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Diagonalizable Matrices

An n × n matrix A is diagonalizable if and only if there is an eigenbasis
assoc’d with A. This holds if, say, A has n distinct (real) eigenvalues,
because then the assoc’d eigenvalues are LI and hence form a basis.

In general, there is an eigenbasis assoc’d with A if and only if the
dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the
characteristic polynomial pA of A. Therefore, we can factor pA as

p(t) = (t − λ)mq(t) for some m.

We call m the algebraic multiplicity of the eigenvalue λ.

We always have
1 ≤ dim E(λ) ≤ m. We call dim E(λ) the geometric multiplicity of λ.

There is an eigenbasis assoc’d with A if and only if for every eigenvalue λ
the geometric multiplicity of λ equals the algebraic multiplicity of λ.
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The Matrix of a Linear Transformation

Recall that every LT Rn T−→ Rm is a matrix transformation; i.e.,

there is an
m × n matrix A so that T (~x) = A~x . In fact, Colj(A) = T (~ej).

Suppose V T−→W is a LT. Can we view T as a matrix transformation?
Yes, if we use coordinate vectors. Let B,A be bases for V,W resp.

Consider the coordinate maps V [·]B−−→ Rn and W [·]A−−→ Rm. Given ~v in V,
we get

[
~v
]
B in Rn, and given ~w in W, we get

[
~w
]
A in Rm.

Take ~w = T (~v), and let ~x =
[
~v
]
B, ~y =

[
~w
]
A. Thanks to linearity props of

coord vectors, the map ~x 7→ ~y (from Rn to Rm) is a linear transformation.
Therefore, this is given by multiplication by some matrix A:

[
T (~v)

]
A =

[
~w
]
A =

~y = A~x

= A
[
~v
]
B.

so,
[
T (~v)

]
A = A

[
~v
]
B.

We call A the matrix for T relative to B and A
and we write

[
T
]
AB= A, so

[
T (~v)

]
A =

[
T
]
AB
[
~v
]
B .
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Picture for the matrix for T relative to B and A

We have a linear transformation V T−→W and bases B,A for V,W resp.

Consider the B and A coord maps V→ Rn

and W→ Rm. Given ~v in V, ~w in W, let
~x =

[
~v
]
B and ~y =

[
~w
]
A.

Consider the LT Rn → Rm given by ~x 7→ ~y .
This is a matrix transformation, and

[
T (~v)

]
A =

[
~w
]
A =

~y = A~x

= A
[
~v
]
B

where A =
[
T
]
AB.

V W
T

Rn Rm

[·]B [·]A

~v ~w

~x ~y
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Connection with Diagonalization

Let A be a diagonalizable n × n matrix.

Define Rn T−→ Rn by T (~x) = A~x .

Since A is diagonalizable, there is an eigenbasis assoc’d with A; that is,
there is a basis B = {~v1, ~v2, . . . , ~vn} for Rn such that each vector ~vi is an
eigenvector for A. Assume A~vi = λi~vi . Then

A = PDP−1 where P =
[
~v1 ~v2 . . . ~vn

]
and D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
... 0

0 0 . . . λn

 .

Recall that P = PEB; so, P−1 = PBE which means that
[
~y
]
B = P−1~y .

Thus[
T (~x)

]
B

=

[
A~x
]
B

= P−1
(
A~x
)

= P−1
(
PDP−1~x

)
= D

(
P−1~x

)
= D

[
~x
]
B.

This says that D =
[
T
]
B =

[
T
]
BB.
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A 3× 3 Example

The matrix A =

 4 −1 0
−1 5 −1
0 −1 4

 has simple eigenvalues 3, 4, 6 with

associated eigenvectors

~v1 =

1
1
1

, ~v2 =

−1
0
1

, ~v3 =

 1
−2
1

.

Since B = {~v1, ~v2, ~v3} is a basis for R3, A is diagonalizable with

A = PDP−1 where P =

1 −1 1
1 0 −2
1 1 1

 and D =

3 0 0
0 4 0
0 0 6

 .

Here D is the B-matrix for the LT ~x 7→ A~x .
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