Characteristic Equation and Similar Matrices

Linear Algebra
MATH 2076

UNIVERSITY OF -K{

Cincinnati

Char Eqn & Similarity IR G



EigenVectors, EigenValues, EigenSpaces

Char Eqn & Similarity PR T IE



EigenVectors, EigenValues, EigenSpaces

Let A be an n x n matrix. We call vV an eigenvector for A provided

Char Eqn & Similarity IRy ki



EigenVectors, EigenValues, EigenSpaces

Let A be an n x n matrix. We call vV an eigenvector for A provided
o V#0, and

Char Eqn & Similarity IRy ki



EigenVectors, EigenValues, EigenSpaces

Let A be an n x n matrix. We call vV an eigenvector for A provided
o V#0, and

@ there is some scalar A with AV = \V.

Char Eqn & Similarity IRy ki



EigenVectors, EigenValues, EigenSpaces

Let A be an n x n matrix. We call vV an eigenvector for A provided
o V#0, and

@ there is some scalar A with AV = \V.

When this holds, A is an eigenvalue for A associated to the eigenvector v

Char Eqn & Similarity IRy ki



EigenVectors, EigenValues, EigenSpaces

Definition

Let A be an n x n matrix. We call vV an eigenvector for A provided
o V#0, and
@ there is some scalar A with AV = Av.

When this holds, A is an eigenvalue for A associated to the eigenvector v
and E(\) = NS(A — M) is the A-eigenspace for A.
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EigenVectors, EigenValues, EigenSpaces

Let A be an n x n matrix. We call vV an eigenvector for A provided
o V#0, and

@ there is some scalar A with AV = \V.

When this holds, A is an eigenvalue for A associated to the eigenvector v
and E(A) = NS(A — \l) is the \-eigenspace for A.

Note that E(\) = NS(A — Al) is a vector subspace of R",
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EigenVectors, EigenValues, EigenSpaces

Let A be an n x n matrix. We call V an eigenvector for A provided
o V+#0, and

@ there is some scalar A with AV = \V.

When this holds, A is an eigenvalue for A associated to the eigenvector v
and E(A) = NS(A — \l) is the \-eigenspace for A.

Note that E(\) = NS(A — Al) is a vector subspace of R",

Remember, X is an eigenvalue for A iff det(A — A\l) = 0, and this is the
only time E()\) # {0}.

And whenever E(\) # {0}, X is an eigenvalue for A and each non-zero v
in E(\) is an eigenvector for A with assoc’d eigenvalue \.
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@ Find all of the eigenvalues for A.
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Eigen Problems

Given a square matrix A, we want to know how to:

@ Find all of the eigenvalues for A.

@ For each eigenvalue for A, find all of the assoc'd eigenvectors.

© Understand the action of A on each of its eigenspaces.

For item (1), we just solve ‘ det(A—A)=0 ‘; each solution is an
eigenvalue for A.
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Given a square matrix A, we want to know how to:

@ Find all of the eigenvalues for A.
@ For each eigenvalue for A, find all of the assoc'd eigenvectors.

© Understand the action of A on each of its eigenspaces.

For item (1), we just solve ‘ det(A—A)=0 ‘; each solution is an
eigenvalue for A. This is the characteristic equation of A.
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Eigen Problems

Given a square matrix A, we want to know how to:
@ Find all of the eigenvalues for A.

@ For each eigenvalue for A, find all of the assoc'd eigenvectors.

© Understand the action of A on each of its eigenspaces.

For item (1), we just solve ‘ det(A—A)=0 ‘; each solution is an
eigenvalue for A. This is the characteristic equation of A.

For item (2), we just find a basis for E(A) = NS(A — \/).

For item (3), just note that on E()), A acts like the dilation AX = AX
(since each non-zero vector in E(\) is an eigenvector for A).
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1 2 : 11—
LetA—[4 3}F|rst,A—)\/—[ 4 3_)\].Next,

det(A—A)=(1-XN)B-XA)—-8=B3-41+X2)—-8=(A-5)(\+1).

So, we have simple eigenvalues A =5 and A = —1.
—4 2 —4 2 2 -1
E(S):NS(A—SI):NS[4 _2} and [4 _2} N[O 0}50

Vi = B] is an eigenvector for A =5 and E(5) = Span{v }.

E(-1) =NS(A+1) = NS [i ﬂ and [i ﬂNB é]'so 72:[‘11}

is an eigenvector for A = —1 and E(—1) = Span{v:}.

The eigenspaces E(5),[E(—1) for A are the lines in R? given by
y =2x for E(5)
y=—x for E(—1).

Notice that A's two eigenvectors vi, v are LI, so form an eigenbasis.
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Definition

The characteristic polynomial for Ais |pa(A) = det(A — Al) |
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The characteristic equation for A is |det(A — Al) = 0| (or just p4(A) = 0).

For a 2 x 2 matric A = [a b}
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a— A\ b
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Characteristic Polynomials and Equations

Definition

The characteristic polynomial for Ais |pa(A) = det(A — Al) |

The characteristic equation for A is |det(A — Al) = 0| (or just p4(A) = 0).

For a 2 x 2 matric A = [a b}
c d

a—A b
pa(N) =det(A—A) = det[ c d— 2
This is a quadratic polynomial, so we can always solve p4(A) = 0, but
sometimes the solutions may not be real numbers!

} = (ad — bc) — (a+ d)X + X2

For a 3 x 3 matric A, p4(A\) = det(A — Al) is always a cubic polynomial of
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Characteristic Polynomials and Equations

Definition

The characteristic polynomial for Ais |pa(A) = det(A — Al) |

The characteristic equation for A is |det(A — Al) = 0| (or just p4(A) = 0).

d
pa(\) = det(A— \l) = det [a B A

For a 2 x 2 matric A = [i b}

b
d—\
This is a quadratic polynomial, so we can always solve p4(A) = 0, but
sometimes the solutions may not be real numbers!

} = (ad — bc) — (a+ d)X + X2

For a 3 x 3 matric A, p4(A\) = det(A — Al) is always a cubic polynomial of
the form pA(\) = co + 1A + A% — A3, Here the characteristic equation
pA(A) = 0 always has at least one real solution,
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Characteristic Polynomials and Equations

Definition

The characteristic polynomial for Ais |pa(A) = det(A — Al) |

The characteristic equation for A is |det(A — Al) = 0| (or just p4(A) = 0).

d
pa(\) = det(A— \l) = det [a B A

For a 2 x 2 matric A = [i b}

b
d—\
This is a quadratic polynomial, so we can always solve p4(A) = 0, but
sometimes the solutions may not be real numbers!

} = (ad — bc) — (a+ d)X + X2

For a 3 x 3 matric A, p4(A\) = det(A — Al) is always a cubic polynomial of
the form pA(\) = co + 1A + A% — A3, Here the characteristic equation
pA(X) = 0 always has at least one real solution, sometimes two, and
sometimes three.
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Characteristic Polynomials and Equations

Definition

The characteristic polynomial for Ais |pa(A) = det(A — Al) |

The characteristic equation for A is |det(A — Al) = 0| (or just p4(A) = 0).

d
pa(\) = det(A— \l) = det [a B A

For a 2 x 2 matric A = [i b}

b
d—\
This is a quadratic polynomial, so we can always solve p4(A) = 0, but
sometimes the solutions may not be real numbers!

} = (ad — bc) — (a+ d)X + X2

For a 3 x 3 matric A, p4(A\) = det(A — Al) is always a cubic polynomial of
the form pA(\) = co + 1A + A% — A3, Here the characteristic equation
pA(X) = 0 always has at least one real solution, sometimes two, and
sometimes three. So, what does this mean about eigenstuff?
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A 3 x 3 Matrix with Three Simple Eigenvalues

4 -1 0
A1 = |—-1 5 —1| has simple eigenvalues 3, 4,6 with associated
0 -1 4]
1] -1 1
eigenvectors v, = |1], v = | 0 |, /3= |—2].
1] 1 1
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A 3 x 3 Matrix with Three Simple Eigenvalues

4
-1
0

A1

eigenvectors

-1 0
5 -1
1 4
e
7= 1
1_

has simple eigenvalues 3,4, 6 with associated

-1
O ’
1

1
—2|.
1

\72 — =

V3

Here {Vi, Vb, V3} is an eigenbasis assoc'd with Aj;
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A 3 x 3 Matrix with Three Simple Eigenvalues

4
-1
0

A1

eigenvectors

-1 0
5 -1
1 4
e
7= 1
1_

has simple eigenvalues 3,4, 6 with associated

-1
0
1

1
—2|.
1

Vo =

.3

Here {Vi, v, 3} is an eigenbasis assoc'd with Aj; that is, this is a basis for
R3 consisting of eigenvectors for A.
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3 x 3 Matrices with Simple and Double Eigenvalues

1 4
A= |0 3 has one simple eigenvalue 5 and one double eigenvalue 2
0 2

w N b

with associated eigenvectors
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3 x 3 Matrices with Simple and Double Eigenvalues

1 4 4
A> = |0 3 2| has one simple eigenvalue 5 and one double eigenvalue 2
0 2 3
2 1 0
with associated eigenvectors vi = (1|, b = |0f, 3= | 1 |.
1 0 -1
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3 x 3 Matrices with Simple and Double Eigenvalues

1 4 4
A> = |0 3 2| has one simple eigenvalue 5 and one double eigenvalue 2
0 2 3
2 1 0
with associated eigenvectors vi = 1|, o = (0|, 3= | 1
1 0 -1
Here {Vi, V5, v3} is an eigenbasis assoc'd with As.
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3 x 3 Matrices with Simple and Double Eigenvalues

1 4 4
A> = |0 3 2| has one simple eigenvalue 5 and one double eigenvalue 2
0 2 3
2 1 0
with associated eigenvectors vi = (1|, b = |0f, 3= | 1 |.
1 0 -1
Here {Vi, V5, v3} is an eigenbasis assoc'd with As.
5 —6 0
A3 = |1 —2 0 | has one simple eigenvalue 4 and one double
4 6 -1

eigenvalue —1 with associated eigenvectors
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3 x 3 Matrices with Simple and Double Eigenvalues

1 4 4
A> = |0 3 2| has one simple eigenvalue 5 and one double eigenvalue 2
0 2 3
2 1 0
with associated eigenvectors vi = (1|, b = |0f, 3= | 1 |.
1 0 -1
Here {Vi, V5, v3} is an eigenbasis assoc'd with As.
5 -6 0
A3 = |1 —2 0 | has one simple eigenvalue 4 and one double
4 6 -1
6 0
eigenvalue —1 with associated eigenvectors vj = |1|, vo = |0].
6 1
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3 x 3 Matrices with Simple and Double Eigenvalues

1 4 4
A> = |0 3 2| has one simple eigenvalue 5 and one double eigenvalue 2
0 2 3
2 1 0
with associated eigenvectors vi = (1|, b = |0f, 3= | 1 |.
1 0 -1
Here {Vi, V5, v3} is an eigenbasis assoc'd with As.
5 -6 0
A3 = |1 —2 0 | has one simple eigenvalue 4 and one double
4 6 -1
6 0
eigenvalue —1 with associated eigenvectors vj = |1|, vo = |0].
6 1

There is NO eigenbasis assoc'd with As.
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Eigenbases

Let A be an n X n matrix.
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Eigenbases

Let A be an n X n matrix.

We call {vi, V5, ..., Vp, } an eigenbasis assoc'd with A if

@ each vector v; is an eigenvector for A, and

o {Vi,Vh,...,V,, } is a basis for R".
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Eigenbases
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Eigenbases

Let A be an n X n matrix.

We call {vi, V5, ..., Vp, } an eigenbasis assoc'd with A if

@ each vector v; is an eigenvector for A, and

o {Vi,Vh,...,V,, } is a basis for R".

When we have an eigenbasis assoc’d with A, it is especially simple to
understand the action of the matrix transformation x — AX.

This is because A is similar to a diagonal matrix!
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But, how do we get AX?
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From the previous slide: WTF AX and we know

[A)?}B:D[%]B where D_B _OJ and A—[i i]

and we have an eigenbasis assoc'd with A given by
B = {\71,\72} where \71 = |:;:| 9 \72 = |:_11:| .

Recall that for any vector w in R? we have
w=P[w], and [¥],=P 'w

where the B to S change of coordinates matrix is given by

P=Pss =[] = B _11]

Thus
K]y =P7'% and A%=P|A%| = PD[%];=PDPX
So,
- 5 0 A0 . 1
A= PDP~1 where D = [0 _1] _ [01 )\J P= [Vl v2} _ [2

We say that A and D are similar matrices.



