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Similar Matrices and Diagonalizable Matrices

Two n× n matrices A and B are similar if and only if there is an invertible
matrix P such that A = PBP−1 (and then we also have
B = P−1AP = QAQ−1 where Q = P−1).

An n × n matrix A is diagonalizable if and only if it is similar to a diagonal
matrix; that is, there are a diagonal matrix D and an invertible matrix P
such that A = PDP−1.

An n × n matrix A is diagonalizable if and only if there is an eigenbasis
assoc’d with A; that is, there is a basis {~v1, ~v2, . . . , ~vn} for Rn such that
each vector ~vi is an eigenvector for A. When this holds, say with
A~vi = λi~vi , we have

A = PDP−1 where P =
[
~v1 ~v2 . . . ~vn

]
and D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
... 0

0 0 . . . λn

 .
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A 2× 2 Example

The matrix A =

[
1 2
4 3

]
has simple eigenvalues λ1 = 5 and λ2 = −1 with

assoc’d eigenvectors ~v1 =

[
1
2

]
and ~v2 =

[
1
−1

]
.

Therefore,

A = PDP−1 where P =

[
1 1
2 −1

]
and D =

[
5 0
0 −1

]
.

But what does this mean??
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A 3× 3 Example

The matrix A =

 4 −1 0
−1 5 −1
0 −1 4

 has simple eigenvalues 3, 4, 6 with

associated eigenvectors

~v1 =

11
1

, ~v2 =
−10

1

, ~v3 =
 1
−2
1

.
Therefore,

A = PDP−1 where P =

1 −1 1
1 0 −2
1 1 1

 and D =

3 0 0
0 4 0
0 0 6

 .

But what does this mean??
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3× 3 Matrices with Simple and Double Eigenvalues

A2 =

1 4 4
0 3 2
0 2 3

 has one simple eigenvalue 5 and one double eigenvalue 2

with associated eigenvectors ~v1 =

21
1

, ~v2 =
10
0

, ~v3 =
 0

1
−1

.
{~v1, ~v2, ~v3} is an eigenbasis assoc’d with A2, so A2 is diagonalizable.

A3 =

5 −6 0
1 −2 0
4 6 −1

 has one simple eigenvalue 4 and one double

eigenvalue −1 with associated eigenvectors ~v1 =

61
6

, ~v2 =
00
1

.
There is no eigenbasis assoc’d with A3, so A3 is not diagonalizable.
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Recall that A =

[
1 2
4 3

]
has simple eigenvalues λ1 = 5 and λ2 = −1 with

assoc’d eigenvectors

~v1 =

[
1
2

]
and ~v2 =

[
1
−1

]
. Since A’s two eigenvectors

are LI, they form an eigenbasis B = {~v1, ~v2}.

Suppose ~x = c1~v1 + c2~v2; so
[
~x
]
B =

[
c1
c2

]
.

Look at
A~x =

A
(
c1~v1 + c2~v2

)
=

c1A~v1 + c2A~v2 =

5c1~v1 − c2~v2

which says that

[
A~x
]
B
=

[
5c1
−c2

]
=

[
5 0
0 −1

] [
c1
c2

]
=

[
5 0
0 −1

] [
~x
]
B.

Thus using B-coordinates, the action of A is just multiplication by the
diagonal matrix

D =

[
5 0
0 −1

]
=

[
λ1 0
0 λ2

]
.

But, how do we get A~x?
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So,
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=
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λ1 0
0 λ2

]
, P =
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~v1 ~v2

]
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2 −1
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Thus A and D are similar matrices. How to “see” the LT ~x 7→ A~x?
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Diagonalizable Matrices

An n × n matrix A is diagonalizable if and only if there is an eigenbasis
assoc’d with A. This holds if, say, A has n distinct (real) eigenvalues,
because then the assoc’d eigenvalues are LI and hence form a basis.

In general, there is an eigenbasis assoc’d with A if and only if the
dimensions of the eigenspaces for A add up to n.

Suppose λ is an eigenvalue for A. This means that λ is a zero for the
characteristic polynomial pA of A. Therefore, we can factor pA as

p(t) = (t − λ)mq(t) for some m.

We call m the algebraic multiplicity of the eigenvalue λ.

We always have 1 ≤ dim E(λ) ≤ m.

We call dim E(λ) the geometric multiplicity of the eigenvalue λ.

There is an eigenbasis assoc’d with A if and only if for every eigenvalue λ
the geometric multiplicity of λ equals the algebraic multiplicity of λ.
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p(t) = (t − λ)mq(t) for some m.

We call m the algebraic multiplicity of the eigenvalue λ.

We always have 1 ≤ dim E(λ) ≤ m.

We call dim E(λ) the geometric multiplicity of the eigenvalue λ.

There is an eigenbasis assoc’d with A if and only if for every eigenvalue λ
the geometric multiplicity of λ equals the algebraic multiplicity of λ.
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