Using an Eigenbasis to see $\vec{x} \mapsto A\vec{x}$

> Linear Algebra MATH 2076

Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next,
 $\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = (3 - 4\lambda + \lambda^2) - 8 = (\lambda - 5)(\lambda + 1)$.

So, we have simple eigenvalues $\lambda = 5$ and $\lambda = -1$.

$$\mathbb{E}(5) = \mathcal{NS}(A - 5I) = \mathcal{NS} \begin{bmatrix} -4 & 2\\ 4 & -2 \end{bmatrix} \text{ and } \begin{bmatrix} -4 & 2\\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1\\ 0 & 0 \end{bmatrix}, \text{ so}$$

$$\vec{v}_1 = \begin{bmatrix} 1\\ 2 \end{bmatrix} \text{ is an eigenvector for } \lambda = 5 \text{ and } \mathbb{E}(5) = \mathcal{S}pan\{\vec{v}_1\}.$$

$$\mathbb{E}(-1) = \mathcal{NS}(A+I) = \mathcal{NS} \begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \text{ so } \vec{v_2} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

is an eigenvector for $\lambda = -1$ and $\mathbb{E}(-1) = \mathcal{S}pan\{\vec{v_2}\}.$

The eigenspaces $\mathbb{E}(5), \mathbb{E}(-1)$ for A are the lines in \mathbb{R}^2 given by

$$y = 2x$$
for $\mathbb{E}(5)$ $y = -x$ for $\mathbb{E}(-1)$.

Notice that A's two eigenvectors $\vec{v_1}, \vec{v_2}$ are LI, so form an *eigenbasis*.

Recall that $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ has simple eigenvalues $\lambda_1 = 5$ and $\lambda_2 = -1$ with assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Since A's two eigenvectors are LI, they form an eigenbasis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$. Suppose $\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$. Look at

$$A\vec{x} = A(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1A\vec{v}_1 + c_2A\vec{v}_2 = 5c_1\vec{v}_1 - c_2\vec{v}_2$$

which says that

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 5c_1 \\ -c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}.$$

Thus using \mathcal{B} -coordinates, the action of A is just multiplication by the diagonal matrix

$$D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

But, how do we get $A\vec{x}$?

From the previous slide: WTF $A\vec{x}$ and we know

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and \mathcal{B} is an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$, $\vec{v_2} = \begin{bmatrix} -1\\ 1 \end{bmatrix}$

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$ec{w} = Pig[ec{w}ig]_{\mathcal{B}}$$
 and $ig[ec{w}ig]_{\mathcal{B}} = P^{-1}ec{w}$

where the \mathcal{B} to \mathcal{E} change of coordinates matrix P is given by

$$P = P_{\mathcal{EB}} = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}.$$

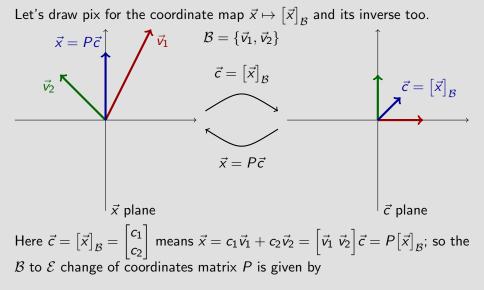
Thus

$$\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = P^{-1}\vec{x}$$
 and $A\vec{x} = P\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = PD\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = PDP^{-1}\vec{x}.$

So,

$$A = PDP^{-1} \text{ where } P = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix}, D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

So what?



$$P = P_{\mathcal{EB}} = egin{bmatrix} ec{v}_1 & ec{v}_2 \end{bmatrix} = egin{bmatrix} 1 & -1 \ 2 & 1 \end{bmatrix}.$$

How can we use all this to "see" the LT $\vec{x} \mapsto A\vec{x}$?

