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EigenVectors, EigenValues, EigenSpaces

Definition

Let A be an n × n matrix. We call ~v an eigenvector for A provided

~v 6= ~0, and

there is some scalar λ with A~v = λ~v .

When this holds, λ is an eigenvalue for A associated to the eigenvector ~v
and E(λ) = NS(A− λI ) is the λ-eigenspace for A.

Note that E(λ) = NS(A− λI ) is a vector subspace of Rn.

Remember, λ is an eigenvalue for A iff det(A− λI ) = 0, and this is the
only time E(λ) 6= {~0}.

And whenever E(λ) 6= {~0}, λ is an eigenvalue for A and each non-zero ~v
in E(λ) is an eigenvector for A with assoc’d eigenvalue λ.
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Eigen Problems

Given a square matrix A, we want to know how to:

1 Find all of the eigenvalues for A.

2 For each eigenvalue for A, find all of the assoc’d eigenvectors.

3 Understand the action of A on each of its eigenspaces.

For item (1), we just solve det(A− λI ) = 0 ; each solution is an

eigenvalue for A. This is the characteristic equation of A.

For item (2), we just find a basis for E(λ) = NS(A− λI ).

For item (3), just note that on E(λ), A acts like the dilation A~x = λ~x
(since each non-zero vector in E(λ) is an eigenvector for A).
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Let A =

[
1 2
4 3

]
.

First, A− λI =

[
1− λ 2

4 3− λ

]
. Next,

det(A− λI ) = (1− λ)(3− λ)− 8 =

(3− 4λ+ λ2)− 8 =

(λ− 5)(λ+ 1).

So, we have simple eigenvalues λ = 5 and λ = −1.

E(5) = NS(A− 5I ) =

NS
[
−4 2
4 −2

]
and

[
−4 2
4 −2

]
∼
[

2 −1
0 0

]
, so

~v1 =

[
1
2

]
is an eigenvector for λ = 5 and E(5) = Span{~v1}.

E(−1) = NS(A + I ) =

NS
[

2 2
4 4

]
and

[
2 2
4 4

]
∼
[

1 1
0 0

]
, so ~v2 =

[
1
−1

]
is an eigenvector for λ = −1 and E(−1) = Span{~v2}.

The eigenspaces E(5),E(−1) for A are the lines in R2 given by

y = 2x for E(5)

y = −x for E(−1).

Notice that A’s two eigenvectors ~v1, ~v2 are LI, so form an eigenbasis.
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Characteristic Polynomials and Equations

Definition

The characteristic polynomial for A is pA(λ) = det(A− λI ) .

The characteristic equation for A is det(A− λI ) = 0 (or just pA(λ) = 0).

For a 2× 2 matric A =

[
a b
c d

]
,

pA(λ) = det(A− λI ) =

det

[
a− λ b
c d − λ

]
=

(ad − bc)− (a + d)λ+ λ2.

This is a quadratic polynomial, so we can always solve pA(λ) = 0, but
sometimes the solutions may not be real numbers!

For a 3× 3 matric A,

pA(λ) = det(A− λI )

is always a cubic polynomial of
the form pA(λ) = c0 + c1λ+ c2λ

2 − λ3.

Here the characteristic equation
pA(λ) = 0 always has at least one real solution, sometimes two, and
sometimes three. So, what does this mean about eigenstuff?
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A 3× 3 Matrix with Three Simple Eigenvalues

A1 =

 4 −1 0
−1 5 −1
0 −1 4

 has simple eigenvalues 3, 4, 6 with associated

eigenvectors ~v1 =

1
1
1

, ~v2 =

−1
0
1

, ~v3 =

 1
−2
1

.

Here {~v1, ~v2, ~v3} is an eigenbasis assoc’d with A1; that is, this is a basis for
R3 consisting of eigenvectors for A.
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3× 3 Matrices with Simple and Double Eigenvalues

A2 =

1 4 4
0 3 2
0 2 3

 has one simple eigenvalue 5 and one double eigenvalue 2

with associated eigenvectors ~v1 =

2
1
1

, ~v2 =

1
0
0

, ~v3 =

 0
1
−1

.

Here {~v1, ~v2, ~v3} is an eigenbasis assoc’d with A2.

A3 =

5 −6 0
1 −2 0
4 6 −1

 has one simple eigenvalue 4 and one double

eigenvalue −1 with associated eigenvectors ~v1 =

6
1
6

, ~v2 =

0
0
1

.

There is NO eigenbasis assoc’d with A3.
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Eigenbases

Let A be an n × n matrix.

We call {~v1, ~v2, . . . , ~vn, } an eigenbasis assoc’d with A if

each vector ~vi is an eigenvector for A, and

{~v1, ~v2, . . . , ~vn, } is a basis for Rn.

When we have an eigenbasis assoc’d with A, it is especially simple to
understand the action of the matrix transformation ~x 7→ A~x .

This is because A is similar to a diagonal matrix!
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Recall that A =

[
1 2
4 3

]
has simple eigenvalues λ1 = 5 and λ2 = −1 with

assoc’d eigenvectors

~v1 =

[
1
2

]
and ~v2 =

[
1
−1

]
. Since A’s two eigenvectors

are LI, they form an eigenbasis B = {~v1, ~v2}.

Suppose ~x = c1~v1 + c2~v2; so
[
~x
]
B =

[
c1
c2

]
.

Look at
A~x =

A
(
c1~v1 + c2~v2

)
=

c1A~v1 + c2A~v2 =

5c1~v1 − c2~v2

which says that

[
A~x
]
B

=

[
5c1
−c2

]
=

[
5 0
0 −1

] [
c1
c2

]
=

[
5 0
0 −1

] [
~x
]
B.

Thus using B-coordinates, the action of A is just multiplication by the
diagonal matrix

D =

[
5 0
0 −1

]
=

[
λ1 0
0 λ2

]
.

But, how do we get A~x?
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