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EigenVectors and EigenValues

Definition

Let A be an n × n matrix. We call ~v an eigenvector for A provided

~v 6= ~0, and

there is some scalar λ with A~v = λ~v .

When this holds, λ is an eigenvalue for A associated to the eigenvector ~v .

Example (A 2× 2 matrix with 2 LI eigenvectors)

For A =

[
4 −1
2 1

]
, A

[
1
1

]
=

[
3
3

]
= 3

[
1
1

]
and A

[
1
2

]
=

[
2
4

]
= 2

[
1
2

]
.

Therefore, we see that ~v =

[
1
1

]
is an eigenvector with assoc’d eigenvalue 3,

and similarly ~w =

[
1
2

]
is an eigenvector with assoc’d eigenvalue 2.

See the geogebra file Eigen2x2Ex1gbg.
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EigenVectors and EigenValues

Example (Another 2× 2 matrix with 2 LI eigenvectors)

The matrix A =

[
9 2
−3 16

]
has eigenvectors

[
2
1

]
and

[
1
3

]
.

How do you find the assoc’d eigenvalue? Just multiply, right?

See the geogebra file Eigen2x2Ex2gbg.

Note that:
1 For an eigenvector ~v , we always have ~v 6= ~0.
2 However, it is possible to have an eigenvalue λ = 0.

This happens iff NS(A) 6= {~0}. Right?

3 If ~v is an eigenvector for A, then so is s~v for any scalar s 6= 0, and
with the same assoc’d eigenvalue.

4 If ~v , ~w are an eigenvectors for A, then so is ~v + ~w , and with the same
assoc’d eigenvalue.

What do items (3) and (4) above tell us?
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How to Find EigenVectors and EigenValues

Let A be an n × n matrix.

Notice that

A~v = λ~v ⇐⇒ (A− λI )~v = ~0 ⇐⇒ ~v is in NS(A− λI ).

Thus, ~v is an eigenvector for A iff ~v 6= ~0 is in NS(A− λI ). Also, λ is an
eigenvalue for A iff NS(A− λI ) 6= {~0}.

What does NS(M) 6= {~0} mean about the matrix M? It says that the
columns of M are not LI. For a square matrix M, this is equivalent to
saying that M is not invertible. This is equivalent to det(M) = 0.

Thus, λ is an eigenvalue for A iff det(A− λI ) = 0 . This provides us an

equation whose solutions are the eigenvalues of A. ¨̂

Note the role of NS(A− λI ). What can we say about these vectors?
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Thus, λ is an eigenvalue for A iff det(A− λI ) = 0 .

This provides us an

equation whose solutions are the eigenvalues of A. ¨̂

Note the role of NS(A− λI ). What can we say about these vectors?
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EigenSpaces

Let A be an n × n matrix.

Given any scalar λ, let E(λ) = NS(A− λI ).
For most values of λ, E(λ) = {~0}. Right? From the previous slide,
E(λ) 6= {~0} iff λ is an eigenvalue for A, and then each non-zero ~v in E(λ)
is an eigenvector for A with assoc’d eigenvalue λ.

Definition

When λ is an eigenvalue for A, we call E(λ) the λ-eigenspace for A.

Note that E(λ) = NS(A− λI ) is a vector subspace of Rn. Remember, λ
is an eigenvalue for A iff det(A− λI ) = 0, and this is the only time
E(λ) 6= {~0}.

Example (A 2× 2 matrix with 2 LI eigenvectors)

A =

[
4 −1
2 1

]
has A

[
1
1

]
= 3

[
1
1

]
and A

[
1
2

]
= 2

[
1
2

]
; i.e., EVs 2 and 3.

So, E(3) = Span
{[1

1

]}
and E(2) = Span

{[1
2

]}
.

These are lines in R2.
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λ = 2 is an eigenvalue for A =

4 −1 6
2 1 6
2 −1 8

. Find all assoc’d eigenvectors.

We seek a basis for the eigenspace E(2) =

NS(A− 2I ).

Look at

A− 2I =

2 −1 6
2 −1 6
2 −1 6



∼

2 −1 6
0 0 0
0 0 0

.

Evidently, x2 and x3 are free; say

x2 = 2s and x3 = t. Then

2x1 − 2s + 6t = 0, and the general solution to

(A− 2I )~x = ~0 has the form ~x =

x1

x2

x3

 =

s − 3t
2s
t

 = s

1
2
0

+ t

−3
0
1

.

So B =

{1
2
0

 ,
−3

0
1

} is a basis for E(2) and we see that E(2) is the

plane in R3 spanned by the two LI eigenvectors

1
2
0

 ,
−3

0
1

.

Note that on E(2), A acts like the dilation ~x 7→ A~x = 2~x .
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Action of A on its Eigenspace

The matrix A =

4 −1 6
2 1 6
2 −1 8

 has an eigenvalue λ = 2 and E(2) is the

plane in R3 given by E(2) = Span
{1

2
0

 ,
−3

0
1

}.

See Eigen3x3Ex1.ggb
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Eigen Problems

Given a square matrix A, we want to know how to:

1 Find all of the eigenvalues for A.

2 For each eigenvalue for A, find all of the assoc’d eigenvectors.

3 Understand the action of A on each of its eigenspaces.

For item (1), we just solve det(A− λI ) = 0 ; each solution is an

eigenvalue for A.

For item (2), we just find a basis for E(λ) = NS(A− λI ).

For item (3), just note that on E(λ), A acts like the dilation A~x = λ~x
(since each non-zero vector in E(λ) is an eigenvector for A).
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Let A =

[
1 2
4 3

]
.

First, A− λI =

[
1− λ 2

4 3− λ

]
. Next,

det(A− λI ) = (1− λ)(3− λ)− 8 = (3− 4λ+ λ2)− 8 = (λ− 5)(λ+ 1).

So, we have simple eigenvalues λ = 5 and λ = −1.

E(5) = NS(A− 5I ) = NS
[
−4 2
4 −2

]
and

[
−4 2
4 −2

]
∼
[

2 −1
0 0

]
, so

E(5) = Span
{[1

2

]}
.

E(−1) = NS(A + I ) = NS
[

2 2
4 4

]
and

[
2 2
4 4

]
∼
[

1 1
0 0

]
, so

E(−1) = Span
{[ 1
−1

]}
.

Thus A has two eigenspaces which are the lines in R2 given by

y = 2x for E(5)

y = −x for E(−1).

Notice that the two eigenvectors for A are LI, so form a basis.
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