Linear Transformations and Eigenvalues

Linear Algebra
MATH 2076
Diagonalizable Matrices

An \(n \times n \) matrix \(A \) is diagonalizable if and only if there is an eigenbasis associated with \(A \). This holds if, say, \(A \) has \(n \) distinct (real) eigenvalues, because then the associated eigenvalues are LI and hence form a basis.

In general, there is an eigenbasis associated with \(A \) if and only if the dimensions of the eigenspaces for \(A \) add up to \(n \).

Suppose \(\lambda \) is an eigenvalue for \(A \). This means that \(\lambda \) is a zero for the characteristic polynomial \(p_A \) of \(A \). Therefore, we can factor \(p_A(t) = (t - \lambda)^m q(t) \) for some \(m \).

We call \(m \) the algebraic multiplicity of the eigenvalue \(\lambda \).

We always have \(1 \leq \dim E(\lambda) \leq m \).

We call \(\dim E(\lambda) \) the geometric multiplicity of \(\lambda \).

There is an eigenbasis associated with \(A \) if and only if for every eigenvalue \(\lambda \) the geometric multiplicity of \(\lambda \) equals the algebraic multiplicity of \(\lambda \).
Diagonalizable Matrices

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc’d with A.

This holds if, say, A has n distinct (real) eigenvalues, because then the assoc’d eigenvalues are LI and hence form a basis.

In general, there is an eigenbasis assoc’d with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial p_A of A. Therefore, we can factor $p_A(t) = (t-\lambda)^m q(t)$ for some m.

We call m the *algebraic multiplicity* of the eigenvalue λ.

We always have $1 \leq \dim E(\lambda) \leq m$.

We call $\dim E(\lambda)$ the *geometric multiplicity* of λ.

There is an eigenbasis assoc’d with A if and only if for every eigenvalue λ the geometric multiplicity of λ equals the algebraic multiplicity of λ.

Section 5.4
LTs & EVs
27 March 2017 2 / 1
Diagonalizable Matrices

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc’d with A. This holds if, say, A has n distinct (real) eigenvalues, because
Diagonalizable Matrices

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc’d with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc’d eigenvalues are LI and hence form a basis.
Diagonalizable Matrices

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc’d with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc’d eigenvalues are LI and hence form a basis.

In general, there is an *eigenbasis* assoc’d with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial p_A of A. Therefore, we can factor $p_A(t)$ as $p_A(t) = (t - \lambda)^m q(t)$ for some m. We call m the *algebraic multiplicity* of the eigenvalue λ. We always have $1 \leq \dim E(\lambda) \leq m$. We call $\dim E(\lambda)$ the *geometric multiplicity* of λ. There is an *eigenbasis* assoc’d with A if and only if for every eigenvalue λ the geometric multiplicity of λ equals the algebraic multiplicity of λ.

Section 5.4
LTs & EVs 27 March 2017
Diagonalizable Matrices

An $n \times n$ matrix A is diagonalizable if and only if there is an eigenbasis assoc’d with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc’d eigenvalues are LI and hence form a basis.

In general, there is an eigenbasis assoc’d with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that
Diagonalizable Matrices

An \(n \times n \) matrix \(A \) is *diagonalizable* if and only if there is an *eigenbasis* assoc’d with \(A \). This holds if, say, \(A \) has \(n \) distinct (real) eigenvalues, because then the assoc’d eigenvalues are LI and hence form a basis.

In general, there is an *eigenbasis* assoc’d with \(A \) if and only if the dimensions of the eigenspaces for \(A \) add up to \(n \).

Suppose \(\lambda \) is an eigenvalue for \(A \). This means that \(\lambda \) is a zero for the characteristic polynomial \(p_A \) of \(A \).
Diagonalizable Matrices

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc’d with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc’d eigenvalues are LI and hence form a basis.

In general, there is an *eigenbasis* assoc’d with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial p_A of A. Therefore, we can factor p_A as
Diagonalizable Matrices

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc’d with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc’d eigenvalues are LI and hence form a basis.

In general, there is an *eigenbasis* assoc’d with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial p_A of A. Therefore, we can factor p_A as

$$ p(t) = (t - \lambda)^m q(t) \quad \text{for some } m. $$
An $n \times n$ matrix A is diagonalizable if and only if there is an eigenbasis assoc’d with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc’d eigenvalues are LI and hence form a basis.

In general, there is an eigenbasis assoc’d with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial p_A of A. Therefore, we can factor p_A as

$$p(t) = (t - \lambda)^m q(t) \text{ for some } m.$$

We call m the algebraic multiplicity of the eigenvalue λ.

Diagonalizable Matrices

An $n \times n$ matrix A is **diagonalizable** if and only if there is an **eigenbasis** assoc’d with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc’d eigenvalues are LI and hence form a basis.

In general, there is an **eigenbasis** assoc’d with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial p_A of A. Therefore, we can factor p_A as

$$p(t) = (t - \lambda)^m q(t)$$

for some m.

We call m the **algebraic multiplicity** of the eigenvalue λ. We always have $1 \leq \text{dim } E(\lambda) \leq m$.
Diagonalizable Matrices

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc’d with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc’d eigenvalues are LI and hence form a basis.

In general, there is an *eigenbasis* assoc’d with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial p_A of A. Therefore, we can factor p_A as

$$p(t) = (t - \lambda)^m q(t)$$

for some m.

We call m the *algebraic multiplicity* of the eigenvalue λ. We always have $1 \leq \dim E(\lambda) \leq m$. We call $\dim E(\lambda)$ the *geometric multiplicity* of λ.

Diagonalizable Matrices

An \(n \times n \) matrix \(A \) is diagonalizable if and only if there is an eigenbasis assoc’d with \(A \). This holds if, say, \(A \) has \(n \) distinct (real) eigenvalues, because then the assoc’d eigenvalues are LI and hence form a basis.

In general, there is an eigenbasis assoc’d with \(A \) if and only if the dimensions of the eigenspaces for \(A \) add up to \(n \).

Suppose \(\lambda \) is an eigenvalue for \(A \). This means that \(\lambda \) is a zero for the characteristic polynomial \(p_A \) of \(A \). Therefore, we can factor \(p_A \) as

\[
p(t) = (t - \lambda)^m q(t) \quad \text{for some } m.
\]

We call \(m \) the algebraic multiplicity of the eigenvalue \(\lambda \). We always have \(1 \leq \dim E(\lambda) \leq m \). We call \(\dim E(\lambda) \) the geometric multiplicity of \(\lambda \).

There is an eigenbasis assoc’d with \(A \) if and only if for every eigenvalue \(\lambda \)
Diagonalizable Matrices

An \(n \times n \) matrix \(A \) is \textit{diagonalizable} if and only if there is an \textit{eigenbasis} assoc’d with \(A \). This holds if, say, \(A \) has \(n \) distinct (real) eigenvalues, because then the assoc’d eigenvalues are LI and hence form a basis.

In general, there is an \textit{eigenbasis} assoc’d with \(A \) if and only if the dimensions of the eigenspaces for \(A \) add up to \(n \).

Suppose \(\lambda \) is an eigenvalue for \(A \). This means that \(\lambda \) is a zero for the characteristic polynomial \(p_A \) of \(A \). Therefore, we can factor \(p_A \) as

\[
p(t) = (t - \lambda)^m q(t) \quad \text{for some } m.
\]

We call \(m \) the \textit{algebraic multiplicity} of the eigenvalue \(\lambda \). We always have \(1 \leq \text{dim } \mathbb{E}(\lambda) \leq m \). We call \(\text{dim } \mathbb{E}(\lambda) \) the \textit{geometric multiplicity} of \(\lambda \).

There is an \textit{eigenbasis} assoc’d with \(A \) if and only if for every eigenvalue \(\lambda \) the geometric multiplicity of \(\lambda \) equals the algebraic multiplicity of \(\lambda \).
Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e.,
Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$.

Suppose $V \xrightarrow{T} W$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let B, A be bases for V, W resp.

Consider the coordinate maps $V[\cdot]_B \rightarrow \mathbb{R}^n$ and $W[\cdot]_A \rightarrow \mathbb{R}^m$. Given \vec{v} in V, we get $[\vec{v}]_B$ in \mathbb{R}^n, and given \vec{w} in W, we get $[\vec{w}]_A$ in \mathbb{R}^m.

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_B$, $\vec{y} = [\vec{w}]_A$.

Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$[T(\vec{v})]_A = [\vec{w}]_A = \vec{y} = A[\vec{v}]_B.$$

We call A the matrix for T relative to B and A, and we write $[T]_{AB} = A$, so $[T(\vec{v})]_A = [T]_{AB}[\vec{v}]_B$.

Section 5.4
LTs & EVs
27 March 2017
Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e}_j)$.

Suppose $V \xrightarrow{T} W$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let B, A be bases for V, W resp. Consider the coordinate maps $V[\cdot]_B \rightarrow \mathbb{R}^n$ and $W[\cdot]_A \rightarrow \mathbb{R}^m$. Given \vec{v} in V, we get $[\vec{v}]_B$ in \mathbb{R}^n, and given \vec{w} in W, we get $[\vec{w}]_A$ in \mathbb{R}^m. Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_B$, $\vec{y} = [\vec{w}]_A$.

Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$T(\vec{v}) A = [\vec{w}]_A = \vec{y} = A[\vec{v}]_B. $$

We call A the matrix for T relative to B and A, and we write $[T]_{AB} = A$, so $[T(\vec{v})]_A = [T]_{AB}[\vec{v}]_B$.

Section 5.4

LTs & EVs
The Matrix of a Linear Transformation

Recall that every LT \(\mathbb{R}^n \rightarrow \mathbb{R}^m \) is a matrix transformation; i.e., there is an \(m \times n \) matrix \(A \) so that \(T(\vec{x}) = A\vec{x} \). In fact, \(\text{Col}_j(A) = T(\vec{e}_j) \).

Suppose \(\mathbb{V} \rightarrow \mathbb{W} \) is a LT. Can we view \(T \) as a matrix transformation?
Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, Col$_j(A) = T(\vec{e}_j)$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors.
The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e}_j)$.

Suppose $\mathcal{V} \to \mathcal{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathcal{V}, \mathcal{W} resp.
The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^n \overset{T}{\to} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(e_j)$.

Suppose $\mathbb{V} \overset{T}{\to} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \overset{[\cdot]_{\mathcal{B}}}{\to} \mathbb{R}^n$ and $\mathbb{W} \overset{[\cdot]_{\mathcal{A}}}{\to} \mathbb{R}^m$.

So,

$[T(\vec{v})]_{\mathcal{A}} = A[\vec{v}]_{\mathcal{B}}$.

We call A the matrix for T relative to \mathcal{B} and \mathcal{A} and we write $[T]_{\mathcal{B}\mathcal{A}} = A$, so $[T(\vec{v})]_{\mathcal{A}} = [T]_{\mathcal{B}\mathcal{A}}[\vec{v}]_{\mathcal{B}}$.

Section 5.4

LTs & EVs

27 March 2017
The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e}_j)$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_\mathcal{B}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_\mathcal{A}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_\mathcal{B}$ in \mathbb{R}^n, and
The Matrix of a Linear Transformation

Recall that every LT \(\mathbb{R}^n \to \mathbb{R}^m \) is a matrix transformation; i.e., there is an \(m \times n \) matrix \(A \) so that \(T(\vec{x}) = A\vec{x} \). In fact, \(\text{Col}_j(A) = T(\vec{e}_j) \).

Suppose \(V \to W \) is a LT. Can we view \(T \) as a matrix transformation? Yes, if we use coordinate vectors. Let \(B, A \) be bases for \(V, W \) resp.

Consider the coordinate maps \(V \xrightarrow{[\cdot]_B} \mathbb{R}^n \) and \(W \xrightarrow{[\cdot]_A} \mathbb{R}^m \). Given \(\vec{v} \) in \(V \), we get \([\vec{v}]_B \) in \(\mathbb{R}^n \), and given \(\vec{w} \) in \(W \), we get \([\vec{w}]_A \) in \(\mathbb{R}^m \).
The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e}_j)$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[]} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[]} \mathbb{R}^m$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m.

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_{\mathcal{B}}$, $\vec{y} = [\vec{w}]_{\mathcal{A}}$.
The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e}_j)$.

Suppose $V \xrightarrow{T} W$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let B, A be bases for V, W resp.

Consider the coordinate maps $V \xrightarrow{[\cdot]_B} \mathbb{R}^n$ and $W \xrightarrow{[\cdot]_A} \mathbb{R}^m$. Given \vec{v} in V, we get $[\vec{v}]_B$ in \mathbb{R}^n, and given \vec{w} in W, we get $[\vec{w}]_A$ in \mathbb{R}^m.

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_B$, $\vec{y} = [\vec{w}]_A$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation.
The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e}_j)$.

Suppose $V \to W$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for V, W resp.

Consider the coordinate maps $V \xrightarrow{\mathcal{B}} \mathbb{R}^n$ and $W \xrightarrow{\mathcal{A}} \mathbb{R}^m$. Given \vec{v} in V, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n, and given \vec{w} in W, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m.

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_{\mathcal{B}}, \vec{y} = [\vec{w}]_{\mathcal{A}}$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$T(\vec{v}) = A[\vec{v}]_{\mathcal{B}} = [\vec{w}]_{\mathcal{A}} = A[\vec{v}]_{\mathcal{B}}.$$
The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e}_j)$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m.

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_{\mathcal{B}}, \vec{y} = [\vec{w}]_{\mathcal{A}}$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$\vec{y} = A\vec{x}$$
The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e}_j)$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m.

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_{\mathcal{B}}, \vec{y} = [\vec{w}]_{\mathcal{A}}$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$[\vec{w}]_{\mathcal{A}} = \vec{y} = A\vec{x}$$
The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e}_j)$.

Suppose $V \xrightarrow{T} W$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let B, A be bases for V, W resp.

Consider the coordinate maps $V \xrightarrow{[]}_B \mathbb{R}^n$ and $W \xrightarrow{[]}_A \mathbb{R}^m$. Given \vec{v} in V, we get $[\vec{v}]_B$ in \mathbb{R}^n, and given \vec{w} in W, we get $[\vec{w}]_A$ in \mathbb{R}^m.

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_B$, $\vec{y} = [\vec{w}]_A$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

\[
[T(\vec{v})]_A = [\vec{w}]_A = \vec{y} = A\vec{x}
\]
The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e}_j)$.

Suppose $V \xrightarrow{T} W$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let B, A be bases for V, W resp.

Consider the coordinate maps $V \xrightarrow{[]}_B \mathbb{R}^n$ and $W \xrightarrow{[]}_A \mathbb{R}^m$. Given \vec{v} in V, we get $[\vec{v}]_B$ in \mathbb{R}^n, and given \vec{w} in W, we get $[\vec{w}]_A$ in \mathbb{R}^m.

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_B$, $\vec{y} = [\vec{w}]_A$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$[T(\vec{v})]_A = [\vec{w}]_A = \vec{y} = A\vec{x} = A[\vec{v}]_B.$$
The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(e_j)$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let B, A be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_B} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_A} \mathbb{R}^m$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_B$ in \mathbb{R}^n, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_A$ in \mathbb{R}^m.

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_B$, $\vec{y} = [\vec{w}]_A$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$[T(\vec{v})]_A = [\vec{w}]_A = \vec{y} = A\vec{x} = A[\vec{v}]_B.$$

so, $[T(\vec{v})]_A = A[\vec{v}]_B$.

Section 5.4
LTs & EVs
27 March 2017 3 / 1
The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e}_j)$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let B, A be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_B} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_A} \mathbb{R}^m$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_B$ in \mathbb{R}^n, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_A$ in \mathbb{R}^m.

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_B$, $\vec{y} = [\vec{w}]_A$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$[T(\vec{v})]_A = [\vec{w}]_A = \vec{y} = A\vec{x} = A[\vec{v}]_B.$$

so, $[T(\vec{v})]_A = A[\vec{v}]_B$. We call A the matrix for T relative to B and A and
The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^n \overset{T}{\rightarrow} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e}_j)$.

Suppose $\mathbb{V} \overset{T}{\rightarrow} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \overset{[\cdot]_\mathcal{B}}{\rightarrow} \mathbb{R}^n$ and $\mathbb{W} \overset{[\cdot]_\mathcal{A}}{\rightarrow} \mathbb{R}^m$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_\mathcal{B}$ in \mathbb{R}^n, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_\mathcal{A}$ in \mathbb{R}^m.

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_\mathcal{B}$, $\vec{y} = [\vec{w}]_\mathcal{A}$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$[T(\vec{v})]_\mathcal{A} = [\vec{w}]_\mathcal{A} = \vec{y} = A\vec{x} = A[\vec{v}]_\mathcal{B}.$$

so, $[T(\vec{v})]_\mathcal{A} = A[\vec{v}]_\mathcal{B}$. We call A the matrix for T relative to \mathcal{B} and \mathcal{A} and we write $[T]_{\mathcal{A}\mathcal{B}} = A$, so
The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e}_j)$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let B, A be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[]}_B \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[]}_A \mathbb{R}^m$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_B$ in \mathbb{R}^n, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_A$ in \mathbb{R}^m.

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_B$, $\vec{y} = [\vec{w}]_A$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$[T(\vec{v})]_A = [\vec{w}]_A = \vec{y} = A\vec{x} = A[\vec{v}]_B.$$

so, $[T(\vec{v})]_A = A[\vec{v}]_B$. We call A the **matrix for T relative to B and A** and we write $[T]_{AB} = A$, so $[T(\vec{v})]_A = [T]_{AB} [\vec{v}]_B$.

We have a linear transformation $\mathcal{V} \xrightarrow{T} \mathcal{W}$ and bases \mathcal{B}, \mathcal{A} for \mathcal{V}, \mathcal{W} resp.
We have a linear transformation $V \xrightarrow{T} W$ and bases B, A for V, W resp.

Consider the B and A coord maps $V \to \mathbb{R}^n$ and $W \to \mathbb{R}^m$.

\[
\begin{array}{c}
V & \xrightarrow{T} & W \\
\downarrow{[\cdot]_B} & & \downarrow{[\cdot]_A} \\
\mathbb{R}^n & & \mathbb{R}^m
\end{array}
\]
We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let

$$T: \mathbb{V} \to \mathbb{W}$$

$$(\cdot)_{\mathcal{B}}: \mathbb{V} \to \mathbb{R}^n$$

$$(\cdot)_{\mathcal{A}}: \mathbb{W} \to \mathbb{R}^m$$

$$T(\vec{v}) = A [\cdot]_{\mathcal{A}} [\cdot]_{\mathcal{B}}$$
We have a linear transformation \(V \xrightarrow{T} W \) and bases \(B, A \) for \(V, W \) resp.

Consider the \(B \) and \(A \) coord maps \(V \rightarrow \mathbb{R}^n \) and \(W \rightarrow \mathbb{R}^m \). Given \(\vec{v} \) in \(V \), \(\vec{w} \) in \(W \), let
\[
\vec{x} = [\vec{v}]_B \quad \text{and} \quad \vec{y} = [\vec{w}]_A.
\]
We have a linear transformation $\mathbb{V} \rightarrow \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^n$ and $\mathbb{W} \rightarrow \mathbb{R}^m$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let $\vec{x} = [\vec{v}]_\mathcal{B}$ and $\vec{y} = [\vec{w}]_\mathcal{A}$.

Consider the LT $\mathbb{R}^n \rightarrow \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$.

$$\begin{align*}
\begin{array}{ccc}
\mathbb{V} & \overset{T}{\rightarrow} & \mathbb{W} \\
\mathbb{R}^n & \overset{[\cdot]_\mathcal{B}}{\downarrow} & \mathbb{R}^m \\
\vec{x} & \mapsto & \vec{y} \\
\end{array}
\end{align*}$$
We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^n$ and $\mathbb{W} \rightarrow \mathbb{R}^m$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let

$\vec{x} = [\vec{v}]_\mathcal{B}$ and $\vec{y} = [\vec{w}]_\mathcal{A}$.

Consider the LT $\mathbb{R}^n \rightarrow \mathbb{R}^m$ given by $\vec{x} \leftrightarrow \vec{y}$.

This is a matrix transformation, and
We have a linear transformation $V \to W$ and bases B, A for V, W resp.

Consider the B and A coord maps $V \to \mathbb{R}^n$ and $W \to \mathbb{R}^m$. Given \vec{v} in V, \vec{w} in W, let

$$\vec{x} = [\vec{v}]_B \quad \text{and} \quad \vec{y} = [\vec{w}]_A.$$

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and

$$\vec{y} = A\vec{x}.$$
We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^n$ and $\mathbb{W} \rightarrow \mathbb{R}^m$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let

$$\vec{x} = [\vec{v}]_\mathcal{B} \text{ and } \vec{y} = [\vec{w}]_\mathcal{A}.$$

Consider the LT $\mathbb{R}^n \rightarrow \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$.

This is a matrix transformation, and

$$[\vec{w}]_\mathcal{A} = \vec{y} = A\vec{x}.$$
We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^n$ and $\mathbb{W} \rightarrow \mathbb{R}^m$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let

$$\vec{x} = [\vec{v}]_{\mathcal{B}} \text{ and } \vec{y} = [\vec{w}]_{\mathcal{A}}.$$

Consider the LT $\mathbb{R}^n \rightarrow \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and

$$[T(\vec{v})]_{\mathcal{A}} = [\vec{w}]_{\mathcal{A}} = \vec{y} = A\vec{x}.$$
We have a linear transformation $V \xrightarrow{T} W$ and bases B, A for V, W resp.

Consider the B and A coord maps $V \rightarrow \mathbb{R}^n$ and $W \rightarrow \mathbb{R}^m$. Given \vec{v} in V, \vec{w} in W, let $\vec{x} = [\vec{v}]_B$ and $\vec{y} = [\vec{w}]_A$.

Consider the LT $\mathbb{R}^n \rightarrow \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and $\left[T(\vec{v})\right]_A = [\vec{w}]_A = \vec{y} = A\vec{x} = A[\vec{v}]_B$.

Section 5.4

LTs & EVs

27 March 2017
We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^n$ and $\mathbb{W} \rightarrow \mathbb{R}^m$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let

$$\vec{x} = [\vec{v}]_\mathcal{B} \quad \text{and} \quad \vec{y} = [\vec{w}]_\mathcal{A}.$$

Consider the LT $\mathbb{R}^n \rightarrow \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and

$$[T(\vec{v})]_\mathcal{A} = [\vec{w}]_\mathcal{A} = \vec{y} = A\vec{x} = A[\vec{v}]_\mathcal{B}$$

where $A = [T]_{\mathcal{AB}}$.

\[\begin{array}{c}
\vec{v} \\
\mathbb{V} \\
\xrightarrow{T}
\end{array} \quad \begin{array}{c}
\vec{w} \\
\mathbb{W}
\end{array} \]

\[\begin{array}{c}
\vec{x} \\
\mathbb{R}^n \\
\xrightarrow{T}
\end{array} \quad \begin{array}{c}
\vec{y} \\
\mathbb{R}^m
\end{array} \]
Let A be a diagonalizable $n \times n$ matrix.
Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.
Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \overset{T}{\rightarrow} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an eigenbasis assoc’d with A; that is,
Connection with Diagonalization

Let A be a *diagonalizable* $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc’d with A; that is, there is a basis $B = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A.

Recall that $P = P \in B$; so, $P^{-1} = P^{-1}B$ which means that $[\vec{y}]_B = P^{-1}\vec{y}$.

Thus $[T(\vec{x})]_B = P^{-1}(A\vec{x}) = P^{-1}(PDP^{-1}\vec{x}) = D(P^{-1}\vec{x}) = D[\vec{x}]_B$. This says that $D = [T]_B = [T]_{BB}$.
Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an eigenbasis assoc’d with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then
Let A be a *diagonalizable* $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc’d with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \ldots & \lambda_n \end{bmatrix}.$$
Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an eigenbasis assoc’d with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \ldots & \lambda_n \end{bmatrix}.$$

Recall that $P = P_{\mathcal{E}\mathcal{B}}$; so,
Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an eigenbasis assoc’d with A; that is, there is a basis $B = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_n \end{bmatrix}.$$

Recall that $P = P_{\mathcal{E}B}$; so, $P^{-1} = P_{B\mathcal{E}}$ which means that
Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an eigenbasis assoc’d with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \ldots & \lambda_n \end{bmatrix}.$$

Recall that $P = P_{\mathcal{E}\mathcal{B}}$; so, $P^{-1} = P_{\mathcal{B}\mathcal{E}}$ which means that $[\vec{y}]_\mathcal{B} = P^{-1}\vec{y}$.
Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $B = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \ldots & \lambda_n \end{bmatrix}.$$

Recall that $P = P_{\mathcal{E}B}$; so, $P^{-1} = P_{B\mathcal{E}}$ which means that $[\vec{y}]_B = P^{-1}\vec{y}$. Thus

$$\left[T(\vec{x}) \right]_B = \ldots$$
Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an eigenbasis assoc’d with A; that is, there is a basis $B = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \ldots & \lambda_n \end{bmatrix}.$$

Recall that $P = P_{\mathcal{E}\mathcal{B}}$; so, $P^{-1} = P_{\mathcal{B}\mathcal{E}}$ which means that $[\vec{y}]_B = P^{-1}\vec{y}$. Thus

$$\left[T(\vec{x})\right]_B = \left[A\vec{x}\right]_B = \left[\lambda_i \vec{v}_i\right]_B.$$
Connection with Diagonalization

Let A be a *diagonalizable* $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc’d with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_n \end{bmatrix}.$$

Recall that $P = P_{\mathcal{E}\mathcal{B}}$; so, $P^{-1} = P_{\mathcal{B}\mathcal{E}}$ which means that $[\vec{y}]_{\mathcal{B}} = P^{-1}\vec{y}$. Thus

$$\left[T(\vec{x}) \right]_{\mathcal{B}} = \left[A\vec{x} \right]_{\mathcal{B}} = P^{-1}(A\vec{x}) =$$
Connection with Diagonalization

Let A be a *diagonalizable* $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc’d with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1}$$

where

$$P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_n \end{bmatrix}$$

and

$$D = \begin{bmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_n \end{bmatrix}.$$

Recall that $P = P_{\mathcal{E}\mathcal{B}}$; so, $P^{-1} = P_{\mathcal{B}\mathcal{E}}$ which means that $[\vec{y}]_{\mathcal{B}} = P^{-1}\vec{y}$.

Thus

$$\left[T(\vec{x}) \right]_{\mathcal{B}} = \left[A\vec{x} \right]_{\mathcal{B}} = P^{-1}(A\vec{x}) = P^{-1}(PDP^{-1}\vec{x}) = \left[D \right]_{\mathcal{B}} \left[\vec{x} \right]_{\mathcal{B}}.$$
Let A be a \textit{diagonalizable} $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an \textit{eigenbasis} assoc’d with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \ldots & \lambda_n \end{bmatrix}.$$

Recall that $P = P_{\mathcal{E}\mathcal{B}}$; so, $P^{-1} = P_{\mathcal{B}\mathcal{E}}$ which means that $[\vec{y}]_{\mathcal{B}} = P^{-1}\vec{y}$. Thus

$$\left[T(\vec{x}) \right]_{\mathcal{B}} = \left[A\vec{x} \right]_{\mathcal{B}} = P^{-1}(A\vec{x}) = P^{-1}(PDP^{-1}\vec{x}) = D(P^{-1}\vec{x}) = \ldots$$
Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an eigenbasis assoc’d with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_n \end{bmatrix}.$$

Recall that $P = P_{\mathcal{E}\mathcal{B}}$; so, $P^{-1} = P_{\mathcal{B}\mathcal{E}}$ which means that $[\vec{y}]_{\mathcal{B}} = P^{-1}\vec{y}$.

Thus

$$\begin{bmatrix} T(\vec{x}) \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = P^{-1}(A\vec{x}) = P^{-1}(PDP^{-1}\vec{x}) = D(P^{-1}\vec{x}) = D[\vec{x}]_{\mathcal{B}}.$$
Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an eigenbasis assoc’d with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \ldots & \lambda_n \end{bmatrix}.$$

Recall that $P = P_{\mathcal{B}\mathcal{E}}$; so, $P^{-1} = P_{\mathcal{B}\mathcal{E}}$ which means that $[\vec{y}]_{\mathcal{B}} = P^{-1}\vec{y}$. Thus

$$[T(\vec{x})]_{\mathcal{B}} = [A\vec{x}]_{\mathcal{B}} = P^{-1}(A\vec{x}) = P^{-1}(PDP^{-1}\vec{x}) = D(P^{-1}\vec{x}) = D[\vec{x}]_{\mathcal{B}}.$$

This says that $D = [T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$.

Section 5.4

LTs & EVs

27 March 2017 5 / 1
A 3 × 3 Example

The matrix $A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}$ has *simple* eigenvalues 3, 4, 6 with associated eigenvectors

Since $B = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis for \mathbb{R}^3, A is diagonalizable with $A = PDP^{-1}$ where $P = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & -2 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}$.

Here D is the B-matrix for the LT $\vec{x} \mapsto A\vec{x}$.

Section 5.4 LTs & EVs 27 March 2017 6 / 1
The matrix $A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}$ has *simple* eigenvalues 3, 4, 6 with associated eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$. Since $B = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis for \mathbb{R}^3, A is diagonalizable with $A = PDP^{-1}$ where $P = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}$. Here D is the B-matrix for the LT $\vec{x} \mapsto A\vec{x}$.
A 3×3 Example

The matrix $A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}$ has simple eigenvalues $3, 4, 6$ with associated eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

Since $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis for \mathbb{R}^3, A is diagonalizable with $A = PDP^{-1}$ where $P = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}$.
A 3 × 3 Example

The matrix \(A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix} \) has *simple* eigenvalues 3, 4, 6 with associated eigenvectors \(\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \), \(\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \), \(\vec{v}_3 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \).

Since \(B = \{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \} \) is a basis for \(\mathbb{R}^3 \), \(A \) is diagonalizable with

\[
A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}.
\]

Here \(D \) is the \(B \)-matrix for the LT \(\vec{x} \mapsto A\vec{x} \).