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Two n x n matrices A and B are similar if and only if there is an invertible
matrix P such that A= PBP~! (and then we also have
B =P 1AP = QAQ ! where Q = P71).

An n x n matrix A is diagonalizable if and only if it is similar to a diagonal
matrix; that is, there are a diagonal matrix D and an invertible matrix P
such that A= PDP~L.

An n x n matrix A is diagonalizable if and only if there is an eigenbasis
assoc'd with A; that is, there is a basis {Vq, Vb, ..., V} for R” such that
each vector V; is an eigenvector for A. When this holds, say with

AV: = \;V;, we have

A O 0

B 1 L. ~ B 0 X 0
A = PDP where P=|wv1 W ...v,| and D= | . ; .
0 O A
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Diagonalizable Matrices

An n x n matrix A is diagonalizable if and only if there is an eigenbasis
assoc'd with A. This holds if, say, A has n distinct (real) eigenvalues,
because then the assoc'd eigenvalues are LI and hence form a basis.

In general, there is an eigenbasis assoc'd with A if and only if the
dimensions of the eigenspaces for A add up to n.

Suppose A is an eigenvalue for A. This means that A is a zero for the
characteristic polynomial p, of A. Therefore, we can factor p, as

p(t)=(t—X)"q(t) for some m.
We call m the algebraic multiplicity of the eigenvalue .
We always have 1 < dim E(\) < m.

We call dim E()) the geometric multiplicity of the eigenvalue A.

There is an eigenbasis assoc'd with A if and only if for every eigenvalue A
the geometric multiplicity of A equals the algebraic multiplicity of A.
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