Linear Transformations and Eigenvalues

Linear Algebra MATH 2076

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc'd with A.

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc'd with A. This holds if, say, A has n distinct (real) eigenvalues, because

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc'd with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc'd eigenvalues are LI and hence form a basis.

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc'd with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc'd eigenvalues are LI and hence form a basis.

In general, there is an *eigenbasis* assoc'd with A if and only if the dimensions of the eigenspaces for A add up to n.

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc'd with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc'd eigenvalues are LI and hence form a basis.

In general, there is an *eigenbasis* assoc'd with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that

2 / 1

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc'd with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc'd eigenvalues are LI and hence form a basis.

In general, there is an *eigenbasis* assoc'd with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial \mathbf{p}_A of A.

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc'd with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc'd eigenvalues are LI and hence form a basis.

In general, there is an eigenbasis assoc'd with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial \mathbf{p}_A of A. Therefore, we can factor \mathbf{p}_A as

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc'd with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc'd eigenvalues are LI and hence form a basis.

In general, there is an *eigenbasis* assoc'd with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial \mathbf{p}_A of A. Therefore, we can factor \mathbf{p}_A as

$$\boldsymbol{p}(t) = (t - \lambda)^m \boldsymbol{q}(t)$$
 for some m .

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc'd with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc'd eigenvalues are LI and hence form a basis.

In general, there is an eigenbasis assoc'd with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial \mathbf{p}_A of A. Therefore, we can factor \mathbf{p}_A as

$$\mathbf{p}(t) = (t - \lambda)^m \mathbf{q}(t)$$
 for some m .

We call m the *algebraic multiplicity* of the eigenvalue λ .

2 / 1

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc'd with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc'd eigenvalues are LI and hence form a basis.

In general, there is an *eigenbasis* assoc'd with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial \mathbf{p}_A of A. Therefore, we can factor \mathbf{p}_A as

$$\boldsymbol{p}(t) = (t - \lambda)^m \boldsymbol{q}(t)$$
 for some m .

We call m the algebraic multiplicity of the eigenvalue λ . We always have $1 \leq \dim \mathbb{E}(\lambda) \leq m$.

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc'd with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc'd eigenvalues are LI and hence form a basis.

In general, there is an *eigenbasis* assoc'd with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial \mathbf{p}_A of A. Therefore, we can factor \mathbf{p}_A as

$$\boldsymbol{p}(t) = (t - \lambda)^m \boldsymbol{q}(t)$$
 for some m .

We call m the algebraic multiplicity of the eigenvalue λ . We always have $1 \leq \dim \mathbb{E}(\lambda) \leq m$. We call dim $\mathbb{E}(\lambda)$ the geometric multiplicity of λ .

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc'd with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc'd eigenvalues are LI and hence form a basis.

In general, there is an *eigenbasis* assoc'd with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial \mathbf{p}_A of A. Therefore, we can factor \mathbf{p}_A as

$$\boldsymbol{p}(t) = (t - \lambda)^m \boldsymbol{q}(t)$$
 for some m .

We call m the algebraic multiplicity of the eigenvalue λ . We always have $1 \leq \dim \mathbb{E}(\lambda) \leq m$. We call dim $\mathbb{E}(\lambda)$ the geometric multiplicity of λ .

There is an $\emph{eigenbasis}$ assoc'd with \emph{A} if and only if for \emph{every} eigenvalue $\emph{\lambda}$

An $n \times n$ matrix A is *diagonalizable* if and only if there is an *eigenbasis* assoc'd with A. This holds if, say, A has n distinct (real) eigenvalues, because then the assoc'd eigenvalues are LI and hence form a basis.

In general, there is an eigenbasis assoc'd with A if and only if the dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the characteristic polynomial \mathbf{p}_A of A. Therefore, we can factor \mathbf{p}_A as

$$\boldsymbol{p}(t) = (t - \lambda)^m \boldsymbol{q}(t)$$
 for some m .

We call m the algebraic multiplicity of the eigenvalue λ . We always have $1 \leq \dim \mathbb{E}(\lambda) \leq m$. We call $\dim \mathbb{E}(\lambda)$ the geometric multiplicity of λ .

There is an *eigenbasis* assoc'd with A if and only if for *every* eigenvalue λ the geometric multiplicity of λ equals the algebraic multiplicity of λ .

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e.,

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$.

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_i(A) = T(\vec{e_i})$.

Section 5.4 LTs & EVs

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation?

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors.

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$.

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_{\mathcal{B}}$, $\vec{y} = [\vec{w}]_{\mathcal{A}}$.

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_{\mathcal{B}}$, $\vec{y} = [\vec{w}]_{\mathcal{A}}$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation.

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_{\mathcal{B}}$, $\vec{y} = [\vec{w}]_{\mathcal{A}}$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_{\mathcal{B}}$, $\vec{y} = [\vec{w}]_{\mathcal{A}}$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$\vec{y} = A\vec{x}$$

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_{\mathcal{B}}$, $\vec{y} = [\vec{w}]_{\mathcal{A}}$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$\left[\vec{w}\right]_{\Delta} = \vec{y} = A\vec{x}$$

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_{\mathcal{B}}$, $\vec{y} = [\vec{w}]_{\mathcal{A}}$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$[T(\vec{v})]_A = [\vec{w}]_A = \vec{y} = A\vec{x}$$

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_{\mathcal{B}}$, $\vec{y} = [\vec{w}]_{\mathcal{A}}$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$[T(\vec{v})]_{A} = [\vec{w}]_{A} = \vec{y} = A\vec{x} = A[\vec{v}]_{B}.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_{\mathcal{B}}$, $\vec{y} = [\vec{w}]_{\mathcal{A}}$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$[T(\vec{v})]_{\mathcal{A}} = [\vec{w}]_{\mathcal{A}} = \vec{y} = A\vec{x} = A[\vec{v}]_{\mathcal{B}}.$$

so, $[T(\vec{v})]_{\mathcal{A}} = A[\vec{v}]_{\mathcal{B}}$.

- **イロト 4回ト 4**直ト 4直ト - 直 - 夕Qで

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_{\mathcal{B}}$, $\vec{y} = [\vec{w}]_{\mathcal{A}}$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$[T(\vec{v})]_{\mathcal{A}} = [\vec{w}]_{\mathcal{A}} = \vec{y} = A\vec{x} = A[\vec{v}]_{\mathcal{B}}.$$

so, $[T(\vec{v})]_A = A[\vec{v}]_B$. We call A the matrix for T relative to B and A and

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = [\vec{v}]_{\mathcal{B}}$, $\vec{y} = [\vec{w}]_{\mathcal{A}}$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$[T(\vec{v})]_{A} = [\vec{w}]_{A} = \vec{y} = A\vec{x} = A[\vec{v}]_{B}.$$

so, $[T(\vec{v})]_{\mathcal{A}} = A[\vec{v}]_{\mathcal{B}}$. We call A the matrix for T relative to \mathcal{B} and \mathcal{A} and we write $[T]_{\mathcal{AB}} = A$, so

Recall that every LT $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $Col_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Take $\vec{w} = T(\vec{v})$, and let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$, $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$. Thanks to linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. Therefore, this is given by multiplication by some matrix A:

$$[T(\vec{v})]_{\mathcal{A}} = [\vec{w}]_{\mathcal{A}} = \vec{y} = A\vec{x} = A[\vec{v}]_{\mathcal{B}}.$$

so, $[T(\vec{v})]_{\mathcal{A}} = A[\vec{v}]_{\mathcal{B}}$. We call A the matrix for T relative to \mathcal{B} and \mathcal{A} and we write $[T]_{\mathcal{AB}} = A$, so $[T(\vec{v})]_{\mathcal{A}} = [T]_{\mathcal{AB}}[\vec{v}]_{\mathcal{B}}$.

Picture for the matrix for T relative to \mathcal{B} and \mathcal{A}

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

$$\mathbb{V} \xrightarrow{T} \mathbb{W}$$

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$.

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$.

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and

$$\vec{y} = A\vec{x}$$

We have a linear transformation $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and

$$\left[\vec{w}\right]_{\mathcal{A}} = \vec{y} = A\vec{x}$$

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and

$$[T(\vec{v})]_{\mathcal{A}} = [\vec{w}]_{\mathcal{A}} = \vec{y} = A\vec{x}$$

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and

$$[T(\vec{v})]_{A} = [\vec{w}]_{A} = \vec{y} = A\vec{x} = A[\vec{v}]_{B}$$

We have a linear transformation $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and $\begin{bmatrix} T(\vec{v}) \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}} = \vec{y} = A\vec{x} = A \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where $A = \begin{bmatrix} T \end{bmatrix}_{A\mathcal{B}}$.

Let A be a diagonalizable $n \times n$ matrix.

Section 5.4 LTs & EVs

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is,

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A.

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1}$$
 where $P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix}$ and $D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$.

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1}$$
 where $P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix}$ and $D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$.

Recall that $P = P_{\mathcal{EB}}$; so,

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1}$$
 where $P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix}$ and $D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$.

Recall that $P = P_{\mathcal{EB}}$; so, $P^{-1} = P_{\mathcal{BE}}$ which means that

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1}$$
 where $P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix}$ and $D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$.

Recall that $P = P_{\mathcal{EB}}$; so, $P^{-1} = P_{\mathcal{BE}}$ which means that $[\vec{y}]_{\mathcal{B}} = P^{-1}\vec{y}$.

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1}$$
 where $P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix}$ and $D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$.

Recall that $P=P_{\mathcal{EB}}$; so, $P^{-1}=P_{\mathcal{BE}}$ which means that $\left[\vec{y}\right]_{\mathcal{B}}=P^{-1}\vec{y}$. Thus

$$\left[T(\vec{x})\right]_{\mathcal{B}} =$$

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v_i} = \lambda_i \vec{v_i}$. Then

$$A = PDP^{-1}$$
 where $P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix}$ and $D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$.

Recall that $P = P_{\mathcal{EB}}$; so, $P^{-1} = P_{\mathcal{BE}}$ which means that $[\vec{y}]_{\mathcal{B}} = P^{-1}\vec{y}$. Thus

$$\left[T(\vec{x})\right]_{\mathcal{B}} = \left[A\vec{x}\right]_{\mathcal{B}} =$$

Section 5.4 LTs & EVs

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1}$$
 where $P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix}$ and $D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$.

Recall that $P=P_{\mathcal{EB}}$; so, $P^{-1}=P_{\mathcal{BE}}$ which means that $\left[\vec{y}\right]_{\mathcal{B}}=P^{-1}\vec{y}$. Thus

$$\left[T(\vec{x})\right]_{\mathcal{B}} = \left[A\vec{x}\right]_{\mathcal{B}} = P^{-1}(A\vec{x}) =$$

5 / 1

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1}$$
 where $P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix}$ and $D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$.

Recall that $P=P_{\mathcal{EB}}$; so, $P^{-1}=P_{\mathcal{BE}}$ which means that $\left[\vec{y}\right]_{\mathcal{B}}=P^{-1}\vec{y}$. Thus

$$\left[T(\vec{x})\right]_{\mathcal{B}} = \left[A\vec{x}\right]_{\mathcal{B}} = P^{-1}(A\vec{x}) = P^{-1}(PDP^{-1}\vec{x}) =$$

- ◆ロト ◆御ト ◆恵ト ◆恵ト · 恵 · 釣۹@

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1}$$
 where $P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix}$ and $D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$.

Recall that $P=P_{\mathcal{EB}}$; so, $P^{-1}=P_{\mathcal{BE}}$ which means that $\left[\vec{y}\right]_{\mathcal{B}}=P^{-1}\vec{y}$. Thus

$$\left[T(\vec{x})\right]_{\mathcal{B}} = \left[A\vec{x}\right]_{\mathcal{B}} = P^{-1}\left(A\vec{x}\right) = P^{-1}\left(PDP^{-1}\vec{x}\right) = D\left(P^{-1}\vec{x}\right) =$$

- (ロ) (個) (基) (基) (E) の(C)

5 / 1

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1}$$
 where $P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix}$ and $D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$.

Recall that $P=P_{\mathcal{EB}}$; so, $P^{-1}=P_{\mathcal{BE}}$ which means that $\left[\vec{y}\right]_{\mathcal{B}}=P^{-1}\vec{y}$. Thus

$$\left[T(\vec{x})\right]_{\mathcal{B}} = \left[A\vec{x}\right]_{\mathcal{B}} = P^{-1}(A\vec{x}) = P^{-1}(PDP^{-1}\vec{x}) = D(P^{-1}\vec{x}) = D[\vec{x}]_{\mathcal{B}}.$$

- (ロ) (個) (E) (E) (9(0)

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1}$$
 where $P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix}$ and $D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$.

Recall that $P=P_{\mathcal{EB}}$; so, $P^{-1}=P_{\mathcal{BE}}$ which means that $\left[\vec{y}\right]_{\mathcal{B}}=P^{-1}\vec{y}$. Thus

$$\left[T(\vec{x})\right]_{\mathcal{B}} = \left[A\vec{x}\right]_{\mathcal{B}} = P^{-1}(A\vec{x}) = P^{-1}(PDP^{-1}\vec{x}) = D(P^{-1}\vec{x}) = D[\vec{x}]_{\mathcal{B}}.$$

This says that $D = [T]_{\mathcal{B}} = [T]_{\mathcal{BB}}$.

5 / 1

The matrix
$$A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$
 has *simple* eigenvalues 3, 4, 6 with

associated eigenvectors

The matrix
$$A=\begin{bmatrix}4&-1&0\\-1&5&-1\\0&-1&4\end{bmatrix}$$
 has $simple$ eigenvalues 3, 4, 6 with
$$\begin{bmatrix}1\end{bmatrix}\qquad\begin{bmatrix}-1\end{bmatrix}\qquad\begin{bmatrix}1\end{bmatrix}$$

associated eigenvectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

The matrix
$$A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$
 has $simple$ eigenvalues 3, 4, 6 with

associated eigenvectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

Since $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis for \mathbb{R}^3 , A is diagonalizable with

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}.$$

◆ロト ◆団 ト ◆ 豊 ト ◆ 豊 ・ 釣 ९ ○

The matrix
$$A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$
 has *simple* eigenvalues 3, 4, 6 with

associated eigenvectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

Since $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis for \mathbb{R}^3 , A is diagonalizable with

$$A = PDP^{-1}$$
 where $P = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}$.

Here D is the \mathcal{B} -matrix for the LT $\vec{x} \mapsto A\vec{x}$.

