Characteristic Equation and Similar Matrices

Linear Algebra MATH 2076

Definition

Let A be an $n \times n$ matrix. We call \vec{v} an eigenvector for A provided

Definition

Let A be an $n \times n$ matrix. We call \vec{v} an eigenvector for A provided

• $\vec{v} \neq \vec{0}$, and

Definition

Let A be an $n \times n$ matrix. We call \vec{v} an eigenvector for A provided

- $\vec{v} \neq \vec{0}$, and
- there is some scalar λ with $A\vec{v} = \lambda \vec{v}$.

Definition

Let A be an $n \times n$ matrix. We call \vec{v} an eigenvector for A provided

- $\vec{v} \neq \vec{0}$, and
- there is some scalar λ with $A\vec{v} = \lambda \vec{v}$.

When this holds, λ is an eigenvalue for A associated to the eigenvector \vec{v}

Definition

Let A be an $n \times n$ matrix. We call \vec{v} an eigenvector for A provided

- $\vec{v} \neq \vec{0}$, and
- there is some scalar λ with $A\vec{v} = \lambda \vec{v}$.

When this holds, λ is an *eigenvalue* for A associated to the eigenvector \vec{v} and $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$ is the λ -eigenspace for A.

Definition

Let A be an $n \times n$ matrix. We call \vec{v} an eigenvector for A provided

- $\vec{v} \neq \vec{0}$, and
- there is some scalar λ with $A\vec{v} = \lambda \vec{v}$.

When this holds, λ is an *eigenvalue* for A associated to the eigenvector \vec{v} and $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$ is the λ -eigenspace for A.

Note that $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$ is a vector subspace of \mathbb{R}^n .

Definition

Let A be an $n \times n$ matrix. We call \vec{v} an eigenvector for A provided

- $\vec{v} \neq \vec{0}$, and
- there is some scalar λ with $A\vec{v} = \lambda \vec{v}$.

When this holds, λ is an *eigenvalue* for A associated to the eigenvector \vec{v} and $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$ is the λ -eigenspace for A.

Note that $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$ is a vector subspace of \mathbb{R}^n .

Remember, λ is an eigenvalue for A iff $det(A - \lambda I) = 0$, and

Definition

Let A be an $n \times n$ matrix. We call \vec{v} an eigenvector for A provided

- $\vec{v} \neq \vec{0}$, and
- there is some scalar λ with $A\vec{v} = \lambda \vec{v}$.

When this holds, λ is an *eigenvalue* for A associated to the eigenvector \vec{v} and $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$ is the λ -eigenspace for A.

Note that $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$ is a vector subspace of \mathbb{R}^n .

Remember, λ is an eigenvalue for A iff $\det(A - \lambda I) = 0$, and this is the only time $\mathbb{E}(\lambda) \neq \{\vec{0}\}$.

Definition

Let A be an $n \times n$ matrix. We call \vec{v} an eigenvector for A provided

- $\vec{v} \neq \vec{0}$, and
- there is some scalar λ with $A\vec{v} = \lambda \vec{v}$.

When this holds, λ is an *eigenvalue* for A associated to the eigenvector \vec{v} and $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$ is the λ -eigenspace for A.

Note that $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$ is a vector subspace of \mathbb{R}^n .

Remember, λ is an eigenvalue for A iff $\det(A - \lambda I) = 0$, and this is the only time $\mathbb{E}(\lambda) \neq \{\vec{0}\}$.

And whenever $\mathbb{E}(\lambda) \neq \{\vec{0}\}$, λ is an eigenvalue for A and

Definition

Let A be an $n \times n$ matrix. We call \vec{v} an eigenvector for A provided

- $\vec{v} \neq \vec{0}$, and
- there is some scalar λ with $A\vec{v} = \lambda \vec{v}$.

When this holds, λ is an *eigenvalue* for A associated to the eigenvector \vec{v} and $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$ is the λ -eigenspace for A.

Note that $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$ is a vector subspace of \mathbb{R}^n .

Remember, λ is an eigenvalue for A iff $\det(A - \lambda I) = 0$, and this is the only time $\mathbb{E}(\lambda) \neq \{\vec{0}\}$.

And whenever $\mathbb{E}(\lambda) \neq \{\vec{0}\}$, λ is an eigenvalue for A and each *non-zero* \vec{v} in $\mathbb{E}(\lambda)$ is an eigenvector for A with assoc'd eigenvalue λ .

Section 5.2 Char Eqn & Similarity 22 March 2017 2 / 10

Given a square matrix A, we want to know how to:

Given a square matrix A, we want to know how to:

• Find all of the eigenvalues for A.

Given a square matrix A, we want to know how to:

- Find all of the eigenvalues for A.
- 2 For each eigenvalue for A, find all of the assoc'd eigenvectors.

Given a square matrix A, we want to know how to:

- Find all of the eigenvalues for A.
- ② For each eigenvalue for A, find all of the assoc'd eigenvectors.
- **1** Understand the action of *A* on each of its eigenspaces.

Given a square matrix A, we want to know how to:

- Find all of the eigenvalues for A.
- ② For each eigenvalue for A, find all of the assoc'd eigenvectors.
- **3** Understand the action of A on each of its eigenspaces.

For item (1), we just solve $\det(A - \lambda I) = 0$; each solution is an eigenvalue for A.

Given a square matrix A, we want to know how to:

- Find all of the eigenvalues for A.
- ② For each eigenvalue for A, find all of the assoc'd eigenvectors.
- **1** Understand the action of A on each of its eigenspaces.

For item (1), we just solve $\det(A - \lambda I) = 0$; each solution is an eigenvalue for A. This is the *characteristic equation* of A.

Given a square matrix A, we want to know how to:

- Find all of the eigenvalues for A.
- ② For each eigenvalue for A, find all of the assoc'd eigenvectors.
- **3** Understand the action of A on each of its eigenspaces.

For item (1), we just solve $\det(A - \lambda I) = 0$; each solution is an eigenvalue for A. This is the *characteristic equation* of A.

For item (2), we just find a basis for $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$.

Given a square matrix A, we want to know how to:

- Find all of the eigenvalues for A.
- ② For each eigenvalue for A, find all of the assoc'd eigenvectors.
- **3** Understand the action of *A* on each of its eigenspaces.

For item (1), we just solve $\det(A - \lambda I) = 0$; each solution is an eigenvalue for A. This is the *characteristic equation* of A.

For item (2), we just find a basis for $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$.

For item (3), just note that on $\mathbb{E}(\lambda)$, A acts like the dilation $A\vec{x} = \lambda \vec{x}$ (since each *non-zero* vector in $\mathbb{E}(\lambda)$ is an eigenvector for A).

Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
.

Let $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$.

Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next, $\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 =$

Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next, $\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = (3 - 4\lambda + \lambda^2) - 8 = (3 - 4\lambda + \lambda^2)$

$$\mathbb{E}(5) = \mathcal{NS}(A - 5I) =$$

$$\mathbb{E}(5) = \mathcal{NS}(A - 5I) = \mathcal{NS} \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \text{ and }$$

Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next,
$$\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = (3 - 4\lambda + \lambda^2) - 8 = (\lambda - 5)(\lambda + 1).$$

$$\mathbb{E}(5) = \mathcal{NS}(A - 5I) = \mathcal{NS} \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix}$$
 and $\begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}$, so

Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next,
$$\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = (3 - 4\lambda + \lambda^2) - 8 = (\lambda - 5)(\lambda + 1).$$

$$\mathbb{E}(5) = \mathcal{NS}(A - 5I) = \mathcal{NS} \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \text{ and } \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}, \text{ so }$$
 $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector for $\lambda = 5$ and

Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next,
$$\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = (3 - 4\lambda + \lambda^2) - 8 = (\lambda - 5)(\lambda + 1).$$

$$\begin{split} \mathbb{E}(5) &= \mathcal{NS}(A-5I) = \mathcal{NS} \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \text{ and } \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix} \text{, so} \\ \vec{v_1} &= \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ is an eigenvector for } \lambda = 5 \text{ and } \mathbb{E}(5) = \mathcal{S}\textit{pan}\{\vec{v_1}\}. \end{split}$$

Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next,
$$\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = (3 - 4\lambda + \lambda^2) - 8 = (\lambda - 5)(\lambda + 1).$$

$$\mathbb{E}(5) = \mathcal{NS}(A - 5I) = \mathcal{NS} \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \text{ and } \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}, \text{ so }$$

$$\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ is an eigenvector for } \lambda = 5 \text{ and } \mathbb{E}(5) = \mathcal{S}pan\{\vec{v_1}\}.$$

$$\mathbb{E}(-1) = \mathcal{NS}(A+I) =$$

Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next,
$$\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = (3 - 4\lambda + \lambda^2) - 8 = (\lambda - 5)(\lambda + 1).$$

$$\mathbb{E}(5) = \mathcal{NS}(A - 5I) = \mathcal{NS} \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \text{ and } \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}, \text{ so }$$

$$\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ is an eigenvector for } \lambda = 5 \text{ and } \mathbb{E}(5) = \mathcal{S}pan\{\vec{v_1}\}.$$

$$\mathbb{E}(-1) = \mathcal{NS}(A+I) = \mathcal{NS} \begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix}$$
 and

Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next,
$$\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = (3 - 4\lambda + \lambda^2) - 8 = (\lambda - 5)(\lambda + 1).$$

$$\mathbb{E}(5) = \mathcal{NS}(A - 5I) = \mathcal{NS} \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \text{ and } \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}, \text{ so }$$

$$\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ is an eigenvector for } \lambda = 5 \text{ and } \mathbb{E}(5) = \mathcal{S}pan\{\vec{v_1}\}.$$

$$\mathbb{E}(-1) = \mathcal{NS}(A+I) = \mathcal{NS} \begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix}$$
 and $\begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, so

Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next,
$$\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = (3 - 4\lambda + \lambda^2) - 8 = (\lambda - 5)(\lambda + 1).$$

$$\mathbb{E}(5) = \mathcal{NS}(A - 5I) = \mathcal{NS} \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \text{ and } \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}, \text{ so } \\ \vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ is an eigenvector for } \lambda = 5 \text{ and } \mathbb{E}(5) = \mathcal{S}\textit{pan}\{\vec{v_1}\}.$$

$$\mathbb{E}(-1) = \mathcal{NS}(A+I) = \mathcal{NS}\begin{bmatrix}2 & 2\\4 & 4\end{bmatrix} \text{ and } \begin{bmatrix}2 & 2\\4 & 4\end{bmatrix} \sim \begin{bmatrix}1 & 1\\0 & 0\end{bmatrix}, \text{ so } \vec{v_2} = \begin{bmatrix}1\\-1\end{bmatrix}$$
 is an eigenvector for $\lambda = -1$ and

◆ロト ◆部 ◆ 注 ◆ 注 ・ りへで

Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next,
$$\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = (3 - 4\lambda + \lambda^2) - 8 = (\lambda - 5)(\lambda + 1).$$

$$\mathbb{E}(5) = \mathcal{NS}(A - 5I) = \mathcal{NS} \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \text{ and } \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}, \text{ so }$$

$$\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ is an eigenvector for } \lambda = 5 \text{ and } \mathbb{E}(5) = \mathcal{S}pan\{\vec{v_1}\}.$$

$$\mathbb{E}(-1) = \mathcal{NS}(A+I) = \mathcal{NS}\begin{bmatrix}2 & 2\\4 & 4\end{bmatrix} \text{ and } \begin{bmatrix}2 & 2\\4 & 4\end{bmatrix} \sim \begin{bmatrix}1 & 1\\0 & 0\end{bmatrix}, \text{ so } \vec{v}_2 = \begin{bmatrix}1\\-1\end{bmatrix}$$
 is an eigenvector for $\lambda = -1$ and $\mathbb{E}(-1) = \mathcal{S}pan\{\vec{v}_2\}$.

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next,
$$\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = (3 - 4\lambda + \lambda^2) - 8 = (\lambda - 5)(\lambda + 1).$$

So, we have *simple* eigenvalues $\lambda = 5$ and $\lambda = -1$.

$$\mathbb{E}(5) = \mathcal{NS}(A - 5I) = \mathcal{NS} \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \text{ and } \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}, \text{ so }$$

$$\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ is an eigenvector for } \lambda = 5 \text{ and } \mathbb{E}(5) = \mathcal{S}pan\{\vec{v_1}\}.$$

$$\mathbb{E}(-1) = \mathcal{NS}(A+I) = \mathcal{NS} \begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \text{ so } \vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 is an eigenvector for $\lambda = -1$ and $\mathbb{E}(-1) = \mathcal{S}pan\{\vec{v}_2\}$.

The eigenspaces $\mathbb{E}(5), \mathbb{E}(-1)$ for A are the lines in \mathbb{R}^2 given by

$$y = 2x$$
 for $\mathbb{E}(5)$
 $y = -x$ for $\mathbb{E}(-1)$.

So, we have *simple* eigenvalues $\lambda=5$ and $\lambda=-1$. $\mathbb{E}(5)=\mathcal{NS}(A-5I)=\mathcal{NS}\begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \text{ and } \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}, \text{ so }$

 $\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = (3 - 4\lambda + \lambda^2) - 8 = (\lambda - 5)(\lambda + 1).$

$$ec{v_1} = egin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 is an eigenvector for $\lambda = 5$ and $\mathbb{E}(5) = \mathcal{S}pan\{ec{v_1}\}$.
$$\mathbb{E}(-1) = \mathcal{NS}(A+I) = \mathcal{NS} egin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix} \text{ and } egin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix} \sim egin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \text{ so } ec{v_2} = egin{bmatrix} 1 \\ -1 \end{bmatrix}$$

The eigenspaces $\mathbb{E}(5), \mathbb{E}(-1)$ for A are the lines in \mathbb{R}^2 given by

$$y=2x$$
 for $\mathbb{E}(5)$
 $y=-x$ for $\mathbb{E}(-1)$.

is an eigenvector for $\lambda = -1$ and $\mathbb{E}(-1) = \mathcal{S}pan\{\vec{v}_2\}$.

Let $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next,

Notice that A's two eigenvectors $\vec{v_1}, \vec{v_2}$ are LI, so form an eigenbasis.

Definition

The *characteristic polynomial* for A is $|\mathbf{p}_A(\lambda)| = \det(A - \lambda I)|$.

$$\mathsf{s} \mid \boldsymbol{p}_A(\lambda) = \mathsf{det}(A - \lambda I)$$

Definition

The *characteristic polynomial* for A is $\rho_A(\lambda) = \det(A - \lambda I)$.

The *characteristic equation* for A is $det(A - \lambda I) = 0$ (or just $\mathbf{p}_A(\lambda) = 0$).

Definition

The *characteristic polynomial* for A is $\rho_A(\lambda) = \det(A - \lambda I)$.

The *characteristic equation* for A is $det(A - \lambda I) = 0$ (or just $\boldsymbol{p}_A(\lambda) = 0$).

For a
$$2 \times 2$$
 matric $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,

Definition

The *characteristic polynomial* for A is $p_A(\lambda) = \det(A - \lambda I)$.

The *characteristic equation* for A is $\det(A - \lambda I) = 0$ (or just $\mathbf{p}_A(\lambda) = 0$).

For a
$$2 \times 2$$
 matric $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,

$$\mathbf{p}_{A}(\lambda) = \det(A - \lambda I) =$$

Definition

The *characteristic polynomial* for A is $p_A(\lambda) = \det(A - \lambda I)$.

The *characteristic equation* for A is $det(A - \lambda I) = 0$ (or just $\mathbf{p}_A(\lambda) = 0$).

For a 2 × 2 matric
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $\mathbf{p}_A(\lambda) = \det(A - \lambda I) = \det\begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = \mathbf{p}_A(\lambda)$

Definition

The *characteristic polynomial* for A is $\rho_A(\lambda) = \det(A - \lambda I)$.

The *characteristic equation* for A is $det(A - \lambda I) = 0$ (or just $\boldsymbol{p}_A(\lambda) = 0$).

For a
$$2 \times 2$$
 matric $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,
$$\mathbf{p}_{A}(\lambda) = \det(A - \lambda I) = \det\begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = (ad - bc) - (a + d)\lambda + \lambda^{2}.$$

5 / 10

Definition

The *characteristic polynomial* for A is $p_A(\lambda) = \det(A - \lambda I)$.

The *characteristic equation* for A is $det(A - \lambda I) = 0$ (or just $\boldsymbol{p}_A(\lambda) = 0$).

For a
$$2 \times 2$$
 matric $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,
$$\boldsymbol{p}_A(\lambda) = \det(A - \lambda I) = \det\begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = (ad - bc) - (a + d)\lambda + \lambda^2.$$
 This is a quadratic polynomial, so we can always solve $\boldsymbol{p}_A(\lambda) = 0$,

Definition

The *characteristic polynomial* for A is $p_A(\lambda) = \det(A - \lambda I)$.

The *characteristic equation* for A is $det(A - \lambda I) = 0$ (or just $\boldsymbol{p}_A(\lambda) = 0$).

For a
$$2 \times 2$$
 matric $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,
$$\mathbf{p}_A(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = (ad - bc) - (a + d)\lambda + \lambda^2.$$
 This is a graduatic polynomial so we can always asks $\mathbf{p}_A(\lambda) = 0$, but

This is a quadratic polynomial, so we can always solve $\mathbf{p}_{A}(\lambda) = 0$, but sometimes the solutions may not be real numbers!

Definition

The *characteristic polynomial* for A is $p_A(\lambda) = \det(A - \lambda I)$.

The *characteristic equation* for A is $det(A - \lambda I) = 0$ (or just $\mathbf{p}_A(\lambda) = 0$).

For a 2 × 2 matric
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,
$$\mathbf{p}_A(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = (ad - bc) - (a + d)\lambda + \lambda^2.$$
This is a quadratic polynomial, so we can always solve $\mathbf{p}_A(\lambda) = 0$, but

This is a quadratic polynomial, so we can always solve $\mathbf{p}_{A}(\lambda) = 0$, but sometimes the solutions may not be real numbers!

For a 3×3 matric A,

Definition

The *characteristic polynomial* for A is $p_A(\lambda) = \det(A - \lambda I)$.

The *characteristic equation* for A is $det(A - \lambda I) = 0$ (or just $\mathbf{p}_A(\lambda) = 0$).

For a
$$2 \times 2$$
 matric $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,
$$\mathbf{p}_A(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = (ad - bc) - (a + d)\lambda + \lambda^2.$$
This is a quadratic polynomial, so we can always solve $\mathbf{p}_A(\lambda) = 0$, but

This is a quadratic polynomial, so we can always solve $\mathbf{p}_{A}(\lambda) = 0$, but sometimes the solutions may not be real numbers!

For a 3 \times 3 matric A, $\boldsymbol{p}_A(\lambda) = \det(A - \lambda I)$

Definition

The *characteristic polynomial* for A is $p_A(\lambda) = \det(A - \lambda I)$.

The *characteristic equation* for A is $det(A - \lambda I) = 0$ (or just $\boldsymbol{p}_A(\lambda) = 0$).

For a 2 × 2 matric
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,
$$\mathbf{p}_A(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = (ad - bc) - (a + d)\lambda + \lambda^2.$$

This is a quadratic polynomial, so we can always solve $\mathbf{p}_{A}(\lambda) = 0$, but sometimes the solutions may not be real numbers!

For a 3 × 3 matric A, $\boldsymbol{p}_A(\lambda) = \det(A - \lambda I)$ is always a cubic polynomial of the form $\boldsymbol{p}_A(\lambda) = c_0 + c_1\lambda + c_2\lambda^2 - \lambda^3$.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (で

Definition

The *characteristic polynomial* for A is $p_A(\lambda) = \det(A - \lambda I)$.

The *characteristic equation* for A is $det(A - \lambda I) = 0$ (or just $\mathbf{p}_A(\lambda) = 0$).

For a
$$2 \times 2$$
 matric $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,
$$\mathbf{p}_A(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = (ad - bc) - (a + d)\lambda + \lambda^2.$$
This is a graduatic polynomial, so we can always asks $\mathbf{r}_A(\lambda) = 0$, but

This is a quadratic polynomial, so we can always solve $\mathbf{p}_{A}(\lambda) = 0$, but sometimes the solutions may not be real numbers!

For a 3×3 matric A, $\boldsymbol{p}_A(\lambda)=\det(A-\lambda I)$ is always a cubic polynomial of the form $\boldsymbol{p}_A(\lambda)=c_0+c_1\lambda+c_2\lambda^2-\lambda^3$. Here the characteristic equation $\boldsymbol{p}_A(\lambda)=0$ always has at least one real solution,

Definition

The *characteristic polynomial* for A is $|\mathbf{p}_A(\lambda) = \det(A - \lambda I)|$.

The *characteristic equation* for A is $det(A - \lambda I) = 0$ (or just $\mathbf{p}_A(\lambda) = 0$).

For a
$$2 \times 2$$
 matric $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,
$$\mathbf{p}_A(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = (ad - bc) - (a + d)\lambda + \lambda^2.$$
This is a guadratic polynomial, so we can always solve $\mathbf{p}_A(\lambda) = 0$, but

This is a quadratic polynomial, so we can always solve $\mathbf{p}_{\Delta}(\lambda) = 0$, but sometimes the solutions may not be real numbers!

For a 3 \times 3 matric A, $\boldsymbol{p}_A(\lambda) = \det(A - \lambda I)$ is always a cubic polynomial of the form $\mathbf{p}_A(\lambda) = c_0 + c_1 \lambda + c_2 \lambda^2 - \lambda^3$. Here the characteristic equation $\mathbf{p}_A(\lambda) = 0$ always has at least one real solution, sometimes two, and sometimes three.

Section 5.2 Char Egn & Similarity 22 March 2017

5 / 10

Definition

The *characteristic polynomial* for A is $p_A(\lambda) = \det(A - \lambda I)$.

The *characteristic equation* for A is $det(A - \lambda I) = 0$ (or just $\mathbf{p}_A(\lambda) = 0$).

For a
$$2 \times 2$$
 matric $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,
$$\mathbf{p}_A(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = (ad - bc) - (a + d)\lambda + \lambda^2.$$
This is a guadratic polynomial, so we can always solve $\mathbf{p}_A(\lambda) = 0$, but

This is a quadratic polynomial, so we can always solve $\mathbf{p}_{A}(\lambda) = 0$, but sometimes the solutions may not be real numbers!

For a 3×3 matric A, ${\bf p}_A(\lambda)=\det(A-\lambda I)$ is always a cubic polynomial of the form ${\bf p}_A(\lambda)=c_0+c_1\lambda+c_2\lambda^2-\lambda^3$. Here the characteristic equation ${\bf p}_A(\lambda)=0$ always has at least one real solution, sometimes two, and sometimes three. So, what does this mean about eigenstuff?

Section 5.2 Char Eqn & Similarity 22 March 2017 5 / 10

$$A_1 = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$
 has *simple* eigenvalues 3, 4, 6 with associated

eigenvectors

$$A_1 = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix} \text{ has } \textit{simple} \text{ eigenvalues } 3, 4, 6 \text{ with associated}$$
 eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \ \vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}.$

$$A_1 = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix} \text{ has } \textit{simple} \text{ eigenvalues } 3, 4, 6 \text{ with associated}$$
 eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \ \vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}.$

Here $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ is an eigenbasis assoc'd with A_1 ;

$$A_1 = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix} \text{ has } \textit{simple} \text{ eigenvalues } 3, 4, 6 \text{ with associated}$$
 eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \ \vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}.$

Here $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is an eigenbasis assoc'd with A_1 ; that is, this is a basis for \mathbb{R}^3 consisting of eigenvectors for A.

$$A_2 = \begin{bmatrix} 1 & 4 & 4 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$
 has one *simple* eigenvalue 5 and one *double* eigenvalue 2

with associated eigenvectors

$$A_2 = \begin{bmatrix} 1 & 4 & 4 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$
 has one *simple* eigenvalue 5 and one *double* eigenvalue 2

with associated eigenvectors
$$\vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.

$$A_2 = \begin{bmatrix} 1 & 4 & 4 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$
 has one *simple* eigenvalue 5 and one *double* eigenvalue 2

with associated eigenvectors
$$\vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$. Here $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is an eigenbasis assoc'd with A_2 .

7 / 10

$$A_2 = \begin{bmatrix} 1 & 4 & 4 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$
 has one *simple* eigenvalue 5 and one *double* eigenvalue 2

with associated eigenvectors
$$\vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$. Here $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is an eigenbasis assoc'd with A_2 .

$$A_3 = \begin{bmatrix} 5 & -6 & 0 \\ 1 & -2 & 0 \\ 4 & 6 & -1 \end{bmatrix}$$
 has one *simple* eigenvalue 4 and one *double*

eigenvalue -1 with associated eigenvectors

Section 5.2

$$A_2 = \begin{bmatrix} 1 & 4 & 4 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$
 has one *simple* eigenvalue 5 and one *double* eigenvalue 2

with associated eigenvectors
$$\vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$. Here $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is an eigenbasis assoc'd with A_2 .

$$A_3 = \begin{bmatrix} 5 & -6 & 0 \\ 1 & -2 & 0 \\ 4 & 6 & -1 \end{bmatrix}$$
 has one *simple* eigenvalue 4 and one *double*

eigenvalue
$$-1$$
 with associated eigenvectors $\vec{v_1} = \begin{bmatrix} 6 \\ 1 \\ 6 \end{bmatrix}$, $\vec{v_2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Section 5.2

$$A_2 = \begin{bmatrix} 1 & 4 & 4 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$
 has one *simple* eigenvalue 5 and one *double* eigenvalue 2

with associated eigenvectors
$$\vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.

Here $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is an eigenbasis assoc'd with A_2 .

$$A_3 = \begin{bmatrix} 5 & -6 & 0 \\ 1 & -2 & 0 \\ 4 & 6 & -1 \end{bmatrix}$$
 has one *simple* eigenvalue 4 and one *double*

eigenvalue
$$-1$$
 with associated eigenvectors $\vec{v}_1 = \begin{bmatrix} 6 \\ 1 \\ 6 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

There is **NO** eigenbasis assoc'd with A_3 .

7 / 10

Section 5.2 Char Eqn & Similarity 22 March 2017

Let A be an $n \times n$ matrix.

Let A be an $n \times n$ matrix.

We call $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}, \}$ an *eigenbasis* assoc'd with A if

Let A be an $n \times n$ matrix.

We call $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n, \}$ an *eigenbasis* assoc'd with A if

ullet each vector $\vec{v_i}$ is an eigenvector for A, and

Let A be an $n \times n$ matrix.

We call $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n, \}$ an *eigenbasis* assoc'd with A if

- ullet each vector $\vec{v_i}$ is an eigenvector for A, and
- $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n, \}$ is a basis for \mathbb{R}^n .

Let A be an $n \times n$ matrix.

We call $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n, \}$ an *eigenbasis* assoc'd with A if

- ullet each vector $\vec{v_i}$ is an eigenvector for A, and
- $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n, \}$ is a basis for \mathbb{R}^n .

When we have an *eigenbasis* assoc'd with A, it is especially simple to understand the action of the matrix transformation $\vec{x} \mapsto A\vec{x}$.

Let A be an $n \times n$ matrix.

We call $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n, \}$ an *eigenbasis* assoc'd with A if

- each vector $\vec{v_i}$ is an eigenvector for A, and
- $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n, \}$ is a basis for \mathbb{R}^n .

When we have an *eigenbasis* assoc'd with A, it is especially simple to understand the action of the matrix transformation $\vec{x} \mapsto A\vec{x}$.

This is because A is *similar* to a diagonal matrix!

Recall that $A=\begin{bmatrix}1&2\\4&3\end{bmatrix}$ has *simple* eigenvalues $\lambda_1=5$ and $\lambda_2=-1$ with

assoc'd eigenvectors

assoc'd eigenvectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Recall that $A=\begin{bmatrix}1&2\\4&3\end{bmatrix}$ has *simple* eigenvalues $\lambda_1=5$ and $\lambda_2=-1$ with assoc'd eigenvectors $\vec{v}_1=\begin{bmatrix}1\\2\end{bmatrix}$ and $\vec{v}_2=\begin{bmatrix}1\\-1\end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B}=\{\vec{v}_1,\vec{v}_2\}$.

Recall that $A=\begin{bmatrix}1&2\\4&3\end{bmatrix}$ has simple eigenvalues $\lambda_1=5$ and $\lambda_2=-1$ with assoc'd eigenvectors $\vec{v}_1=\begin{bmatrix}1\\2\end{bmatrix}$ and $\vec{v}_2=\begin{bmatrix}1\\-1\end{bmatrix}$. Since A's two eigenvectors are LI, they form an eigenbasis $\mathcal{B}=\{\vec{v}_1,\vec{v}_2\}$.

Recall that $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ has *simple* eigenvalues $\lambda_1 = 5$ and $\lambda_2 = -1$ with assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$.

Suppose
$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$$
; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

Recall that $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ has *simple* eigenvalues $\lambda_1 = 5$ and $\lambda_2 = -1$ with assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$.

Suppose
$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$$
; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

$$A\vec{x} =$$

Recall that $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ has *simple* eigenvalues $\lambda_1 = 5$ and $\lambda_2 = -1$ with assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$.

Suppose
$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$$
; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

$$A\vec{x} = A(c_1\vec{v}_1 + c_2\vec{v}_2) =$$

Recall that $A=\begin{bmatrix}1&2\\4&3\end{bmatrix}$ has *simple* eigenvalues $\lambda_1=5$ and $\lambda_2=-1$ with assoc'd eigenvectors $\vec{v}_1=\begin{bmatrix}1\\2\end{bmatrix}$ and $\vec{v}_2=\begin{bmatrix}1\\-1\end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B}=\{\vec{v}_1,\vec{v}_2\}$.

Suppose
$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$$
; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

$$A\vec{x} = A(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1A\vec{v}_1 + c_2A\vec{v}_2 =$$

Recall that $A=\begin{bmatrix}1&2\\4&3\end{bmatrix}$ has *simple* eigenvalues $\lambda_1=5$ and $\lambda_2=-1$ with assoc'd eigenvectors $\vec{v}_1=\begin{bmatrix}1\\2\end{bmatrix}$ and $\vec{v}_2=\begin{bmatrix}1\\-1\end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B}=\{\vec{v}_1,\vec{v}_2\}$.

Suppose
$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$$
; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

$$A\vec{x} = A(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1A\vec{v}_1 + c_2A\vec{v}_2 = 5c_1\vec{v}_1 - c_2\vec{v}_2$$

assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$.

Suppose
$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$$
; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

Look at

$$A\vec{x} = A(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1A\vec{v}_1 + c_2A\vec{v}_2 = 5c_1\vec{v}_1 - c_2\vec{v}_2$$

assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$.

Suppose
$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$$
; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

Look at

$$A\vec{x} = A(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1A\vec{v}_1 + c_2A\vec{v}_2 = 5c_1\vec{v}_1 - c_2\vec{v}_2$$

$$\left[A\vec{x}\right]_{\mathcal{B}} = \begin{bmatrix} 5c_1 \\ -c_2 \end{bmatrix} =$$

assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$.

Suppose
$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$$
; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

Look at

$$A\vec{x} = A(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1A\vec{v}_1 + c_2A\vec{v}_2 = 5c_1\vec{v}_1 - c_2\vec{v}_2$$

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 5c_1 \\ -c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} =$$

assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$.

Suppose
$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$$
; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

Look at

$$A\vec{x} = A(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1A\vec{v}_1 + c_2A\vec{v}_2 = 5c_1\vec{v}_1 - c_2\vec{v}_2$$

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 5c_1 \\ -c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}.$$

assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$.

Suppose
$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$$
; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

Look at

$$A\vec{x} = A(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1A\vec{v}_1 + c_2A\vec{v}_2 = 5c_1\vec{v}_1 - c_2\vec{v}_2$$

which says that

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 5c_1 \\ -c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}.$$

Thus using $\mathcal{B}\text{-coordinates}$, the action of A is just multiplication by the diagonal matrix

assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$.

Suppose
$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$$
; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

Look at

$$A\vec{x} = A(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1A\vec{v}_1 + c_2A\vec{v}_2 = 5c_1\vec{v}_1 - c_2\vec{v}_2$$

which says that

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 5c_1 \\ -c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}.$$

Thus using \mathcal{B} -coordinates, the action of A is just multiplication by the diagonal matrix

$$D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} =$$

assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$.

Suppose
$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$$
; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

Look at

$$A\vec{x} = A(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1A\vec{v}_1 + c_2A\vec{v}_2 = 5c_1\vec{v}_1 - c_2\vec{v}_2$$

which says that

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 5c_1 \\ -c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}.$$

Thus using $\mathcal{B}\text{-coordinates}$, the action of A is just multiplication by the diagonal matrix

$$D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}.$$

assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$.

Suppose
$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$$
; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

Look at

$$A\vec{x} = A(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1A\vec{v}_1 + c_2A\vec{v}_2 = 5c_1\vec{v}_1 - c_2\vec{v}_2$$

which says that

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 5c_1 \\ -c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}.$$

Thus using \mathcal{B} -coordinates, the action of A is just multiplication by the diagonal matrix

$$D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}.$$

But, how do we get $A\vec{x}$?

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \}$$
 where $ec{v}_1 = egin{bmatrix} 1 \\ 2 \end{bmatrix}$, $ec{v}_2 = egin{bmatrix} 1 \\ -1 \end{bmatrix}$.

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} \quad \text{where} \quad D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \}$$
 where $ec{v}_1 = egin{bmatrix} 1 \ 2 \end{bmatrix}$, $ec{v}_2 = egin{bmatrix} 1 \ -1 \end{bmatrix}$.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v_1}, ec{v_2} \}$$
 where $ec{v_1} = egin{bmatrix} 1 \ 2 \end{bmatrix}$, $ec{v_2} = egin{bmatrix} 1 \ -1 \end{bmatrix}$.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$\vec{w} = P ig[\vec{w} ig]_{\mathcal{B}}$$
 and

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \}$$
 where $ec{v}_1 = egin{bmatrix} 1 \ 2 \end{bmatrix}$, $ec{v}_2 = egin{bmatrix} 1 \ -1 \end{bmatrix}$.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$ec{w} = Pig[ec{w}ig]_{\mathcal{B}} \quad ext{and} \quad ig[ec{w}ig]_{\mathcal{B}} = P^{-1}ec{w}$$

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \}$$
 where $ec{v}_1 = egin{bmatrix} 1 \\ 2 \end{bmatrix}$, $ec{v}_2 = egin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$\vec{w} = P[\vec{w}]_{\mathcal{B}}$$
 and $[\vec{w}]_{\mathcal{B}} = P^{-1}\vec{w}$

where the ${\mathcal B}$ to ${\mathcal S}$ change of coordinates matrix is given by

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} \quad \text{where} \quad D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \}$$
 where $ec{v}_1 = egin{bmatrix} 1 \\ 2 \end{bmatrix}$, $ec{v}_2 = egin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$ec{w} = Pig[ec{w}ig]_{\mathcal{B}}$$
 and $ig[ec{w}ig]_{\mathcal{B}} = P^{-1}ec{w}$

where the $\ensuremath{\mathcal{B}}$ to $\ensuremath{\mathcal{S}}$ change of coordinates matrix is given by

$$P = P_{SB} =$$

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \}$$
 where $ec{v}_1 = egin{bmatrix} 1 \\ 2 \end{bmatrix}$, $ec{v}_2 = egin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$ec{w} = Pig[ec{w}ig]_{\mathcal{B}} \quad ext{and} \quad ig[ec{w}ig]_{\mathcal{B}} = P^{-1}ec{w}$$

where the $\ensuremath{\mathcal{B}}$ to $\ensuremath{\mathcal{S}}$ change of coordinates matrix is given by

$$P = P_{\mathcal{SB}} = \left[\vec{v}_1 \ \vec{v}_2
ight] =$$

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \}$$
 where $ec{v}_1 = egin{bmatrix} 1 \ 2 \end{bmatrix}$, $ec{v}_2 = egin{bmatrix} 1 \ -1 \end{bmatrix}$.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$ec{w} = Pig[ec{w}ig]_{\mathcal{B}} \quad ext{and} \quad ig[ec{w}ig]_{\mathcal{B}} = P^{-1}ec{w}$$

where the ${\cal B}$ to ${\cal S}$ change of coordinates matrix is given by

$$P = P_{\mathcal{SB}} = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$$

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \}$$
 where $ec{v}_1 = egin{bmatrix} 1 \\ 2 \end{bmatrix}$, $ec{v}_2 = egin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$\vec{w} = P[\vec{w}]_{\mathcal{B}}$$
 and $[\vec{w}]_{\mathcal{B}} = P^{-1}\vec{w}$

where the $\ensuremath{\mathcal{B}}$ to $\ensuremath{\mathcal{S}}$ change of coordinates matrix is given by

$$P = P_{SB} = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$$

$$[\vec{x}]_{\mathcal{B}} = P^{-1}\vec{x}$$
 and

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \}$$
 where $ec{v}_1 = egin{bmatrix} 1 \\ 2 \end{bmatrix}$, $ec{v}_2 = egin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$ec{w} = Pig[ec{w}ig]_{\mathcal{B}} \quad ext{and} \quad ig[ec{w}ig]_{\mathcal{B}} = P^{-1}ec{w}$$

where the $\ensuremath{\mathcal{B}}$ to $\ensuremath{\mathcal{S}}$ change of coordinates matrix is given by

$$P = P_{SB} = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$$

$$\left[\vec{x}\right]_{\mathcal{B}} = P^{-1}\vec{x}$$
 and $A\vec{x} =$

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \}$$
 where $ec{v}_1 = egin{bmatrix} 1 \\ 2 \end{bmatrix}$, $ec{v}_2 = egin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$ec{w} = Pig[ec{w}ig]_{\mathcal{B}}$$
 and $ig[ec{w}ig]_{\mathcal{B}} = P^{-1}ec{w}$

where the $\ensuremath{\mathcal{B}}$ to $\ensuremath{\mathcal{S}}$ change of coordinates matrix is given by

$$P = P_{\mathcal{SB}} = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$$

$$\left[\vec{x} \right]_{\mathcal{B}} = P^{-1} \vec{x}$$
 and $A \vec{x} = P \left[A \vec{x} \right]_{\mathcal{B}} =$

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \}$$
 where $ec{v}_1 = egin{bmatrix} 1 \\ 2 \end{bmatrix}$, $ec{v}_2 = egin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$ec{w} = Pig[ec{w}ig]_{\mathcal{B}} \quad ext{and} \quad ig[ec{w}ig]_{\mathcal{B}} = P^{-1}ec{w}$$

where the $\ensuremath{\mathcal{B}}$ to $\ensuremath{\mathcal{S}}$ change of coordinates matrix is given by

$$P = P_{\mathcal{SB}} = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$$

$$\left[\vec{x}\right]_{\mathcal{B}} = P^{-1}\vec{x}$$
 and $A\vec{x} = P\left[A\vec{x}\right]_{\mathcal{B}} = PD\left[\vec{x}\right]_{\mathcal{B}} =$

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \}$$
 where $ec{v}_1 = egin{bmatrix} 1 \\ 2 \end{bmatrix}$, $ec{v}_2 = egin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$\vec{w} = P[\vec{w}]_{\mathcal{B}}$$
 and $[\vec{w}]_{\mathcal{B}} = P^{-1}\vec{w}$

where the ${\mathcal B}$ to ${\mathcal S}$ change of coordinates matrix is given by

$$P = P_{\mathcal{SB}} = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$$

$$\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = P^{-1}\vec{x}$$
 and $A\vec{x} = P \begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = PD \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = PDP^{-1}\vec{x}$.

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \}$$
 where $ec{v}_1 = egin{bmatrix} 1 \\ 2 \end{bmatrix}$, $ec{v}_2 = egin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$ec{w} = Pig[ec{w}ig]_{\mathcal{B}} \quad ext{and} \quad ig[ec{w}ig]_{\mathcal{B}} = P^{-1}ec{w}$$

where the ${\mathcal B}$ to ${\mathcal S}$ change of coordinates matrix is given by

$$P = P_{\mathcal{SB}} = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$$

Thus

$$\left[\vec{x}\right]_{\mathcal{B}} = P^{-1}\vec{x}$$
 and $A\vec{x} = P\left[A\vec{x}\right]_{\mathcal{B}} = PD\left[\vec{x}\right]_{\mathcal{B}} = PDP^{-1}\vec{x}$.

So,

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \} \quad \text{where} \quad ec{v}_1 = egin{bmatrix} 1 \\ 2 \end{bmatrix} \;, \;\; ec{v}_2 = egin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$\vec{w} = P ig[\vec{w} ig]_{\mathcal{B}} \quad \text{and} \quad ig[\vec{w} ig]_{\mathcal{B}} = P^{-1} \vec{w}$$

where the $\ensuremath{\mathcal{B}}$ to $\ensuremath{\mathcal{S}}$ change of coordinates matrix is given by

$$P = P_{SB} = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$$

Thus

$$\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = P^{-1}\vec{x}$$
 and $A\vec{x} = P \begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = PD \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = PDP^{-1}\vec{x}$.

So,

$$A = PDP^{-1} \text{ where } D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \ , \ P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$$

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
 where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

and we have an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \}$$
 where $ec{v}_1 = egin{bmatrix} 1 \\ 2 \end{bmatrix}$, $ec{v}_2 = egin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$\vec{w} = P[\vec{w}]_{\mathcal{B}}$$
 and $[\vec{w}]_{\mathcal{B}} = P^{-1}\vec{w}$

where the ${\cal B}$ to ${\cal S}$ change of coordinates matrix is given by

$$P = P_{\mathcal{SB}} = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$$

Thus

$$\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = P^{-1}\vec{x}$$
 and $A\vec{x} = P \begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = PD[\vec{x}]_{\mathcal{B}} = PDP^{-1}\vec{x}$.

So,

$$A = PDP^{-1} \text{ where } D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \ , \ P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$$

We say that A and D are similar matrices.