Characteristic Equation and Similar Matrices

Linear Algebra MATH 2076

Chapter 5, Section 2

EigenVectors, EigenValues, EigenSpaces

Definition

Let A be an $n \times n$ matrix. We call \vec{v} an eigenvector for A provided

- $\vec{v} \neq \vec{0}$, and
- there is some scalar λ with $A\vec{v} = \lambda \vec{v}$.

When this holds, λ is an *eigenvalue* for A associated to the eigenvector \vec{v} and $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$ is the λ -eigenspace for A.

Note that

- $\mathbb{E}(\lambda) = \mathcal{NS}(A \lambda I)$ is always a vector subspace of \mathbb{R}^n ;
- λ is an eigenvalue for A iff $\det(A \lambda I) = 0$, and this is the only time $\mathbb{E}(\lambda) \neq \{\vec{0}\}$;
- if λ is an eigenvalue for A, each non-zero \vec{v} in $\mathbb{E}(\lambda)$ is an eigenvector for A with assoc'd eigenvalue λ .

Eigen Problems

Given a square matrix A, we want to know how to:

- Find all of the eigenvalues for A.
- ② For each eigenvalue for A, find all of the assoc'd eigenvectors.
- Understand the action of A on each of its eigenspaces.

For (1), we just solve $\det(A - \lambda I) = 0$; each solution is an eigenvalue for A. This is the *characteristic equation* of A.

For (2), we just find a basis for $\mathbb{E}(\lambda) = \mathcal{NS}(A - \lambda I)$.

For (3), just note that on $\mathbb{E}(\lambda)$, A acts like the dilation $A\vec{x} = \lambda \vec{x}$ (since each *non-zero* vector in $\mathbb{E}(\lambda)$ is an eigenvector for A).

 $\mathbb{E}(-1) = \mathcal{NS}(A+I) = \mathcal{NS}\begin{bmatrix}2 & 2\\4 & 4\end{bmatrix} \text{ and } \begin{bmatrix}2 & 2\\4 & 4\end{bmatrix} \sim \begin{bmatrix}1 & 1\\0 & 0\end{bmatrix}, \text{ so } \vec{v_2} = \begin{bmatrix}-1\\1\end{bmatrix}$ is an eigenvector for $\lambda = -1$ and $\mathbb{E}(-1) = \mathcal{S}pan\{\vec{v_2}\}$.

 $\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = (3 - 4\lambda + \lambda^2) - 8 = (\lambda - 5)(\lambda + 1).$

 $\mathbb{E}(5) = \mathcal{NS}(A - 5I) = \mathcal{NS} \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix}$ and $\begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}$, so

Let $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$. First, $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$. Next,

 $\vec{v}_1 = \begin{vmatrix} 1 \\ 2 \end{vmatrix}$ is an eigenvector for $\lambda = 5$ and $\mathbb{E}(5) = \mathcal{S}pan\{\vec{v}_1\}$.

So, we have *simple* eigenvalues $\lambda = 5$ and $\lambda = -1$.

The eigenspaces $\mathbb{E}(5), \mathbb{E}(-1)$ for A are the lines in \mathbb{R}^2 given by $y=2x \qquad \qquad \text{for } \mathbb{E}(5) \\ y=-x \qquad \qquad \text{for } \mathbb{E}(-1).$

Notice that A's two eigenvectors \vec{v}_1, \vec{v}_2 are LI, so form an *eigenbasis*.

Characteristic Polynomials and Equations

Definition

The *characteristic polynomial* for A is $p_A(\lambda) = \det(A - \lambda I)$.

The *characteristic equation* for A is $\det(A - \lambda I) = 0$ (i.e., $\mathbf{p}_A(\lambda) = 0$).

For a
$$2 \times 2$$
 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,
$$\mathbf{p}_A(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = (ad - bc) - (a + d)\lambda + \lambda^2.$$
This is a guadratic polynomial, so we can always solve $\mathbf{p}_A(\lambda) = 0$, but

This is a quadratic polynomial, so we can always solve $\mathbf{p}_{A}(\lambda) = 0$, but sometimes the solutions may not be real numbers!

For a 3×3 matrix A, ${\bf p}_A(\lambda)=\det(A-\lambda I)$ is always a cubic polynomial of the form ${\bf p}_A(\lambda)=c_0+c_1\lambda+c_2\lambda^2-\lambda^3$. Here the characteristic equation ${\bf p}_A(\lambda)=0$ always has at least one real solution, sometimes two, and sometimes three. So, what does this mean about eigenstuff?

A 3×3 Matrix with Three *Simple* Eigenvalues

$$A_1 = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix} \text{ has } \textit{simple} \text{ eigenvalues } 3, 4, 6 \text{ with associated}$$
 eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \ \vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}.$

Here $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is an eigenbasis assoc'd with A_1 ; that is, this is a basis for \mathbb{R}^3 consisting of eigenvectors for A.

If
$$\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3$$
, what is $A\vec{v}$? This is easy. We get $A\vec{v} = c_1 A\vec{v}_1 + c_2 A\vec{v}_2 + c_3 A\vec{v}_3 = 3c_1 \vec{v}_1 + 4c_2 \vec{v}_2 + 6c_3 \vec{v}_3$, right?

3×3 Matrices with *Simple* and *Double* Eigenvalues

$$A_2 = \begin{bmatrix} 1 & 4 & 4 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$
 has one *simple* eigenvalue 5 and one *double* eigenvalue 2

with associated eigenvectors
$$\vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.

Here $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is an eigenbasis assoc'd with A_2 .

$$A_3 = \begin{bmatrix} 5 & -6 & 0 \\ 1 & -2 & 0 \\ 4 & 6 & -1 \end{bmatrix}$$
 has one *simple* eigenvalue 4 and one *double*

eigenvalue
$$-1$$
 with associated eigenvectors $\vec{v}_1 = \begin{bmatrix} 6 \\ 1 \\ 6 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

There is **NO** eigenbasis assoc'd with A_3 .

Eigenbases

Let A be an $n \times n$ matrix.

We call $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ an *eigenbasis* assoc'd with A if

- each vector $\vec{v_i}$ is an eigenvector for A, and
- $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is a basis for \mathbb{R}^n .

When we have an *eigenbasis* assoc'd with A, it is especially simple to understand the action of the matrix transformation $\vec{x} \mapsto A\vec{x}$.

This is because A is *similar* to a diagonal matrix!

Recall that $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ has *simple* eigenvalues $\lambda_1 = 5$ and $\lambda_2 = -1$ with

assoc'd eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Since A's two eigenvectors are LI, they form an *eigenbasis* $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$.

Suppose
$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$$
; so $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

Look at

$$A\vec{x} = A(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1A\vec{v}_1 + c_2A\vec{v}_2 = 5c_1\vec{v}_1 - c_2\vec{v}_2$$

which says that

$$\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 5c_1 \\ -c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}.$$

Thus using $\mathcal{B}\text{-coordinates}$, the action of A is just multiplication by the diagonal matrix

$$D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}.$$

But, how do we get $A\vec{x}$?

 $\begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = D\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$ where $D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ and \mathcal{B} is an eigenbasis assoc'd with A given by

$$\mathcal{B} = \{ ec{v}_1, ec{v}_2 \} \quad ext{where} \quad ec{v}_1 = egin{bmatrix} 1 \ 2 \end{bmatrix} \;, \;\; ec{v}_2 = egin{bmatrix} -1 \ 1 \end{bmatrix} .$$

Recall that for any vector \vec{w} in \mathbb{R}^2 we have

From the previous slide: WTF $A\vec{x}$ and we know

$$ec{w} = P ig[ec{w}ig]_{\mathcal{B}} \quad ext{and} \quad ig[ec{w}ig]_{\mathcal{B}} = P^{-1}ec{w}$$

where P is the \mathcal{B} to \mathcal{E} change of coordinates matrix given by

$$P=P_{\mathcal{EB}}=egin{bmatrix} ec{v}_1 & ec{v}_2 \end{bmatrix}=egin{bmatrix} 1 & -1 \ 2 & 1 \end{bmatrix}.$$
 Thus

Thus

 $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = P^{-1}\vec{x}$ and $A\vec{x} = P \begin{bmatrix} A\vec{x} \end{bmatrix}_{\mathcal{B}} = PD[\vec{x}]_{\mathcal{B}} = PDP^{-1}\vec{x}$.

So,
$$A = PDP^{-1} \text{ where } P = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \vec{v_1} \ \vec{v_2} \end{bmatrix}, \ D = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}.$$

We say that A and D are *similar* matrices.