Inner Product, Length, and Orthogonality

Linear Algebra MATH 2076

Algebraic Definition for Dot Product

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 be vectors in \mathbb{R}^n . The *dot product* of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = \vec{u}^T \vec{v}.$$

Some Examples:

Notice that for the standard basis vectors in

Notice that for the standard basis verification
$$\vec{e}_i \cdot \vec{e}_j = \delta_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j. \end{cases}$$

- For \vec{x} in \mathbb{R}^n , $\vec{x} \cdot \vec{e_i} = x_i$.
- For \vec{x} in \mathbb{R}^n , $\vec{x} = \sum_{i=1}^n (\vec{x} \cdot \vec{e_i}) \vec{e_i}$.

The Length or Norm of a Vector

The *length* (or *norm* or *magnitude*) of
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 is

$$\|\vec{x}\| = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_n x_n} = \left(\sum_{i=1}^n x_i^2\right)^{1/2} = \left(\vec{x} \cdot \vec{x}\right)^{1/2}.$$

For example, if
$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, then $\|\vec{v}\| = \sqrt{14}$.

Note that
$$|\vec{x} \cdot \vec{x} = ||\vec{x}||^2$$
.

Linear Algebra

Geometric Definition for Dot Product

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be *non-zero* vectors in \mathbb{R}^n .

Let θ be the angle (in $[0,\pi]$) between \vec{u} and \vec{v} .

The dot product of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$

Thus for non-zero
$$\vec{u}$$
 and \vec{v} , $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$.

An Example

Let's find the angle between the pictured vectors \vec{u}, \vec{v} . We have

$$\vec{u} \cdot \vec{v} = -2, \ \|\vec{u}\| = \sqrt{14}, \ \|\vec{v}\| = \sqrt{2}$$

SO

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{-2}{\sqrt{14}\sqrt{2}} = \frac{-1}{\sqrt{7}}$$

and thus $\theta \simeq 120^{\circ}$.

Another Example

Find the angle between the diagonals of a cube in \mathbb{R}^3 .

Let \vec{u} be the "main diagonal", so $\vec{u}=\vec{e_1}+\vec{e_2}+\vec{e_3}$. Let \vec{v} be the "floor diagonal", so $\vec{v}=\vec{e_1}+\vec{e_2}$. Then

$$\vec{u} \cdot \vec{v} = 2, \ \|\vec{u}\| = \sqrt{3}, \ \|\vec{v}\| = \sqrt{2}$$

SO

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{2}{\sqrt{3}\sqrt{2}} = \sqrt{2/3}$$

and thus $\theta \simeq 35^{\circ}$.

Orthogonality

Recall that $|\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$.

Definition (Orthogonality)

Two vectors \vec{u}, \vec{v} in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$. When this holds, we write $\vec{u} \perp \vec{v}$.

Note that:

- $\vec{0}$ is orthogonal to every other vector.
- $\vec{0}$ is the *only* vector with this property.
- If $\vec{x} \perp \vec{v}$ for every vector \vec{v} , then $\vec{x} = \vec{0}$.

Some simple examples:

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \perp \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \perp \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix} \perp \begin{bmatrix} -b \\ a \end{bmatrix}.$$

A Useful Formula

Look at

$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \|\vec{u}\|^2 + 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$
$$= \|\vec{u}\|^2 + \|\vec{v}\|^2 \quad \text{if and only if } \vec{u} \perp \vec{v}.$$

The final statement above is known as Pythagoras' Theorem.

Orthogonal Complement of $W = \{\vec{a}\}\$

The *orthogonal complement* of a *non-zero* vector \vec{a} in \mathbb{R}^n is

$$\{\vec{a}\}^{\perp} = \{\text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x}\} = \mathcal{NS}(\vec{a}^T).$$

It is not hard to check that $\{\vec{a}\}^{\perp}$ is always a vector subspace of \mathbb{R}^n .

Orthogonal Complement of $W = \{\vec{a}\}$

Let
$$W = \{\vec{a}\}$$
 with $\vec{a} \neq \vec{0}$. Then $W^{\perp} = \{\text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x}\} = \mathcal{NS}(A^T) \text{ where } A = \vec{a}$.

Thus we see that:

- in \mathbb{R}^2 , W^{\perp} is a line,
- in \mathbb{R}^3 , W^{\perp} is a 2-plane,
- in \mathbb{R}^4 , W^{\perp} is a 3-plane,
- in \mathbb{R}^n , W^{\perp} is an (n-1)-plane, that is, a *hyperplane*.

Orthogonal Complement

The *orthogonal complement* of a *non-zero* vector \vec{a} in \mathbb{R}^n is

$$\{\vec{a}\}^{\perp} = \{\text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{a} \perp \vec{x}\} = \mathcal{NS}(\vec{a}^T).$$

This is the *hyperplane* in \mathbb{R}^n thru $\vec{0}$ with normal vector \vec{a} .

Definition (Orthogonal Complement of a Set)

The $orthogonal\ complement$ of a non-empty set W of vectors in \mathbb{R}^n is

$$W^{\perp} = \{ \text{all } \vec{x} \text{ in } \mathbb{R}^n \text{ with } \vec{w} \perp \vec{x} \text{ for all } \vec{w} \text{ in } W \}.$$

It is not hard to check that W^{\perp} is always a vector subspace of \mathbb{R}^n . Please convince yourself that this is true.

Linear Algebra

Orthogonal Complement of $W = \{\vec{v}, \vec{w}\}$

Let
$$W = \{\vec{v}, \vec{w}\}$$
 with $\vec{v} \not\parallel \vec{w}$. Then $W^{\perp} = \mathcal{NS}(A^T)$ where $A = [\vec{v} \ \vec{w}]$.

Here we see that:

- in \mathbb{R}^3 , W^{\perp} is a line,
- in \mathbb{R}^4 , W^{\perp} is a 2-plane,
- in \mathbb{R}^n , W^{\perp} is an (n-2)-plane,

In general, if \mathbb{W} is a vector subspace of \mathbb{R}^n , then $\mathbb{R}^n = \mathbb{W} \oplus \mathbb{W}^{\perp}$ and dim $\mathbb{W}^{\perp} = n - \dim \mathbb{W}$. This means that every vector \vec{x} in \mathbb{R}^n can be written as a sum

$$\vec{x} = \vec{w} + \vec{z}$$
 where \vec{w} is in \mathbb{W} and \vec{z} is in \mathbb{W}^{\perp} .

Here \vec{w} is the 'part' of \vec{x} that is parallel to \mathbb{W} and \vec{z} is the 'part' of \vec{x} that is orthogonal to \mathbb{W} . How do we find \vec{w} and \vec{z} ?

Orthogonal Complement, Column Space, and Null Space

Above we saw that if $\mathbb{W} = \mathcal{S}pan\{\vec{v}, \vec{w}\}$, then $\mathbb{W}^{\perp} = \mathcal{NS}(A^T)$ where $A = [\vec{v} \ \vec{w}]$. Here $\mathbb{W} = \mathcal{CS}(A)$.

In general, $\mathcal{CS}(A)^{\perp} = \mathcal{NS}(A^T)$.

Also,
$$\mathcal{CS}(A^T)^{\perp} = \mathcal{NS}(A)$$
. But, $(\mathbb{W}^{\perp})^{\perp} = \mathbb{W}$, so $\mathcal{NS}(A)^{\perp} = \mathcal{CS}(A^T)$.

These are the *Four Fundamental Subspaces* assoc'd to an $m \times n$ matrix A:

- its null space, $\mathcal{NS}(A)$, a subspace of \mathbb{R}^n ;
- $\mathcal{NS}(A)^{\perp} = \mathcal{CS}(A^T)$, a subspace of \mathbb{R}^n ;
- its column space, CS(A), a subspace of \mathbb{R}^m ;
- $\mathcal{CS}(A)^{\perp} = \mathcal{NS}(A^T)$, a subspace of \mathbb{R}^m .