Characteristic Equation and Similar Matrices

Linear Algebra MATH 2076

EigenVectors, EigenValues, EigenSpaces

Definition

Let A be an $n \times n$ matrix. We call \vec{v} an eigenvector for A provided $\bullet \vec{v} \neq \vec{0}$, and

• there is some scalar λ with $A\vec{v} = \lambda \vec{v}$.

When this holds, λ is an *eigenvalue* for A associated to the eigenvector \vec{v} and $\mathbb{E}(\lambda) = \mathcal{N}\mathcal{S}(A - \lambda I)$ is the λ -eigenspace for A.

Note that

- $\mathbb{E}(\lambda) = \mathcal{NS}(A \lambda I)$ is always a vector subspace of \mathbb{R}^n ;
- λ is an eigenvalue for A iff det $(A \lambda I) = 0$, and this is the only time $\mathbb{E}(\lambda) \neq {\vec{0}}$;
- if λ is an eigenvalue for A, each non-zero \vec{v} in $\mathbb{E}(\lambda)$ is an eigenvector for A with assoc'd eigenvalue λ .

Eigen Problems

Given a square matrix A, we want to know how to:

- **1** Find all of the eigenvalues for A.
- **2** For each eigenvalue for A, find all of the assoc'd eigenvectors.
- **3** Understand the action of A on each of its eigenspaces.

For (1), we just solve $\left|\det(A - \lambda I) = 0\right|$; each solution is an eigenvalue for A. This is the characteristic equation of A.

For (2), we just find a basis for $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$.

For (3), just note that on $\mathbb{E}(\lambda)$, A acts like the dilation $A\vec{x} = \lambda \vec{x}$ (since each non-zero vector in $\mathbb{E}(\lambda)$ is an eigenvector for A).

Let
$$
A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}
$$
. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next,
\n
$$
det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = (3 - 4\lambda + \lambda^2) - 8 = (\lambda - 5)(\lambda + 1).
$$

So, we have simple eigenvalues $\lambda = 5$ and $\lambda = -1$.

$$
\mathbb{E}(5) = \mathcal{NS}(A - 5I) = \mathcal{NS}\begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \text{ and } \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}, \text{ so}
$$

$$
\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ is an eigenvector for } \lambda = 5 \text{ and } \mathbb{E}(5) = \mathcal{S} \text{pan}\{\vec{v}_1\}.
$$

$$
\mathbb{E}(-1) = \mathcal{NS}(A + I) = \mathcal{NS}\begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \text{ so } \vec{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

is an eigenvector for $\lambda = -1$ and $\mathbb{E}(-1) = \mathcal{S} \text{pan}\{\vec{v}_2\}.$

The eigenspaces $\mathbb{E}(5), \mathbb{E}(-1)$ for A are the lines in \mathbb{R}^2 given by

$$
y = 2x
$$
 for $\mathbb{E}(5)$

$$
y = -x
$$
 for $\mathbb{E}(-1)$.

Notice that A's two eigenvectors \vec{v}_1 , \vec{v}_2 are LI, so form an eigenbasis.

Characteristic Polynomials and Equations

Definition

The *characteristic polynomial* for A is $|\,\bm{p}_A(\lambda) = \text{det}(A - \lambda I)\,|$. The *characteristic equation* for A is $\big|\det(A - \lambda I) = 0\big|$ (i.e., $\boldsymbol{p}_A(\lambda) = 0$).

For a 2 × 2 matrix
$$
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$
,
\n $\mathbf{p}_A(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = (ad - bc) - (a + d)\lambda + \lambda^2$.
\nThis is a quadratic polynomial, so we can always solve $\mathbf{p}_A(\lambda) = 0$, but

sometimes the solutions may not be real numbers!

For a 3 × 3 matrix A, $\mathbf{p}_A(\lambda) = \det(A - \lambda I)$ is always a cubic polynomial of the form $\bm{p}_A(\lambda) = c_0 + c_1 \lambda + c_2 \lambda^2 - \lambda^3.$ Here the characteristic equation $\mathbf{p}_{\mathbf{A}}(\lambda) = 0$ always has at least one real solution, sometimes two, and sometimes three. So, what does this mean about eigenstuff?

A 3×3 Matrix with Three Simple Eigenvalues

$$
A_1 = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}
$$
 has *simple* eigenvalues 3, 4, 6 with associated eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

Here $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ is an eigenbasis assoc'd with A_1 ; that is, this is a basis for \mathbb{R}^3 consisting of eigenvectors for A.

If $\vec{v} = c_1\vec{v}_1 + c_2\vec{v}_2 + c_3\vec{v}_3$, what is A \vec{v} ? This is easy. We get $A\vec{v} = c_1A\vec{v}_1 + c_2A\vec{v}_2 + c_3A\vec{v}_3 = 3c_1\vec{v}_1 + 4c_2\vec{v}_2 + 6c_3\vec{v}_3$, right?

3×3 Matrices with *Simple* and *Double* Eigenvalues

 $A_2 =$ $\sqrt{ }$ $\overline{}$ 1 4 4 0 3 2 0 2 3 1 has one *simple* eigenvalue 5 and one *double* eigenvalue 2

with associated eigenvectors
$$
\vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}
$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.
Here $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is an eigenbasis associd with A_2 .

$$
A_3 = \begin{bmatrix} 5 & -6 & 0 \\ 1 & -2 & 0 \\ 4 & 6 & -1 \end{bmatrix}
$$
 has one *simple* eigenvalue 4 and one *double*

eigenvalue -1 with associated eigenvectors v_1

tors
$$
\vec{v}_1 = \begin{bmatrix} 6 \\ 1 \\ 6 \end{bmatrix}
$$
, $\vec{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

There is NO eigenbasis assoc'd with A_3 .

Let A be an $n \times n$ matrix.

We call $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ an *eigenbasis* assoc'd with A if

- each vector $\vec{v_i}$ is an eigenvector for A , and
- $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is a basis for \mathbb{R}^n .

When we have an *eigenbasis* assoc'd with A, it is especially simple to understand the action of the matrix transformation $\vec{x} \mapsto A\vec{x}$.

This is because A is *similar* to a diagonal matrix!

Recall that $A = \begin{bmatrix} 1 & 2 \ 4 & 3 \end{bmatrix}$ has *simple* eigenvalues $\lambda_1 = 5$ and $\lambda_2 = -1$ with assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \ 2 \end{bmatrix}$ 2 and $\vec{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ 1 $\Big]$. Since A's two eigenvectors are LI, they form an eigenbasis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}.$ Suppose $\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \ c_2 \end{bmatrix}$ $c₂$. Look at

$$
A\vec{x} = A(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1A\vec{v}_1 + c_2A\vec{v}_2 = 5c_1\vec{v}_1 - c_2\vec{v}_2
$$

which says that

$$
\left[A\vec{x}\right]_{\mathcal{B}} = \begin{bmatrix} 5c_1 \\ -c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}.
$$

Thus using β -coordinates, the action of A is just multiplication by the diagonal matrix

$$
D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}.
$$

But, how do we get $A\vec{x}$?

From the previous slide: WTF $A\vec{x}$ and we know

$$
\left[A\vec{x}\right]_B = D\left[\vec{x}\right]_B \quad \text{where} \quad D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}
$$

and β is an eigenbasis assoc'd with A given by

$$
\mathcal{B} = \{ \vec{v}_1, \vec{v}_2 \} \quad \text{where} \quad \vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \,, \quad \vec{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

.

.

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

$$
\vec{w} = P[\vec{w}]_B \quad \text{and} \quad [\vec{w}]_B = P^{-1}\vec{w}
$$

where P is the B to E change of coordinates matrix given by

$$
P = P_{\mathcal{EB}} = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}.
$$

Thus

So,

$$
\left[\vec{x}\right]_{\mathcal{B}} = P^{-1}\vec{x} \quad \text{and} \quad A\vec{x} = P\left[A\vec{x}\right]_{\mathcal{B}} = PD\left[\vec{x}\right]_{\mathcal{B}} = PDP^{-1}\vec{x}.
$$

$$
A = PDP^{-1} \text{ where } P = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix}, \ D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}
$$

We say that A and D are similar matrices.