \mathbb{R}^4 , W^{\perp} is a 2-plane,
- in \mathbb{R}^n , W^{\perp} is an (n-2)-plane,

In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then

10 / 10

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017

Let
$$W = \{\vec{v}, \vec{w}\}$$
 with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$.

Thus we see that:

- in \mathbb{R}^3 , W^{\perp} is a line,
- in \mathbb{R}^4 , W^{\perp} is a 2-plane,
- in \mathbb{R}^n , W^{\perp} is an (n-2)-plane,

In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 10 / 10

Let
$$W = \{\vec{v}, \vec{w}\}$$
 with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$.

Thus we see that:

- in \mathbb{R}^3 , W^{\perp} is a line,
- in \mathbb{R}^4 , W^{\perp} is a 2-plane,
- in \mathbb{R}^n , W^{\perp} is an (n-2)-plane,

In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$ and dim $\mathbb{W}^{\perp} = n - \dim \mathbb{W}$.

10 / 10

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017

Let
$$W = \{\vec{v}, \vec{w}\}$$
 with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A)$ where $A = [\vec{v} \ \vec{w}]$.

Thus we see that:

- in \mathbb{R}^3 , W^{\perp} is a line,
- in \mathbb{R}^4 , W^{\perp} is a 2-plane,
- in \mathbb{R}^n , W^{\perp} is an (n-2)-plane,

In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$ and dim $\mathbb{W}^{\perp} = n - \dim \mathbb{W}$. This means that every vector \vec{x} in \mathbb{R}^n can be written as a sum $\vec{x} = \vec{w} + \vec{z}$ where \vec{w} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

Section 6.1 \cdot , $\|\cdot\|$, \perp 29 March 2017 10 / 10